Description of a Biogas Power Plant

A biogas plant is a decentralized energy system, which can lead to self-sufficiency in heat and power needs, and at the same time reduces environmental pollution. The components of a modern biogas (or anaerobic digestion) plant include: manure collection, anaerobic digester, effluent treatment, biogas storage, and biogas use/electricity generating equipment.

Working of a Biogas Plant

The fresh animal manure is stored in a collection tank before its processing to the homogenization tank which is equipped with a mixer to facilitate homogenization of the waste stream. The uniformly mixed waste is passed through a macerator to obtain uniform particle size of 5-10 mm and pumped into suitable-capacity anaerobic digesters where stabilization of organic waste takes place.

In anaerobic digestion, organic material is converted to biogas by a series of bacteria groups into methane and carbon dioxide. The majority of commercially operating digesters are plug flow and complete-mix reactors operating at mesophilic temperatures. The type of digester used varies with the consistency and solids content of the feedstock, with capital investment factors and with the primary purpose of digestion.

Biogas Cleanup

Biogas contain significant amount of hydrogen sulfide (H2S) gas which needs to be stripped off due to its highly corrosive nature. The removal of H2S takes place in a biological desulphurization unit in which a limited quantity of air is added to biogas in the presence of specialized aerobic bacteria which oxidizes H2S into elemental sulfur.

Utilization of Biogas

Biogas is dried and vented into a CHP unit to a generator to produce electricity and heat. The size of the CHP system depends on the amount of biogas produced daily.

Treatment of Digestate

The digested substrate is passed through screw presses for dewatering and then subjected to solar drying and conditioning to give high-quality organic fertilizer.  The press water is treated in an effluent treatment plant based on activated sludge process which consists of an aeration tank and a secondary clarifier. The treated wastewater is recycled to meet in-house plant requirements.

Monitoring of Environmental Parameters

A chemical laboratory is necessary to continuously monitor important environmental parameters such as BOD, COD, VFA, pH, ammonia, C:N ratio at different locations for efficient and proper functioning of the process.

Control System

The continuous monitoring of the biogas plant is achieved by using a remote control system such as Supervisory Control and Data Acquisition (SCADA) system. This remote system facilitates immediate feedback and adjustment, which can result in energy savings.

A Glance at Biogas Storage Systems

Selection of an appropriate biogas storage system makes a significant contribution to the efficiency and safety of a biogas plant. There are two basic reasons for storing biogas: storage for later on-site usage and storage before and/or after transportation to off-site distribution points or systems. A biogas storage system also compensates fluctuations in the production and consumption of biogas as well as temperature-related changes in volume.

There are two broad categories of biogas storage systems: Internal Biogas Storage Tanks are integrated into the anaerobic digester while External Biogas Holders are separated from the digester forming autonomous components of a biogas plant. The simplest and least expensive storage systems for on-site applications and intermediate storage of biogas are low-pressure systems. The energy, safety, and scrubbing requirements of medium- and high-pressure storage systems make them costly and high-maintenance options for non-commercial use. Such extra costs can be best justified for biomethane or bio-CNG, which has a higher heat content and is therefore a more valuable fuel than biogas.

Low-Pressure Storage

Floating biogas holders on the digester form a low-pressure storage option for biogas systems. These systems typically operate at pressures below 2 psi. Floating gas holders can be made of steel, fiberglass, or a flexible fabric. A separate tank may be used with a floating gas holder for the storage of the digestate and also storage of the raw biogas. A major advantage of a digester with an integral gas storage component is the reduced capital cost of the system.

The least expensive and most trouble-free gas holder is the flexible inflatable fabric top, as it does not react with the H2S in the biogas and is integral to the digester. These types of covers are often used with plug-flow and complete-mix digesters. Flexible membrane materials commonly used for these gas holders include high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low density polyethylene (LLDPE), and chlorosulfonated polyethylene covered polyester. Thicknesses for cover materials typically vary from 0.5 to 2.5 millimeters.

Medium-Pressure Storage

Biogas can also be stored at medium pressure between 2 and 200 psi. To prevent corrosion of the tank components and to ensure safe operation, the biogas must first be cleaned by removing H2S. Next, the cleaned biogas must be slightly compressed prior to storage in tanks.

High-Pressure Storage

The typical composition of raw biogas does not meet the minimum CNG fuel specifications. In particular, the CO2 and sulfur content in raw biogas is too high for it to be used as vehicle fuel without additional processing. Biogas that has been upgraded to biomethane by removing the H2S, moisture, and CO2 can be used as a vehicular fuel. Biomethane is less corrosive than biogas, apart from being more valuable as a fuel. Since production of such fuel typically exceeds immediate on-site demand, the biomethane must be stored for future use, usually either as compressed biomethane (CBM) or liquefied biomethane (LBM).

Two of the main advantages of LBM are that it can be transported relatively easily and it can be dispensed to either LNG vehicles or CNG vehicles. Liquid biomethane is transported in the same manner as LNG, that is, via insulated tanker trucks designed for transportation of cryogenic liquids.

Biomethane can be stored as CBM to save space. The gas is stored in steel cylinders such as those typically used for storage of other commercial gases. Storage facilities must be adequately fitted with safety devices such as rupture disks and pressure relief valves. The cost of compressing gas to high pressures between 2,000 and 5,000 psi is much greater than the cost of compressing gas for medium-pressure storage. Because of these high costs, the biogas is typically upgraded to biomethane prior to compression.