PSA System for Biogas Upgradation

Pressure swing adsoprtion, also known as PSA, is emerging as the most popular biogas upgradation technology in many parts of the world. A typical PSA system is composed of four vessels in series that are filled with adsorbent media which is capable of removing water vapor, CO2, N2 and O2 from the biogas stream.

During operation, each adsorber operates in an alternating cycle of adsorption, regeneration and pressure buildup. Dry biogas enters the system through the bottom of one of the adsorbers during the first phase of the process. When passing through the vessel, CO2, N2 and O2 are adsorbed onto the surface of the media. The gas leaving the top of the adsorber vessel contains more than 97% CH4

Biogas upgradation through PSA takes place over 4 phases: pressure build-up, adsorption, depressurization and regeneration. The pressure buildup is achieved by equilibrating pressure with a vessel that is at depressurization stage. Final pressure build up occurs by injecting raw biogas. During adsorption, CO2 and/or N2 and/or O2 are adsorbed by the media and the gas exits as CH4.

Depressurization is performed by equalizing with a second pressurizing vessel, and regeneration is achieved at atmospheric pressure, leaving a gas that contains high concentrations of CH4 to be re-circulated. During the regeneration phase, the bed must be regenerated by desorbing (or purging) the adsorbed gases. Purging is accomplished by reducing the pressure in the bed and back-flushing it with some of the concentrated gas product. The gas pressure released from one vessel is used by the other, thus reducing energy consumption and compressor capital costs.

Special adsorption materials are used as a molecular sieve, preferentially adsorbing the target gas species at high pressure. The adsorbent media is usually zeolites (crystalline polymers), carbon molecular sieves or activated carbon. Aside from their ability to discriminate between different gases, adsorbents for PSA-systems are usually very porous materials chosen because of their large surface areas.

A Glance at Biogas Storage Systems

Selection of an appropriate biogas storage system makes a significant contribution to the efficiency and safety of a biogas plant. There are two basic reasons for storing biogas: storage for later on-site usage and storage before and/or after transportation to off-site distribution points or systems. A biogas storage system also compensates fluctuations in the production and consumption of biogas as well as temperature-related changes in volume.

There are two broad categories of biogas storage systems: Internal Biogas Storage Tanks are integrated into the anaerobic digester while External Biogas Holders are separated from the digester forming autonomous components of a biogas plant. The simplest and least expensive storage systems for on-site applications and intermediate storage of biogas are low-pressure systems. The energy, safety, and scrubbing requirements of medium- and high-pressure storage systems make them costly and high-maintenance options for non-commercial use. Such extra costs can be best justified for biomethane or bio-CNG, which has a higher heat content and is therefore a more valuable fuel than biogas.

Low-Pressure Storage

Floating biogas holders on the digester form a low-pressure storage option for biogas systems. These systems typically operate at pressures below 2 psi. Floating gas holders can be made of steel, fiberglass, or a flexible fabric. A separate tank may be used with a floating gas holder for the storage of the digestate and also storage of the raw biogas. A major advantage of a digester with an integral gas storage component is the reduced capital cost of the system.

The least expensive and most trouble-free gas holder is the flexible inflatable fabric top, as it does not react with the H2S in the biogas and is integral to the digester. These types of covers are often used with plug-flow and complete-mix digesters. Flexible membrane materials commonly used for these gas holders include high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low density polyethylene (LLDPE), and chlorosulfonated polyethylene covered polyester. Thicknesses for cover materials typically vary from 0.5 to 2.5 millimeters.

Medium-Pressure Storage

Biogas can also be stored at medium pressure between 2 and 200 psi. To prevent corrosion of the tank components and to ensure safe operation, the biogas must first be cleaned by removing H2S. Next, the cleaned biogas must be slightly compressed prior to storage in tanks.

High-Pressure Storage

The typical composition of raw biogas does not meet the minimum CNG fuel specifications. In particular, the CO2 and sulfur content in raw biogas is too high for it to be used as vehicle fuel without additional processing. Biogas that has been upgraded to biomethane by removing the H2S, moisture, and CO2 can be used as a vehicular fuel. Biomethane is less corrosive than biogas, apart from being more valuable as a fuel. Since production of such fuel typically exceeds immediate on-site demand, the biomethane must be stored for future use, usually either as compressed biomethane (CBM) or liquefied biomethane (LBM).

Two of the main advantages of LBM are that it can be transported relatively easily and it can be dispensed to either LNG vehicles or CNG vehicles. Liquid biomethane is transported in the same manner as LNG, that is, via insulated tanker trucks designed for transportation of cryogenic liquids.

Biomethane can be stored as CBM to save space. The gas is stored in steel cylinders such as those typically used for storage of other commercial gases. Storage facilities must be adequately fitted with safety devices such as rupture disks and pressure relief valves. The cost of compressing gas to high pressures between 2,000 and 5,000 psi is much greater than the cost of compressing gas for medium-pressure storage. Because of these high costs, the biogas is typically upgraded to biomethane prior to compression.

