3 Ways to Reuse Water Using Renewable Energy

Water is essential to life, making it one of the most valuable resources on the planet. We drink it, use it to grow food and stay clean. However, water is of increasingly short supply and the Earth’s population only continues to expand. Many of the countries with the largest populations are also ones that use the most water. For instance, in the United States, the average person uses 110 gallons of water each day. Meanwhile, three-fourths of those living in Africa don’t have access to clean water.

To ensure we have enough water to survive — and share with those in need — the best approach is to conserve this resource and find sustainable ways of recycling it. Currently, conventional methods or water purification use about three percent of the world’s energy supply. This isn’t sustainable long-term and can have adverse effects on the environment.

Recently, however, major steps have been made to reduce both the collective water and carbon footprint. Now, there are multiple, sustainable ways to both save energy and reuse water using renewable energy.

1. Anaerobic Digestion

Anaerobic digestion — or AD — is the natural process in which microorganisms break down organic materials like industrial residuals, animal manure and sewage sludge. This process takes place in spaces where there is no oxygen, making it an ideal system for cleaning and reusing wastewater. This recycled water can provide nutrients for forest plantations and farmland alike.

For example, in Yucatan, Mexico, the successful implementation of AD systems has provided water to promote reforestation efforts. This system has also helped accelerate the search for a sustainable solution to water-sanitation issues in rural Latin American communities.

Additionally, anaerobic digestion also reduces adverse environmental impacts. As the system filters water, it creates two byproducts — biogas and sludge. The biogas can be used as energy to supply electricity or even fuel vehicles. And the sludge is used as fertilizers and bedding for livestock. In poor countries, like Peru, 14 percent of primary energy comes from biogas, providing heat for food preparation and electricity to homes that would not have access to it otherwise.

2. Vapor Compression Distillation

In this process, the vapor produced by evaporating water is compressed, increasing pressure and temperature. This vapor is then condensed to water for injection — highly purified water that can be used to make pharmaceutical-grade solutions.

Vapor compression distillation is incredibly sustainable because it can produce pure water on combustible fuel sources like cow dung — no chemicals, filters or electricity necessary. This makes it water accessible to even the most rural communities.

The system only needs enough energy to start the first boil and a small amount to power the compressor. This energy can be easily supplied by a solar panel, producing roughly 30 liters of water an hour using no more energy than that of a handheld hairdryer.

3. Solar Distillation

Utilizing solar energy for water treatment may be one of the most sustainable solutions to the water crisis, without sacrificing the environment or non-renewable resources. Between 80 and 90 percent of all energy collected through commercial solar panels is wasted, shed into the atmosphere as heat. However, recent advancements in technology have allowed scientists to capture this heat and use it to generate clean, recycled water.

By integrating a solar PV panel-membrane distillation device behind solar panels, researchers were able to utilize heat to drive water distillation. This panel also increases solar to electricity efficiency. This device can even be used to desalinate seawater, providing a sustainable solution to generating freshwater from saltwater.

Environmental and Economic Benefits

Finding sustainable methods of recycling water is essential to reducing energy consumption and helping the planet, and all those dependent upon it, thrive. Using methods like anaerobic digestion and environmentally-friendly distillation processes can reduce toxic emissions and provide purified, recycled water to those who need it most.

Sustainable reuse of water can also benefit the economy. The financial costs of constructing and operating desalination and purification systems are often high compared to the above solutions. Furthermore, using recycled water that is of lower quality for agricultural and reforestation purposes saves money by reducing treatment requirements.

How Green Financing is Changing the Renewable Energy Market?

Growing interest in renewables is rapidly changing how energy projects are financed in America and around the world.

One of the biggest shifts has been an influx in outside money into the industry in the form of “green financing” — bonds, loans and other assets earmarked for renewable energy projects around the world.

The rise of the green financing market shows how investors are starting to take renewables more seriously — and it could signal a major transformation of the renewable energy market over the next few years.

Green Finance

Green Financing May Accelerate Renewable Energy Projects

Green financing is a catch-all term for investment in financial vehicles related to renewables and other green industries. Assets, bonds and funds related to renewable energy and other green investments make up the green financing market. In recent years, a robust green financing market has become widely viewed as essential to accelerating the development of new renewable energy technology projects.

Green finance is growing fast. In 2012, the sustainable debt market — including “green” and sustainable bonds and loans — was worth only around $10 billion, according to data from BloombergNEF. In 2018, just six years later, the market was worth nearly $250 billion.

Most of these gains came in the form of new green bonds (sometimes also called “climate bonds”), which are fixed-income investments designed to raise money for new renewable energy projects.

The growth of green financing represents a slow but noticeable divestment away from fossil fuels.

