Overview of Biomass Handling Equipment

The physical handling of biomass fuels during collection or at a processing plant can be challenging task, particularly for solid biomass. Biomass fuels tend to vary with density, moisture content and particle size and can also be corrosive. Therefore biomass fuel handling equipment is often a difficult part of a plant to adequately design, maintain and operate.

Biomass_Conveyor

The design and equipment choice for the fuel handling system, including preparation and refinement systems is carried out in accordance with the plant configuration. This is of special importance when the biomass is not homogeneous and contains impurities, typically for forest and agricultural wastes. Some of the common problems encountered have been the unpopular design and undersized fuel handling, preparation and feeding systems.

The fuel handling core systems and equipment are dependent on both the raw fuel type and condition as well as on the conversion/combustion technology employed. The core equipment in a biomass power plant include the following:

  1. Fuel reception
  2. Fuel weighing systems
  3. Receiving bunkers
  4. Bunker discharge systems (stoker, screw, grab bucket)
  5. Fuel preparation
  6. Fuel drying systems
  7. Crushers
  8. Chippers
  9. Screening systems
  10. Shredding systems
  11. Grinding systems (for pulverised fuel burners)
  12. Safety systems (explosion relieve, emergency discharge, fire detections etc)
  13. Fuel transport and feeding
  14. Push floors
  15. Belt feeders
  16. Conveyers and Elevators
  17. Tube feeders
  18. Fuel hoppers and silos (refined fuel)
  19. Hopper, bunker and silo discharge
  20. Feeding stokers
  21. Feeding screws
  22. Rotary valves

To enable any available biomass resource to be matched with the end use energy carrier required (heat, electricity or transport fuels) the correct selection of conversion technologies is required. Since the forms in which biomass can be used for energy are diverse, optimal resources, technologies and entire systems will be shaped by local conditions, both physical and socio-economic in nature.

As the majority of people in developing countries will continue using biomass as their primary energy source well into the next century, it is of critical importance that biomass-based energy truly can be modernized to yield multiple socioeconomic and environmental benefits.

Major Considerations in Biopower Projects

In recent years, biopower (or biomass power) projects are getting increasing traction worldwide, however there are major issues to be tackled before setting up a biopower project. There are three important steps involved in the conversion of biomass wastes into useful energy. In the first step, the biomass must be prepared for the energy conversion process. While this step is highly dependent on the waste stream and approach, drying, grinding, separating, and similar operations are common.

In addition, the host facility will need material handling systems, storage, metering, and prep-yard systems and biomass handling equipment. In the second step, the biomass waste stream must be converted into a useful fuel or steam. Finally, the fuel or steam is fed into a prime mover to generate useful electricity and heat.

One of the most important factors in the efficient utilization of biomass resource is its availability in close proximity to a biomass power project. An in-depth evaluation of the available quantity of a given agricultural resource should be conducted to determine initial feasibility of a project, as well as subsequent fuel availability issues. The primary reasons for failure of biomass power projects are changes in biomass fuel supply or demand and changes in fuel quality.

Fuel considerations that should be analyzed before embarking on a biomass power project include:

  • Typical moisture content (including the effects of storage options)
  • Typical yield
  • Seasonality of the resource
  • Proximity to the power generation site
  • Alternative uses of the resource that could affect future availability or price
  • Range of fuel quality
  • Weather-related issues
  • Percentage of farmers contracted to sell residues

Accuracy is of great importance in making fuel availability assumptions because miscalculations can greatly impact the successful operation of biomass power projects. If biomass resource is identifies as a bottle-neck in the planning stage, a power generation technology that can handle varying degrees of moisture content and particle size can be selected.

Technologies that can handle several fuels in a broad category, such as agricultural residues, provide security in operation without adversely affecting combustion efficiency, operations and maintenance costs, emissions levels, and reliability.

Consistent and reliable supply of biomass is crucial for any biomass project

Identification of potential sources of biomass fuel can be one of the more challenging aspects of a new biomass energy project. There are two important issues for potential biomass users:

  • Consistent and reliable biomass resource supply to the facility
  • Presence of harvesting, processing and supply infrastructure to provide biomass in a consistent and timely manner

Biomass as an energy source is a system of interdependent components. Economic and technical viability of this system relies on a guaranteed feedstock supply, effective and efficient conversion technologies, guaranteed markets for the energy products, and cost-effective distribution systems.

The biomass energy system is based on the following steps:

  • Biomass harvesting (or biomass collection of non-agricultural waste)
  • Preparation of biomass as feedstock
  • Conversion of biomass feedstock into intermediate products.
  • Transformation of intermediates into final energy and other bio-based products
  • Distribution and utilization of biofuels, biomass power and bio-based products.