Environmental Costs of Glitter

While there are no clear estimates of the amount of glitter sold each year, its distinctive ability to disperse makes it a disproportionate contributor to environmental problems. Glitter particles are easily transferred through the air or by touch, clinging to skin and clothes. Its ability to spread is so notorious that there are companies that will ‘ship your enemies glitter’ that is guaranteed to infest every corner of their home. Glitter has even been used in forensic science to show that a suspect has been at a crime scene. This characteristic, and the plastics it contains, makes it something of an environmental peril. It causes problems for paper recyclers: glitter on cards and gift wrap can foul up the reprocessing equipment, and even contaminate the recycled pulp.

A Growing Problem

Most glitter is cut from multi-layered sheets, combining plastic, colouring, and a reflective material such as aluminium, titanium dioxide, iron oxide, or bismuth oxychloride. It therefore contributes to the more than 12.2 millions of tonnes of plastic that enters the ocean each year – not least when people wear it and then wash it off. Worse still, glitter is a microplastic, and there are growing concerns about these tiny pieces of material entering the marine food chain and harming marine life.

The polyethylene terephthalate (PET) that is often used in glitter is thought to leach out endocrine-disrupting chemicals, which, when eaten by marine creatures, can adversely affect development, reproduction, neurology and the immune system. PET can also attract and absorb persistent organic pollutants and pathogens, adding an extra layer of contamination.

When molluscs, sea snails, marine worms, and plankton eat pathogen or pollutant-carrying particles of glitter, they can concentrate the toxins; and this concentration effect can continue as they in turn are eaten by creatures further up the food chain, all the way to our dinner plates.

Time for Action

As consciousness of the environmental damage caused by glitter increases, some are taking drastic action. In November 2017 Tops Days Nurseries a group of English nurseries banned glitter for its contribution to the plastic pollution problem. But our attraction to sparkly things is literally age old, and won’t be given up easily.

Research has demonstrated that humans are attracted to shiny, sparkly things, which is thought to stem from our evolutionary instinct to seek out shimmering bodies of water. As early as 30,000 years ago, mica flakes were used to give cave paintings a glittering appearance, while the ancient Egyptians produced glittering cosmetics from the iridescent shells of beetles as well as finely ground green malachite crystal. Green glitter fans might well wonder if environmentally friendly glitter is available, and there is in fact a growing market of products that claim eco credentials.

Shining examples

British scientist Stephen Cotton helped develop ‘eco-glitter’ made from eucalyptus tree extract and aluminium. This appears to be sold by companies like EcoStarDust, whose short list of materials included only ‘non-GMO eucalyptus trees’. Their website explains if you leave your glitter in a warm, moist and oxygenated environment then it will begin to biodegrade, with the rate depending on the mixture of these factors. However, it is not clear that a product that may release aluminium into the environment deserves a green vote of confidence.

Wild Glitter another company also explains their sparkles are made from natural plant based materials but they don’t a lot of detail about how they’re made and what happens to them once used. Other brands, such as EcoGlitterFunBioGlitz and Festival Face, offer biodegradable glitter made from a certified compostable film.

Awareness about the environmental damage caused by glitter is steadily increasing

However, it is difficult for a consumer to be sure, without a good deal of research, that such products will break down quickly and harmlessly in the natural environment – or whether they require specific industrial composting processes.

Other manufacturers are turning instead to natural ingredients that add shine and sparkle; environmentally conscious cosmetic brand LUSH uses ground nut shells and aduki beans in its products. They also started using inert mica to create sparkly things, like the cave painters from millennia ago. Unfortunately, this meant trading an environmental problem for a human rights one: difficulties with the natural mica supply chain made it impossible to guarantee that the process was free from child labour, prompting a forthcoming switch to synthetic mica.

Parting Shot

There’s a lot of grey area when it comes to choosing greener glitter, and little objective evidence available regarding the environmental impacts of the different alternatives. I’ve seen little sign, for example, of a glitter product that claims to be compatible with paper and card recycling processes. But it’s crystal clear that, with enormous variety of options available, it should be possible do without glitter made from PET – even at Christmas.

 

Note: The article has been republished with the permission of our collaborative partner Isonomia. The original version of the article can be found at this link

Circular Economy: Viewpoint of Plastic

plastic-bottle

Pieces of plastic have been trying to get our attention. The first scientific reports of plastic pollution in oceans were in the early 1970s. This waste plastic soaks up other pollutants at up to a million times the concentration in water, harming and killing sea life worldwide. From the point of view of the plastic, we have convincingly failed with solutions. Over the past 40 years the problem has grown around 100 times, with now over 8 million tonnes of plastic waste added to oceans per year.

Everyone is aware about ways for plastic to not become waste. We can set up redesign, sharing, refill, recycling and even composting. When it comes to creating practical possibilities for not making waste, people are super smart. But when it comes to making policy to install this practice throughout the economy, which has been the aim of circular economy for the past four decades, we’re consistently collectively stupid. I call this mob thinking.