The pivot may also represent a change in how businesses are structured. The growing popularity of bonds as an investment vehicle may enable community co-ops rather than corporations to become a more viable business model for renewable energy providers. For example, the Westmill Solar Cooperative in the United Kingdom has raised more than £6 million ($7.94 million) through bonds offered to investors.

While coil, oil and natural gas are likely to remain a good investment in the short-term, the strength of the green financing market does seem like a signal that, over the next 10 to 20 years, non-renewables will become less and less tempting for investors compared to renewable and sustainable investments.

How Green Financing May Change Energy Around the World?

As the green finance market grows, regulators are beginning to codify what counts as a green investment.

In the EU, for example, regulators recently debated whether plastics manufactured from entirely recycled materials could count as a “sustainable” investment under European finance laws.

These new definitions and regulations may determine which industries receive major funding and which are left out of the green financing boom.

Nuclear energy, for example, is generally not regarded as renewable energy, but is sometimes considered sustainable. Nuclear power plants generate waste, but they also produce zero emissions, unlike fossil fuel-fired power plants.

Natural gas is also not considered renewable or sustainable, as it is a fossil fuel and produces significant carbon emissions when burned for power. However, some proponents of the energy source argue that it should be considered sustainable, as it produces significantly less carbon dioxide than similar fossil fuels.

green-financing

In 2019, EU regulators reached a deadlock over whether or not nuclear and natural gas power plants should count as sustainable investments. In a final compromise, EU lawmakers ruled that both nuclear and natural gas projects were neither included nor excluded in the definition of sustainable by default. Instead, projects would need to prove that they “do no harm” on a case-by-case basis.

Similar rulings and legal challenges could shape the future of energy as governments around the world grapple with the challenge of shifting away from fossil fuels.

A Coming Sustainable Energy Revolution

The rise of the green finance market may change what alternative energy looks like around the world. Legal debates over what should count as “renewable” or “sustainable” may affect which projects receive funding, while bonds and loans may make community cooperatives that provide renewable energy more practical.

As fossil fuels become less attractive to investors and the renewable energy market grows, green financing is likely to have major impacts on the future of renewables.

Solar-Powered Pumps are Game-Changing for Agriculture

The first thing that comes to mind when you hear solar power is a solar panel placed on a rooftop for creating electricity for commercial or residential use. However, solar power has another important function – to mine and deliver water to improve productivity. This is especially applicable in sunny nations like Australia and most countries in Africa since its main industry is agriculture. Still, their productivity is suffering since their fields don’t get sufficient irrigation. Though, using solar pumps, they can double or even triple their profits. These economic gains can improve the lives of many farming communities.

Importance of Water in Agriculture

Our lives depend on clean water. The developed countries can sometimes take water for granted, but the evolving economies understand the significance of this commodity. A solar pump is an ecological option to get water for the crops and deliver drinkable, clean water.

The founder and CEO of the British-American company Ignite Power, Yariv Cohen, confirmed that solar pumps brought more efficiency, leading to bigger disposable income and more employment. Farmers can now grow three seasons per year instead of one. So, disposable income increased by 20% to 30%.

60% of the Sub-Saharan Africa population is employed in agriculture. Therefore, agriculture is accountable for 60% of economic output. This is less productive than the other regions in the world since only a part of the farmland gets constant irrigation – just 6% across Africa. Most farmlands go without irrigation, so most farmers in Africa rely only on rain for the larger lands, while they take care of the smaller areas with manual effort.

What is Solar-Powered Pumping System

The solar-powered pumping systems include a solar panel array, which fuels an electric motor. The motor, in turn, fuels the surface pump. The water is pumped from the stream or ground into a storage tank, utilized to water crops. If the farmland is irrigated consistently with solar pumps, the farmers will double the production compared to farmlands irrigated by rainwater or with manual effort.

Life-changing mechanism

About 600 million who live in Africa don’t have consistent electricity access. This is damaging the economic health of the continent. Everyone knows the ideal solution is to expand the electrical grid, but financial and geographical considerations prevent that. Ignite Power provides off-grid solutions to African countries in rural places like Nigeria, Mozambique, Rwanda, and Sierra Leone.

Cohen explains how solar pumps allow the farmers to irrigate their lands by using the sun. They first connect the homes, and then they utilize the same solar panels to water the fields. Using solar power, the pump enables a big area to be regularly irrigated. This improves the yield affordably.

Ignite Power has 1.1 million customers in Africa. So, there is room for enormous growth for his company and other providers of solar power in the continent. Cohen aims to reach 500 million houses.