Biological Cleanup of Biogas

The most valuable component of biogas is methane (CH4) which typically makes up 60%, with the balance being carbon dioxide (CO2) and small percentages of other gases. However, biogas also contain significant amount of hydrogen sulfide (H2S) gas which needs to be stripped off due to its highly corrosive nature. Hydrogen sulfide is oxidized into sulfur dioxide which dissolves as sulfuric acid. Sulphuric acid, even in trace amounts, can make a solution extremely acidic. Extremely acidic electrolytes dissolve metals rapidly and speed up the corrosion process.

The corrosive nature of H2S has the potential to destroy expensive biogas processing equipment. Even if there is no oxygen present, biogas can corrode metal. Hydrogen sulphide can become its own electrolyte and absorb directly onto the metal to form corrosion. If the hydrogen sulphide concentration is very low, the corrosion will be slow but will still occur due to the presence of carbon dioxide.

The obvious solution is the use of a biogas cleanup process whereby contaminants in the raw biogas stream are absorbed or scrubbed. Desulphurization of biogas can be performed by biological as well as chemical methods. Biological treatment of hydrogen sulphide typically involves passing the biogas through biologically active media. These treatments may include open bed soil filters, biofilters, fixed film bioscrubbers, suspended growth bioscrubbers and fluidized bed bioreactors.

Biological Desulphurization

The simplest method of desulphurization is the addition of oxygen or air directly into the digester or in a storage tank serving at the same time as gas holder. Thiobacilli are ubiquitous and thus systems do not require inoculation. They grow on the surface of the digestate, which offers the necessary micro-aerophilic surface and at the same time the necessary nutrients. They form yellow clusters of sulphur. Depending on the temperature, the reaction time, the amount and place of the air added the hydrogen sulphide concentration can be reduced by 95 % to less than 50 ppm.

Most of the sulphide oxidising micro-organisms belong to the family of Thiobacillus. For the microbiological oxidation of sulphide it is essential to add stoichiometric amounts of oxygen to the biogas. Depending on the concentration of hydrogen sulphide this corresponds to 2 to 6 % air in biogas. Measures of safety have to be taken to avoid overdosing of air in case of pump failures.

Biofiltration

Biofiltration is one of the most promising clean technologies for reducing emissions of malodorous gases and other pollutants into the atmosphere. In a biofiltration system, the gas stream is passed through a packed bed on which pollutant-degrading microbes are immobilized as biofilm. A biological filter combines water scrubbing and biological desulfurization. Biogas and the separated digestate meet in a counter-current flow in a filter bed. The biogas is mixed with 4% to 6% air before entry into the filter bed. The filter media offer the required surface area for scrubbing, as well as for the attachment of the desulphurizing microorganisms. Microorganisms in the biofilm convert the absorbed H2S into elemental sulphur by metabolic activity. Oxygen is the key parameter that controls the level of oxidation.

The capital costs for biological treatment of biogas are moderate and operational costs are low. This technology is widely available worldwide. However, it may be noted that the biological system is capable to remove even very high amounts of hydrogen sulphide from the biogas but its adaptability to fluctuating hydrogen sulphide contents is not yet proven.

Methods for Hydrogen Sulphide Removal from Biogas

The major contaminant in biogas is H2S which is both poisonous and corrosive, and causes significant damage to piping, equipment and instrumentation. The concentration of various components of biogas has an impact on its ultimate end use. While boilers can withstand concentrations of H2S up to 1000 ppm, and relatively low pressures, internal combustion engines operate best when H2S is maintained below 100 ppm. The commonly used methods for hydrogen sulphide removal from biogas are internal to the anaerobic digestion process – air/oxygen dosing to digester biogas and iron chloride dosing to digester slurry.

Biological Desulphurization

Biological desulphurization of biogas can be performed by using micro-organisms. Most of the sulphide oxidising micro-organisms belong to the family of Thiobacillus. For the microbiological oxidation of sulphide it is essential to add stoichiometric amounts of oxygen to the biogas. Depending on the concentration of hydrogen sulphide this corresponds to 2 to 6 % air in biogas.

The simplest method of desulphurization is the addition of oxygen or air directly into the digester or in a storage tank serving at the same time as gas holder. Thiobacilli are ubiquitous and thus systems do not require inoculation. They grow on the surface of the digestate, which offers the necessary micro-aerophilic surface and at the same time the necessary nutrients. They form yellow clusters of sulphur. Depending on the temperature, the reaction time, the amount and place of the air added the hydrogen sulphide concentration can be reduced by 95 % to less than 50 ppm.

Measures of safety have to be taken to avoid overdosing of air in case of pump failures. Biogas in air is explosive in the range of 6 to 12 %, depending on the methane content). In steel digesters without rust protection there is a small risk of corrosion at the gas/liquid interface.

Iron Chloride Dosing

Iron chloride can be fed directly to the digester slurry or to the feed substrate in a pre-storage tank. Iron chloride then reacts with produced hydrogen sulphide and form iron sulphide salt (particles). This method is extremely effective in reducing high hydrogen sulphide levels but less effective in attaining a low and stable level of hydrogen sulphide in the range of vehicle fuel demands.

In this respect the method with iron chloride dosing to digester slurry can only be regarded as a partial removal process in order to avoid corrosion in the rest of the upgrading process equipment. The method need to be complemented with a final removal down to about 10 ppm.

The investment cost for such a removal process is limited since the only investment needed is a storage tank for iron chloride solution and a dosing pump. On the other hand the operational cost will be high due to the prime cost for iron chloride.