We have intelligent activists, business people, experts and officials unintentionally thinking like a mob? always bringing forward the same decades old policy weapons. When these weapons don’t work there is a discussion about strategy but not any actual new strategy, just talk about how forcefully to use the same old policy weapons. This is how it’s been possible for waste management, waste regulation and the unsolved waste problem to all grow in tandem for so long.

If the piece of plastic had a voice in the circular economy debate what might it say? It would remind us to beware mob thinking. Today’s problems are solvable only by trying new thinking and new policy weapons. Precycling is an example. The piece of plastic doesn’t mind whether it’s part of a product that’s longlife or refilled or shared or refurbished or recycled or even composted (so long as it’s fully biodegradable). It doesn’t even mind being called ‘waste’ so long as it’s on its way to a new use. Action that ensures any of these is precycling.

Our piece of plastic does mind about ending up as ecosystem waste. It does not wish to join 5 trillion other pieces of plastic abandoned in the world’s oceans. It would be horrified to poison a fish or starve a sea bird. Equally it does not want to be perpetually entombed in a landfill dump or transformed into climate destabilising greenhouse gases by incineration.

The two possible outcomes for a piece of plastic, remaining as a resource or being dumped as ecological waste, are the same fates awaiting every product. Our economies and our futures depend on our ambition in arranging the right outcome. The old policy weapons of prescriptive targets and taxes, trying to force more of one waste management outcome or less of another, are largely obsolete. Circular economy can be fully and quickly implemented by policy to make markets financially responsible for the risk of products becoming ecological waste. Some ever hopeful pieces of plastic would be grateful if we would get on with doing this.

Reference: Governments Going Circular best practice case study of precycling premiums

Note: The original article is available at this link.

Barcode as a Tool to Reduce Plastic Pollution

plastic-worldThe measures implemented by the current recycling model, which are focused on producer responsibility and final consumer awareness, are not enough to prevent the continued accumulation of plastic waste in the oceans. For example, the Mediterranean Sea currently experience high levels of plastic pollution even if its coastline meets advanced countries.

“Barcode v/s Plastic Waste” continues forward the argument, including and controlling a crucial and forgotten player in the current model of consumption: retail or supermarkets. “Barcode vs Plastic Waste” offers an efficient, win-win-win model: a sustainable and dynamic circle, a cradle to cradle controlled process for this currently destructive material.

Consumers must continue recycling, but reality shows clear that the potential to decrease plastic waste could not depend only upon consumer awareness. A high percentage of plastic waste passes through supermarkets and, subsequently, the entire distribution channel.

While supermarkets do hold responsibility for ENCOURAGING THE USE of plastic and packaging, they also have the potential, although never considered before, to encourage and provide incentives to producers and consumers to reduce their plastic quantities or eliminate it all together.

Following “Barcode v/s Plastic Waste”, Governments should request supermarkets to be responsible for all plastic recollection associated with products they sell, while Public Administration would maintain the duty of control: the barcode which identifies any item sold, offers the possibility to track and account all plastics, containers or packaging by simply adding these information into the barcode.

Having the package information -weight and material composition- inside the barcode will offer an extremely easy way to obtain the necessary data to apply follow-up control over its recollection. We would be able to monitor the recyclable materials per gram through the entire transaction system in real-time, allowing us to review any cash register day by day. Having the package information (weight and material composition) inside the same barcode will offer an extremely easy way to obtain the necessary data to apply follow-up control over its recollection. (i.e. PET 2/45gr. – PET5/75gr. – etc.)

Supermarkets should be responsible for all plastic recollection associated with products they sell

Supermarkets should be responsible for all plastic recollection associated with products they sell

This new recycling process could reach the full capacity in three years, requesting 30% of plastic recollection quantity the first year, 60% the second 90-100% the third.

Considering that from the very first year, supermarkets would very likely push producers to introduce dispensers with refilling containers wherever possible, we would have a considerable reduction of single use plastic at the very beginning.

Along with a necessary law, just new software and a new logistic inside supermarkets will be enough to produce the change. By simply adding future trash into the same barcode already used on any item sold, we would transform millions of negative actions into positive, preventing the loss of tons of raw material with a final reduction of petrol demand. This information would be provided just as the cash register’s account balance appears at the end of the day. Supermarket cash registers are the last control in the commercial process.

Full length proposal is available here

How to Choose Weather-Resistant Siding for your Home

weather-sidingThere used to be only a couple of options available to cover the exterior of your home. Nowadays, new products are hitting the market with fervor. The problem is that with added options come both advantages and disadvantages. It is no longer just a question of wood, aluminum, or vinyl siding.  Now you have better and longer-lasting materials to choose from, but the price can vary significantly, and it can become overwhelming to choose a material based on budget, weather conditions and aesthetic desire.

The biggest problem with exterior siding, especially in warm or humid regions, is going to be its weather resilience. Water build-up is going to be one of your biggest enemies.

There are four types of siding to choose from. Each has their own advantages and disadvantages. If you are limited either by your climate or the money you must spend, below is a breakdown from farming tips canada, to help explain which might be the best for your area, seeing as how the harshest home sidings are tested on the farm.