They work with the bank and try to find the ideal solutions. They want to provide the best solution for the country with the help of the government. They can connect any payment providers or manufacturers to their system. They can connect all the suppliers, so many people could join.

The case of the two Rwandan women Grace Uwas (23) and Tharcille Tuyisenge (20) is admirable. They started working with Cohen’s company and bought solar systems for homes in Rwamagana, so people there have sustainable and safe electricity. Until now, they have installed twenty-five solar systems and more are coming!

Bottom Line

Electricity is the quintessence for any country. The solar power is game changing for African evolving communities to get access. In this way, they won’t just keep their lights on, but their agricultural productivity will be improved.

Manage Trees With Sustainability In Mind

There is growing concern as forest land outside of conservation areas is steadily decreasing. There has been a disturbing reduction in primary forests of 40 million hectares in the last decade. The total area of forest within protected areas has increased by 94 million hectares in the past two decades and now accounts for 13% of the total of forests globally.

Tree healthcare for humans

Trees are well known for providing oxygen as a result of their photosynthesis process. It is in fact the carbon dioxide (CO2) that is removed during this process therefore helping to mitigate the negative effects of burning fossil fuels ie. CO2 production. The benefits to the world of this process make the existence and importance of the Amazon rainforest especially significant.

Trees benefit cities too

Not only are trees a beautiful addition to any city, they also serve a practical purpose by absorbing pollutants. Their presence makes a city appear more vibrant and more friendly. For example, San Francisco is home to 105,000 trees. Tree planting should be kept in pace with tree mortality and tree removal. A tree management plan is essential to ensure sustainability.

Tree management for woodland

Trees should be checked for health and also for the merchantability of the trees. When areas of the woodland require thinning out it is useful to produce a product that has a commercial value. This way waste management has been prioritized and has turned a Liability into an Asset.

The harvested wood/logs can be considered an asset and can be sold as fuel. Always ensure trees are removed when over-crowding is an issue to allow for tree growth of the remaining trees. The woodland is sustainable by including sufficient planting of new trees.

Arborists are trained to evaluate the health and ongoing sustainability of a tree. Oftentimes they can prescribe solutions to prolong a tree’s life, thereby protecting the environment as well as improving surrounding property values.

Most cities have tree service companies that offer trained arborists who can provide consultations. Depending on the depth of the consultation it may be free or at a very low price.

An ISA-certified arborist can make qualified decisions on whether a tree needs to be removed or if it can be saved.

Additionally, during their consultation, they will be careful to not damage the tree further. Trufast Tree Care has a certified arborist on staff for helping with these tree evaluations

Maintaining the urban trees

Your arborist can advise you of local procedures and the law regarding your trees which if not properly managed can become a legal liability. Some types of trees do not take well to heavy pruning, for example the Southern Live Oak is best not located in restricted areas where heavy pruning to clear avenues may be required. It is better to grow it in a larger landscaped area where it can grow with minimal pruning. They often reach 60 to 80 feet in height with a 60 to 100 foot spread.

trees-sustainability

The branches of Live Oak tend to droop as they grow so some careful pruning will be necessary especially as this type of growth can be a problem for vehicular or pedestrian clearance beneath. Many trees are not permitted to be removed without obtaining a tree removal permit first. This is good as it provides some protection for the trees.

Other tree varieties to grow with sustainability

The beautiful red maple is a great yard tree being very tolerant and is able to grow in nearly any conditions but especially in acid to neutral soils. Plant away from paths etc as the roots can raise sidewalks if too close. A good layer of organic mulch should be placed around the roots to feed and help retain moisture.

Presence of trees make a city appear more vibrant and eco-friendly

Another commonly found tree in the US is the Loblolly Pine. When found in plantations it provides the perfect habitat for wildlife such as deer, squirrels making it a very sustainable choice. Being a faster growing tree it requires more regular pruning.

Enjoy our future with sustainability for trees

Sustainability ensures we leave the world in a good state for future generations to enjoy, whilst still meeting the needs of the current population. Keep your trees maintained moving forward and always pay attention to the type of tree and manage accordingly. This way you can enjoy the many beautiful trees around you.

What is Revegetation and Why is it Important?

Revegetation is a vital step in facilitating a successful soil restoration in disturbed lands. It can occur naturally through plant succession and colonization or accelerated human-driven land changes meant to repair damage caused by severe events like floods, wildfire, or mining. The original technique involved applying fertilizer and seeds to vulnerable lands.

