Recycling of Lead-Acid Batteries: Perspectives

lead-acid-battery-recyclingLead-acid batteries are used on a mass-scale in all parts of the world for energy storage. Lead-acid batteries contain sulphuric acid and large amounts of lead. The acid is extremely corrosive and is also a good carrier for soluble lead and lead particulate. Lead is a highly toxic metal that produces a range of adverse health impacts particularly among young children.

Exposure to excessive levels of lead can cause damage to brain and kidney, impair hearing; and lead to numerous other associated problems. On average, each automobile manufactured contains approximately 12 kilograms of lead. Around 96% lead is used in the common lead-acid battery, while the remaining 4% in other applications including wheel balance weights, protective coatings and vibration dampers.

Recycling Perspectives

Recycling of Lead-Acid Batteries is a profitable business, albeit dangerous, in developing countries. Many developing countries buy used lead-acid batteries (also known as ULABs) from industrialized countries (and Middle East) in bulk in order to extract lead. ULAB recycling occurs in almost every city in the developing world where ULAB recycling and smelting operations are often located in densely populated urban areas with hardly any pollution control and safety measures for workers.

Usually ULAB recycling operations release lead-contaminated waste into the environment and natural ecosystems.  Infact, Blacksmith Institute estimates that over 12 million people are affected by lead contamination from processing of Used Lead Acid Batteries in the developing world, with South America, South Asia and Africa being the most affected regions.

Associated Problems

The problems associated with recycling of ULABs are well-documented and recognized by the industry and the Basel Convention Secretariat. As much of the informal ULAB recycling is small-scale and difficult to regulate or control, progress is possible only through cleanup, outreach, policy, and education.

For example, Blacksmith’s Lead Poisoning and Car Batteries Project is currently active in eight countries, including Senegal, the Dominican Republic, India, and the Philippines. The Project aims to end widespread lead poisoning from the improper recycling of ULABs, and consists of several different strategies and programs, with the most important priority being the health of children in the surrounding communities.

Lead poisoning, from improper recycling of used batteries, impacts tens of millions of people worldwide.

Lead poisoning, from improper recycling of used batteries, impacts tens of millions of people worldwide.

There is no effective means of tracking shipments of used lead-acid batteries from foreign exporters to recycling plants in developing world which makes it difficult to trace ULABs going to unauthorized or inadequate facilities.

The Way Forward

An effective method to reduce the hazards posed by trans-boundary movements of ULABs is to encourage companies that generate used lead batteries to voluntarily stop exporting lead batteries to developing countries. These types of voluntary restrictions on transboundary shipments can help pressure companies involved in recycling lead batteries in developing to improve their environmental performance. It may also help encourage policy makers to close the gaps in both regulations and enforcement capacity.

Another interesting way is to encourage regeneration of lead-acid batteries which can prolong its life significantly. The advantage of battery regeneration over regular recycling is the reduced carbon footprint incurred by mitigating the collecting, packing, shipping and smelting of millions of tonnes of batteries and their cases. Most importantly, it takes about 25kWh of energy to remake a 15Kg, 12V 70Ah battery and just 2.1KWh to regenerate it electronically.

Waste Management Challenges in Developing Nations

Waste is the result of collective failure from public, legislative rules, lack of funds and technical support. Public awareness and proper knowledge of waste management and end use of different types of waste, health effects, environmental problems and economic issues that are related to waste management is very important for successful execution of any waste management related practices. Everyone needs to get better knowledge, proper understanding of waste management issues and their practices to curb it. Basic training needs to be initiated from governments in this regard, which can be very effective. Poor knowledge can make the best planned technique questionable.

The increasing cost of waste disposal is a cause of major concern in developing nations

In developing countries, participation level of most citizens in waste management is very low, with residents in urban areas are not actively involved in the process of waste management. Even though it’s low, but very beneficial for future prospect and for more meaningful involvement of majority of public in waste management practices.

People should be educated about sorting out waste based on their type e.g. recyclable waste, hazardous waste, green waste etc. Majority of people across the world are not aware of waste as recycling material, amazingly most of them think plastic is recyclable waste. Involving people who are unaware of waste management practice is extremely difficult.

In developing countries, practices of waste management are usually carried by poor, for their survival. It has been estimated that 2% of population in Asia, Latin America and Africa are dependent on waste for their livelihood. Family organized, or individual manual scavengers are often involved with waste management practices with very limited supportive network and facilities with increased risk of health effects. Also, this practice prevents their children from further education.

iraq-wastes

Despite the bad consequences, it should be kept in mind that this practice keeps them employed and provide livelihood in countries with high unemployed population. But measure need to be taken to provide their better lifestyles, social behaviour towards people involved in waste management practices, provide them with facilities to reduce their health-related risk and increase their working efficiency.

In developing countries, where government support for waste management is scarce, people need to come strongly against their local municipal office or government if they see things are not changing and stacks of waste are piling up. They should protest to protect their environment, health and keep living secure and healthy for their children.