Vinyl siding

Vinyl siding is going to be one of the least-expensive materials you can put on the exterior of your home. That makes it one of the most common types of materials used. The advantages to vinyl siding aren’t just the price. It is impervious to water and many insects. The biggest disadvantage is that it can melt, burn or crack. In high winds, it can also make rattling noises. Also, if you are going for an upscale look, vinyl doesn’t have the same aesthetic appeal that other siding materials can deliver, and it typically isn’t used on higher-priced homes.

Plastic siding

Plastic siding is a relatively new alternative. The advantage of plastic siding is that it can resemble more expensive roofing material and requires very little upkeep. It is much thicker than its vinyl alternative, but that makes it more expensive. Although it’s costlier, if you are looking for a good weather-resistant siding, it is a grade above vinyl and may save you money in the long term as it is less prone to damage or necessary repairs.

Fiber cement siding

Fiber cement siding is also a new material on the market. It is typically a blend of cellulose, sand and cement and gives a much more aesthetically appealing look to the house. It looks much more like real wood than both plastic and vinyl. Its advantages are that it is insect- and fire-resistant. However, if you live in a harsh climate, it is probably not going to be your best choice.

Plastic siding is one of best options for weather-resistant conditions

Plastic siding is one of best options for weather-resistant conditions

Water that can accumulate from the freeze-thaw cycle can damage the siding if you don’t maintain it correctly by painting it with water-resilient paint. You can buy it pre-painted, but it is much costlier and the colors that you must choose from can be somewhat limited. The pre-factory paints tend to last longer. Although higher-maintenance than plastic and vinyl siding, it still requires less maintenance than wood siding.

Wood siding

Wood shingles and clapboard are considered the most aesthetically pleasing materials for your siding. They are also going to be the costliest and require the most maintenance. They have a traditional charm that you can’t get from other materials. Clapboard is going to be less expensive than wood siding, but it is still pricier than other alternatives such as vinyl, plastic and cement board.

Wood shingles are not going to be the best weather-resistant materials for harsh conditions. It is not uncommon for them to succumb to insects, be less fire-resistant and to twist or warp when subjected to harsh climates. Overall, it requires the most maintenance too. Painting frequently is a must. Although being capable of being factory-primed and painted, it will take periodic maintenance to keep it looking good and safe from exterior conditions.

Conclusion

Of all the choices, available, plastic siding may be the best for weather-resistant conditions. Offering you a hardy material, it can stand up to a lot. It may not be as aesthetically appealing as the other options, but you don’t have to worry about maintaining it or having to replace it. Whether budget is an issue or not, plastic siding offers the best protection against the harsh conditions of nature.

Plastic Wastes and its Management

Plastic seems all pervasive and unavoidable. Since the 1960s our use of plastic has increased dramatically, and subsequently, the portion of our garbage that is made up of plastic has also increased from 1% of the total municipal solid waste stream (household garbage) to approximately 13% (US Environmental Protection Agency). Plastic products range from things like containers and packaging (soft drink bottles, lids, shampoo bottles) to durable goods (think appliances, furniture and cars) and non-durable goods including things from a plastic party tray to medical devices. Sometimes marked with a number and a chasing arrow, there is an illusion that all plastics are recyclable, and therefore recycled. But there are a number of problems with this assumption.

While use and consumption of plastic is increasingly high, doubts about viable options for reuse, recycling and disposal are also on the rise. Complications such as the increasing number of additives used alter the strength, texture, flexibility, colour, resistance to microbes, and other characteristics of plastics, make plastics less recyclable. Additionally, there is very little market value in some plastics, leading municipalities to landfill or incinerate plastics as waste. Based on figures from the EPA (2011 data) only 8% of plastic materials are recovered through recycling.

Another major concern about plastics in the waste stream is their longevity and whether or not they are truly biodegrade. It is estimated that most plastics would take 500-1000 years to break down into organic components. Because of this longevity and the low rate of recycling, much of our plastic waste ends up in landfills or as litter. Some of this plastic waste makes its way via rivers and wind to the ocean. Garbage barges, and the trans-continental transport of recyclable materials also lead to an increasing amount of plastics in our oceans and waterways.

Plastic waste directly and indirectly affects living organisms throughout the ecosystem, including an increasingly high impact on marine life at a macro and micro scale. According to United Nations, almost 80% of marine debris is plastic. Policy enforcement remains weak, global manufacture of plastics continues to increase, and the quantity of plastic debris in the oceans, as well as on land, is likely to increase.

With limited sustainable recovery of plastics, there is a growing global movement to reduce the generation of plastic. Certain types of plastic may be ’safer‘ for the environment than others, however, there are troubling issues associated with all of them, leading to the conclusion that action is needed to remove plastic waste, and stricter controls are required to limit new sources of plastic pollution. Efforts such as light weighting of packaging and shifts to compostable plastics are options. Policies limiting the use of plastics such as bottle bills and bag bans are other ways to decrease the production and consumption of plastics.

Mining the debris fields in our oceans and turning plastic waste into usable materials, from socks made of fishing line to fuel made from a variety of plastic debris, is one way to mitigate the current situation.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link