For those unfamiliar with revegetation, you’ll want to review its benefits to prevent soil erosion successfully, reduce wind erosion, and boost soil’s ability to soak up water that runs off the surface. Without employing revegetation-based erosion control strategies, plant communities and delicate habitats may sustain avoidable damage.

revegetation

Benefits of revegetation

Unlike the normal tree planting process, revegetation requires pre-planning activities like land designing. In the designing phase, you’ll outline which type of plants to use in specific areas and perform soil compatibility studies. Proper environmental and landscape analysis are the key to successful revegetation. Proper planning ensures that you allocate money and resources wisely and fare a better chance of achieving your goals and earning a profit.

Some native plants can only grow in specific areas, so it’s essential to identify which plant types can endure your region’s climate. Homeowners complete the revegetation process for various reasons, including its ability to benefit governments, private individuals, communities, and companies, alike.

If you need a solid Colorado seed company that provides conservation and reclamation seeds, check out Granite Seed; they’ve been implementing soil erosion control measures and distributing products across North America for more than 30 years. For optimal results, consult the professionals.

Soil erosion control

Revegetation is crucial, as the risk of erosion damage increases when the land is bare or contains little vegetation cover. Plants offer a protective barrier and prevent soil erosion by slowing down water runoff and encouraging more water to seep into the ground. Additionally, the roots hold the soil intact while protecting the plant itself from powerful rushing water that can wash it away. This plant life also assists in stabilizing slopes and embankments, lowering the terrain’s susceptibility to landslides.

Trees, grass, crop residue, and plants offer ultimate soil coverage and intercept all falling raindrops, acting as the most effective soil erosion control measure. Mulch provides additional protection from wind and rain before the newly-planted seeds take root while minimizing soil moisture loss during prolonged dry periods.

Mulching is crucial in halting destructive erosion and establishing vegetation in places with severe exposure to natural and human-driven erosion. Experts advise utilizing hydromulching in such conditions. The absence of windbreakers like crop residue, trees, and shrubs leads to more soil displacement, thus increasing erosion and abrasion.

Conservation

One of the primary roles of revegetation is to connect lost patches of natural habitat. It serves as a crucial tool in areas that have suffered extensive natural vegetation clearances like urban environments. Research shows that revegetation can facilitate the restoration of significant urban bird populations by connecting the existing habitat with new patches, enhancing bird species diversity.

Developing large habitat patches is an effective method of increasing bird abundance. Therefore, revegetation plans should carefully consider how to connect the new vegetation patches with the existing habitats for the sanctity of bird populations. Revegetating agricultural zones, in specific, can encourage breeding.

For the most part, revegetation favors thriving and common species of birds over declining, rare types. Despite its favoritism, revegetation provides a home to millions of species like small mammals, insects, and birds, when successful.

Soil fertility restoration

Activities like mining lead to extensive topsoil damages as reinstatement, stripping, and stockpiling causes soil degradation. This damage occurs through accelerated soil erosion, soil structure loss, soil PH reduction, organic matter depletion, compaction, reduced microbial activity, and heavy metal accumulation. Topsoil management is essential for restoring fertility and minimizing nutrient losses.

Revegetation via forest vegetation restores soil fertility by improving the capacity to exchange cations, organic matter, and available nutrients while sustaining biological activities and improving physical conditions.

This method is beneficial, but it takes prolonged periods to regenerate the soil to its original state. Some of the ideal trees for revegetating mined lands are grasses, legumes, trees, and herbs N-fixing species. The favorable tree species are Leucaena, Acacia, and other acid-tolerant legume trees, which provide the soils with substantial organic matter.

Pollution reduction

Revegetation and reforestation play a significant role in minimizing pollution. The net carbon release from deforestation was estimated at 1-2 billion tonnes in 1980 and between 1.5- 3 billion in 1989. There’s enough evidence to verify a significant increase in deforestation since 1980 in multiple tropical areas. Revegetation offers a long term solution to sequestering carbon (IV) oxide because as trees mature, they eliminate Carbon (IV) oxide, thus slowing down carbon buildup in the atmosphere.

Beautifies the landscape

Besides purifying the air by filtering pollutants and harmful dust and gifting human beings with life-supporting oxygen, vegetation also makes the environment beautiful. Revegetating bare land makes it attractive, restores its appearance, and can even boost its value.

college-green

If you notice your yard is looking dull or lifeless, vegetation can add color to a property’s outdoor living spaces. For example, trees bear beautiful flowers, magnificent leaves, and fruits, which can sprinkle vibrant accent colors throughout your back and front yard.

It would be best to seek an expert before embarking on your revegetation project, as it can be a meticulous process. A revegetation expert will offer expert insight and advice on how to proceed.

Sustainability Standards in Oil Palm Industry: An Overview

The palm oil industry is particularly involved in the development of sustainability standards. Driven by growing global demand, palm oil production has expanded rapidly in the last few years. Palm oil is the most widely consumed vegetable oil in the world, and its popularity has grown even more with the emergence of new market opportunities in the biofuels sector, in addition to its traditional food and oleochemical uses.

This strong growth has unquestionably contributed to the economic development of the main producer countries – Indonesia and Malaysia – which account for 87% of global production. Palm oil cultivation provides income for many smallholders, whose produce accounts for around 40% of world palm oil output.

Environmental and Socio-economic Concerns

However, the expansion of palm oil cultivation has also generated serious environmental concerns. It results in tropical deforestation and thus has a major impact on biodiversity loss, with the decline of emblematic species such as orangutan in Southeast Asia. It contributes to climate change through deforestation, but also through the conversion of peatlands, which are of vital importance in soil carbon sequestration.

The huge forest and bush fires in recent years in Indonesia which are associated with clearing lands for agricultural or forestry plantations caused severe air pollution and public health problems across the sub-region. In addition, industrial plantations are sometimes responsible for polluting waterways, into which chemical inputs and processing plant waste are dumped.

Moreover, this expansion has sometimes resulted in social abuses and human rights violations, in the form of land grabbing by plantation companies at the expense of local and indigenous communities or of the exploitation of plantation workers.

Sustainability Standards in Oil Palm Industry

Condemnation of these abuses by NGOs and growing consumer awareness of the adverse impacts of the expansion of palm oil plantation have driven the development of sustainability standards. Such standards are aimed at transforming production practices in order to mitigate their adverse environmental and social effects.

The expansion of palm oil cultivation in Southeast Asia has also generated serious environmental concerns.

In 2001, representatives of the food processing and distribution sector launched a dialogue with WWF and plantation companies, leading to the creation in 2004 of the first voluntary sustainability standard in the sector, the Roundtable on Sustainable Palm Oil (RSPO).

There are now 2.41 million hectares of RSPO-certified plantations, while sustainable palm oil accounted for 20% of world trade in this product. Meanwhile, several other initiatives proposing a vision of palm oil sustainability have emerged, positioning themselves as either a complement or an alternative to RSPO.

New Challenges to Overcome

The development of these initiatives demonstrates the growing awareness among producers, the industry and the public authorities of the need to transform the sector to enable it to contribute to the Sustainable Development Goals (SDGs). But this proliferation of sustainability standards itself poses new challenges, even though the environmental and social problems that motivated their emergence remain unresolved.

At the institutional level, the proliferation of sustainability initiatives since the creation of RSPO reflects a real fragmentation of the regulatory framework. This proliferation also raises the question of the articulation of these voluntary standards with the public regulations and national sustainability standards that producer countries have adopted.

Finally, measures to ensure the sustainability of palm oil cultivation need to bolster their credibility by guaranteeing better inclusion of the millions of smallholders, and by contributing in an effective, measurable way to mitigating the adverse social and environmental impacts of growth in palm oil cultivation. In this field, the role of collaborative and multidisciplinary research in providing strong evidence-based impact evaluation of standards is crucial.

Australia: A Climate Crisis

The world, as we know, is getting warmer and warmer. Weather across the globe is changing significantly, and it’s all down to climate change. From increasing sea levels, the melting of polar ice caps and not forgetting constant reports on hurricanes and heatwaves, the world is going through a climate crisis, and there isn’t long left to attempt to reverse the changes that have been made to our environment.

 

Evan following the huge European heatwave recently, and mass historical data showing that there’s ‘no doubt left’ regarding global warming, one place, in particular, is expected to be hit harder than any other.

That place is Australia.

Australia’s Climate

Due to Australia being located within the southern hemispheres, the seasons are opposite of North America and Europe and feature an abundance of diversity. This includes everything from golden sandy beaches and tropical rainforests to a rich coral reef, filled with diverse marine life, huge, sparse deserts and equally as vast grazing lands.

As you may know, the majority of the population in Australia is confined to the edges of the country, with most people living within the cities and larger towns.

While Australia is warm, and known to be an extremely hot country, 2018 was the third-warmest since records began, with the mean temperature sitting and 1.14°C above average.

While this may not seem much considering the already warm nature of Australia, it’s quite an alarming statistic. Alongside this, the warmth was persistent throughout the year with many of the months recording temperatures within each month’s top ten.

Rainfall was also down, standing at 11% below the average when compared to 1961 – 1990. You can find the rest of the stats here.

Continuing issue

These shocking figures have continued into 2020.

During May, Sydney, Darwin, Melbourne and Brisbane were all facing water restrictions. This was due to dams only being 50% full, or lower, as a result of higher temperatures and low rainfall.

The statistics for Sydney are considerably alarming. As the lowest dam percentage since 1940, the 11 dams were at a combined capacity of 55%, which itself was down by 18% in the year from May 2018.

Measured through high tech devices, similar to ones available from RS Components, Sydney went on to receive its first water restrictions in more than a decade as drought gripped New South Wales.

Meanwhile, high temperatures and low rainfall are expected to continue according to The Bureau of Meteorology.

The future

As you can guess from the warnings issued to the population of the world as a whole, climate change is only going to get worse unless something is done, and this applies greatly to Australia.

Back in 2015, it was reported that by 2090 it was predicted that the temperatures would rise by up to 5.1 degrees Celsius in Australia alone. As you can see, this is already happening, with significant rises just three to four years after the comprehensive report was put together.

Alongside this, sea level rises were also expected to increase significantly too. This was projected to be between 26 – 55 cm under low emission scenarios, whereas high emissions scenarios could see rises between 45 – 86 cm. This was estimated based on relative data between 1986 and 2005. If scenarios were worse, then sea level rises could be between one and three metres after 2100.

With the majority of the population living in built-up areas on the edge of the country, which is where much of its tourism comes from too, things could get worse for Australia in more ways than first imagined. With a climate crisis dangling above us, the time to act on it is now to prevent these scenarios from happening or worse, happening quicker than first thought.

6 Common Reasons Why Sidewalks Are Seldom Used

One of the common neighborhood problems is how people walk on the streets instead of sidewalks. Going to and from work or school, they find it more convenient to walk on the streets because it is free from obstruction. At the same time, the space is wider compared to the human traffic experienced in walking on sidewalks. Sidewalks are often dominated by vehicles limiting the volume of people they can cater to.

Not using the sidewalks may provide convenience at some point but it compromises the safety of the people. In building a community, one of the most important considerations is easy and safe means of transport. Allow the sidewalks to give the people a reason to walk instead of hopping on a bus or taking a cab. These 6 reasons will give you a clearer view on why people seldom use sidewalks.

(Image Source: https://www.citylab.com/life/2016/04/las-vegas-gamble-with-pedestrian-powered-streetlights-solar-kinetic-energy/476292/)

The Lighting Design is Poor

Lighting design is one of the considerations in order to maximize the utilization of sidewalks even at night. This does not just make them visible at night. Lighting also helps in making the people feel more secured. There are a lot of people who walk home at night. Walking in a dark sidewalk makes a person more cautious about the surroundings. There is the feeling of worry about how walking in a dark sidewalk alone will compromise their safety.

Most urban designers think highly of the lighting design of the streets. Apart from the fact that it compromises safety, this is the most common reason why few people choose to walk on sidewalks at night. There are a lot of all-in-one solar street lights with an innovational design that brings out the essence of well-lit sidewalks. Apart from the fact that it is energy-efficient, these street lights are also providing direct and vibrant light on the streets.

The Vehicles Dominate the Sidewalk

Instead of being able to pass through smoothly, small vehicles are parked on the streets. Being able to dominate the sidewalk limits the space where people can pass through. Spaces designated for small vehicles should be provided for the people to maximize the space designated for them. Most people park their bikes and motorcycles on sidewalks because there are limited spaces for them. This may seem like a small issue but it constitutes to why people choose not to walk on sidewalks.

The Space is Limited

In planning urban or rural sidewalks, the designated space depends on the volume of people. This is the primary consideration making it possible for the sidewalk to cater to the population. Know that not all have the means of transporting through bus or cab. Most people choose to walk block by block. When the space is limited, it will take time to walk from one block to another because you keep bumping on people.

Sidewalks with limited space are more likely not to be prioritized by people. This is one of the urban and rural issues which should be provided with a long term solution. Most people choose to walk on the side streets. Apart from the fact that it’s convenient, the human traffic is manageable compared to the ones in the sidewalk. Convenience and walkability feature is what the sidewalk should feature.

The Obstructions Affect Human Traffic

One of the best examples of sidewalk obstruction are trees that are too big for the sidewalks. With the limited space provided for the sidewalk, the growth of trees become uncontrollable. In choosing the landscapes for the sidewalks, the space it should be consuming ten to twenty years from now should be taken into consideration. Most landscape architects and designers choose large-scaled landscapes not for aesthetic purposes but for the natural sun-shading feature it provides.

The Sidewalks are Poorly Planned

When a sidewalk is highly utilized, they are more likely to undergo several planning and research for development. Not because there is a space designated for a sidewalk doesn’t stop the responsibilities of the planners. They have a lot of design considerations for sidewalks to consider before building, designing, and landscaping. These sidewalks are a life-long solution to people violating the rules and regulations.

The Sidewalks are Unfriendly for Pedestrians

Unfriendly sidewalks result to poor utilization. They are not used based on their fundamental function. Instead, they are used as an alternative designated for parking, portable toilets, alfresco for restaurants, and other means. When pedestrians find sidewalks friendly, they tend to maximize its utilization. They should be designated for people and not for any other purpose. This will not just manage the human traffic but most people will comply with pedestrian rules and regulations.

Conclusion

In order to come up with a walkable sidewalk, they should be designed according to what the users need. They need convenience and assurance that these are safe for utilization at any time of the day. Sidewalks should be friendly for people for them to consider walking instead of using public transportation. Moreover, a highly utilized sidewalk will constitute to less vehicular and human traffic.

Waste Management Outlook for Nigeria

Nigeria, the most populous country in Africa with population exceeding 182 million people, is grappling with waste management issues. The country generates around 43.2 million tonnes of waste annually. By 2025 with a population of 233.5 million, Nigeria will be generating an estimated 72.46 million tonnes of waste annually at a projected rate of 0.85 kg of waste/capita/day. This means that Nigeria annual waste generation will almost equal its crude oil production which currently stands at approximately 89.63 million tonnes per year.

waste-nigeria

Also, at an estimated annual waste generation figure of 72.46 million tonnes, Nigeria will be generating about one-fourth of the total waste that will be produced in the whole of Africa. This is scary and if proper attention is not paid to this enormous challenge, Nigeria might become the “Waste Capital of Africa”.

Waste is a Resource for Nigeria

Nonetheless, this challenge can be turned into a blessing because waste is a resource in disguise. If its potential is properly tapped, waste management can create employment, enable power generation, create a waste-based economy and contribute to economic diversification which Nigeria. There is no doubt that this is achievable because we have examples of countries already utilizing their waste judiciously.

Some good examples of sustainable waste management systems that can be implemented in Nigeria includes

  1. Shanghai (China) which turn 50% of the generated waste into power generation electrifying 100,000 homes;
  2. Incheon (South Korea) where its Sudokwon landfill receives about 20,000 tons of waste daily which is converted into electric power, has a water recycling and desalination facility, and has created more than 200 jobs;
  3. Los Angeles (USA) which produces electric power enough for 70,000 homes in its Puente Hills landfill;
  4. Germany whose sophisticated waste processing systems through recycling, composting, and energy generation has already saved the country 20% of the cost of metals and 3% of the cost of energy imports;
  5. Austria, though a small country, is doing big things in waste management especially through recycling;
  6. Sweden, whose recycling is so revolutionary that the country had to import waste; and
  7. Flanders, Belgium which possesses the best waste diversion rate in Europe with 75% of their waste being reused, recycled or composted. An interesting fact is that per capita waste generation rate in Flanders is more than twice that of Nigeria at 1.5 kg/day.

Waste Management Outlook for Nigeria

Below are some of the major things the government need to do to judiciously utilize the free and abundant resource available in the form of trash in Nigeria:

Firstly, attention needs to be paid to building the human resource potential of the country to build the required capacity in conceptualizing fit-for-purpose innovative solution to be deployed in tackling and solving the waste challenge.

While knowledge exchange/transfer through international public private partnership is a possible way in providing waste management solution, it is not sustainable for the country especially because there is already an unemployment problem in Nigeria. Hence, funding the training of interested and passionate individuals and entrepreneurs in waste management is a better way of tackling the waste crisis in Nigeria.

Olusosun is the largest dumpsite in Nigeria

The Federal Government through the Petroleum Trust Development Fund (PTDF) and National Information Technology Development Agency (NITDA) of the Ministry of Communication currently sponsor students to study oil and gas as well as information technology related subjects in foreign countries in the hope of boosting manpower in both sectors of the economy. The same approach should be used in the waste management sector and this can be handled through the Federal Ministry of Environment.

Interestingly, waste generation is almost at par with crude oil production in Nigeria. Therefore, equal attention should be paid to waste-to-wealth sector. Needless to say, this is important as there is no university in Nigeria currently offering waste management as a stand-alone course either at undergraduate or postgraduate level.

The Rationale for National Waste Strategy

Secondly, there is an urgent need for a strong National Waste Management Strategy to checkmate the different types of waste that enters the country’s waste stream as well as the quantity of waste being produced. To develop an effective national waste strategy, a study should be carried out to understand the country’s current stream of waste, generation pattern, and existing management approach. This should be championed by the Federal Ministry of Environment in conjunction with State and Local Government waste management authorities.

Once this is done, each State of the Federation will now integrate their own individual State Waste Management Plan into that of the Federal Government to achieve a holistic waste management development in Nigeria. By so doing, the government would also contribute to climate change mitigation because the methane produced when waste degrades is 25 times more potent than carbon dioxide (a major greenhouse gas known to many and contributor to global warming).

The Need for Financial Incentives

Finally, the government needs to support existing waste management initiatives either through tax-holiday on major equipment that need to be imported for their work and/or on their operation for a certain period of time. Also, if workable, the government can float a grant for innovative ideas and provide liberal subsidies in waste management to jumpstart the growth of the sector.

Lastly, the Government of Nigeria can raise a delegation of experts, entrepreneurs, industry professionals, academia, and youngsters to visit countries with sound waste management strategy for knowledge sharing, capacity-building, technology transfer and first-hand experience.

Note: The unedited version of the article can be found at this link

7 Crop Health Metrics That Matter to Farmers

Crop health is of paramount importance to farmers; thus, careful and consistent monitoring of crop health is an absolute must. A recent study on coffee yield losses from 2013 to 2015 revealed that pests and diseases led to high primary (26%) and secondary (38%) yield losses in the researcher’s sampled area. This highlights the significance of closely paying attention to such detrimental factors in your crop’s environment. Doing so will ensure maximum yield and profit for farmers come harvest time.

To look at crop health monitoring as governed by just one or two aspects, however, is a serious mistake. Rather, a holistic approach must be adopted; in other words, more factors need to be monitored than just pestilence and disease.

Here are seven of the most important crop health metrics for farmers to monitor, based on the Sustainable Agriculture Research & Education (SARE) Program’s guidelines.

1) Crop appearance

Perhaps the most obvious indicator of crop health is their general appearance. While not an all-in-one, foolproof method of gauging the current condition of a particular set of crops, a farmer possessing the right tools and knowledge can tell quite a lot from simply looking at the state of his or her plants.

Lightness or discoloration in foliage more often than not points to chlorosis, a state in which plants produce insufficient chlorophyll. Modern methods of crop health monitoring, including new technologies that utilize both near-infrared and visible light, allow farmers to actively and accurately monitor chlorophyll content.

2) Crop growth

Among the indicators of poor crop growth are short branches, sparse stand, and the rarity or absence of new shoots. This, of course, will inevitably affect your total yield in a negative way. Under ideal circumstances, there should be robust growth and dense, uniform stand in your crops.

3) Tolerance or resistance to stress

Simply put, crop stress is a decrease in crop production brought about by external factors. An example would be exposure to excess light and high temperatures, which may disrupt photosynthesis (known as photoinhibition). As a result, crops will have insufficient energy to bear fruit or grow, and may even sustain lasting damage to their membranes, chloroplasts, and cells. Healthy crops are stress-tolerant, and can easily bounce back after being exposed to stressors in their environment.

4) Occurrences of pests and/or diseases

An indicator that your crops are extremely susceptible to pests and diseases would be if over 50% of the population ends up getting damaged by said factors. Under the right circumstances, less than 20% of your crops would be negatively affected by any invasion of pests or spread of disease, allowing them to easily recuperate and increase in number once more.

Building crop resistance against harmful insects and diseases can be done in a number of ways, including improving crop diversity, crop rotation, using organic pesticides such as Himalayan salt spray and eucalyptus oil, and even genetic research and enhancement.

5) Weed competition and pressure

Apart from insects and plant diseases, weeds can also spell doom for your crops, if left unchecked. In the event that your farm becomes overpopulated with weeds that will steal the nutrients from your crops, you will certainly notice that your crops are steadily dwindling. Healthy crops, on the other hand, would eventually overwhelm the weed population and reclaim dominance over your field.

6) Genetic diversity

To have only one dominant variety of crop in your farm is tantamount to putting your eggs in a single basket. For instance, you should consider the importance of having multiple disease-resistant crop varieties on your farm. Don’t fall prey to the temptation of replacing them entirely with a single, higher-yielding type.

It is essential to buil crop resistance against harmful insects and diseases

7) Plant diversity and population

In an ideal setting, there should be more than two species of plants in your field. Counting the actual number of trees or plants across your farm, as well as the naturally occurring vegetation on all sides of the area, can also give you a better perspective on your farm’s overall crop health.

Importance of crop management system

Some farmers become overly reliant on insecticides and other chemicals to eliminate their pest problems — a grievous error, as this will likely lead to even more serious problems. Even the indiscriminate application of mineral fertilizers may inadvertently boost pest populations by making conditions ideal for them to thrive.

Ultimately, a combination of the right knowledge and the proper technology is a must in measuring and monitoring crop health metrics. Farmers must always be aware of the current health of their crops, and must be prepared to address any problems with solutions that don’t end up causing more.