Properties and Uses of POME

POMEPalm Oil processing gives rise to highly polluting waste-water, known as Palm Oil Mill Effluent (POME), which is often discarded in disposal ponds, resulting in the leaching of contaminants that pollute the groundwater and soil, and in the release of methane gas into the atmosphere. POME is an oily wastewater generated by palm oil processing mills and consists of various suspended components. This liquid waste combined with the wastes from steriliser condensate and cooling water is called palm oil mill effluent.

On average, for each ton of FFB (fresh fruit bunches) processed, a standard palm oil mill generate about 1 tonne of liquid waste with biochemical oxygen demand 27 kg, chemical oxygen demand 62 kg, suspended solids (SS) 35 kg and oil and grease 6 kg. POME has a very high BOD and COD, which is 100 times more than the municipal sewage.

POME is a non-toxic waste, as no chemical is added during the oil extraction process, but will pose environmental issues due to large oxygen depleting capability in aquatic system due to organic and nutrient contents. The high organic matter is due to the presence of different sugars such as arabinose, xylose, glucose, galactose and manose. The suspended solids in the POME are mainly oil-bearing cellulosic materials from the fruits. Since the POME is non-toxic as no chemical is added in the oil extraction process, it is a good source of nutrients for microorganisms.

Biogas Potential of POME

POME is always regarded as a highly polluting wastewater generated from palm oil mills. However, reutilization of POME to generate renewable energies in commercial scale has great potential. Anaerobic digestion is widely adopted in the industry as a primary treatment for POME. Biogas is produced in the process in the amount of 20 mper ton FFB. This effluent could be used for biogas production through anaerobic digestion. At many palm oil mills this process is already in place to meet water quality standards for industrial effluent. The gas, however, is flared off.

Palm oil mills, being one of the largest industries in Malaysia and Indonesia, effluents from these mills can be anaerobically converted into biogas which in turn can be used to generate power through CHP systems such as gas turbines or gas-fired engines. A cost effective way to recover biogas from POME is to replace the existing ponding/lagoon system with a closed digester system which can be achieved by installing floating plastic membranes on the open ponds.

As per conservative estimates, potential POME produced from all Palm Oil Mills in Indonesia and Malaysia is more than 50 million m3 each year which is equivalent to power generation capacity of more than 800 GW.

New Trends

Recovery of organic-based product is a new approach in managing POME which is aimed at getting by-products such as volatile fatty acid, biogas and poly-hydroxyalkanoates to promote sustainability of the palm oil industry.  It is envisaged that POME can be sustainably reused as a fermentation substrate in production of various metabolites through biotechnological advances. In addition, POME consists of high organic acids and is suitable to be used as a carbon source.

POME has emerged as an alternative option as a chemical remediation to grow microalgae for biomass production and simultaneously act as part of wastewater treatment process. POME contains hemicelluloses and lignocelluloses material (complex carbohydrate polymers) which result in high COD value (15,000–100,000 mg/L).

POME-Biogas

Utilizing POME as nutrients source to culture microalgae is not a new scenario, especially in Malaysia. Most palm oil millers favor the culture of microalgae as a tertiary treatment before POME is discharged due to practically low cost and high efficiency. Therefore, most of the nutrients such as nitrate and ortho-phosphate that are not removed during anaerobic digestion will be further treated in a microalgae pond. Consequently, the cultured microalgae will be used as a diet supplement for live feed culture.

In recent years, POME is also gaining prominence as a feedstock for biodiesel production, especially in the European Union. The use of POME as a feedstock in biodiesel plants requires that the plant has an esterification unit in the back-end to prepare the feedstock and to breakdown the FFA. In recent years, biomethane production from POME is also getting traction in Indonesia and Malaysia.

POME as a Source of Biomethane

POME-BiogasDuring the production of crude palm oil, large amount of waste and by-products are generated. The solid waste streams consist of empty fruit bunch (EFB), mesocarp fruit fibers (MF) and palm kernel shells (PKS). Reuse of these waste streams in applications for heat, steam, compost and to lesser extent power generation are practised widely across Southeast Asia. POME or Palm Oil Mill Effluent is an underutilized liquid waste stream from palm oil mills which is generated during the palm oil extraction/decanting process and often seen as a serious environmental issue but it is a very good source for biomethane production. Therefore, discharge of POME is subject to increasingly stringent regulations in many palm oil-producing nations.

Anaerobic Digestion of POME

POME is an attractive feedstock for biomethane production and is abundantly available in all palm oil mills. Hence, it ensures continuous supply of substrates at no or low cost for biogas production, positioning it as a great potential source for biomethane production. (Chin May Ji, 2013).

POME is a colloidal suspension containing 95-96% water, 0.6-0.7% oil and 4-5% total solids, which include 2-4% suspended solids. Biological Oxygen Demand (BOD) generally ranges between 25,000 and 65,714 mg/L, Chemical Oxygen Demand (COD) ranges between 44,300 and 102,696 mg/L.

Most palm oil mills and refineries have their own treatment systems for POME, which is easily amenable to biodegradation due to its high organic content. The treatment system usually consists of anaerobic and aerobic ponds. (Sulaiman, 2013).

Open pond systems are still commonly applied. Although relatively cheap to install, these system often fail to meet discharge requirements (due to lack of operational control, long retention time, silting and short circuiting issues).

Moreover, the biogas produced during the anaerobic decomposition of POME in open pond systems is not recovered for utilization. The produced gas dissipates into the atmosphere where it causes adverse environment effects (due to the fact that CH4 is a twenty times stronger greenhouse gas then CO2 (Chin May Ji, 2013).

Biogas capture from POME can be carried out using a number of various technologies ranging in cost and complexity. The closed-tank anaerobic digester system with continuous stirred-tank reactor (CSTR), the methane fermentation system employing special microorganisms and the reversible flow anaerobic baffled reactor (RABR) system are among the technologies offered by technology providers. (Malaysian Palm Oil Board, 2015).

Biogas production largely depends on the method deployed for biomass conversion and capture of the biogas, and can, therefore, approximately range from 5.8 to 12.75 kg of CH4 per cubic meter of POME. Application of enclosed anaerobic digestion will significantly increase the quality of the effluent/ discharge stream as well as the biogas composition, as mentioned in table below.

 Table: Performance comparison between open and closed digester systems

Parameters Open digester system Closed anaerobic digester
COD removal efficiency (%) 81% 97%
HRT (days) 20 10
Methane utilization Released to atmosphere Recoverable
Methane yield (kg CH4/kg COD removed) 0.11 0.2
Methane content (%) 36 55
Solid discharge (g/L) 20 8

*This table has been reproduced from (Alawi Sulaiman, 2007)

A closed anaerobic system is capable of producing and collecting consistently high quality of methane rich biogas from POME. Typical raw biogas composition will be: 50-60 % CH4, 40-50 % CO2, saturated with water and with trace amounts of contaminants (H2S, NH3, volatiles, etc.).

Biomethane Potential in Southeast Asia

The amount of biomethane (defined as methane produced from biomass, with properties close to natural gas) that can be potentially produced from POME (within the Southeast Asian region) exceeds 2.25 billion cubic meter of biomethane (on a yearly basis).

Especially Indonesia and Malaysia, as key producers within the palm oil industry, could generate significant quantities of biomethane. An impression of the biomethane potential of these countries including other feedstock sources is being highlighted below (VIV Asia, 2015).

Indonesia (4.35 billion m3 of biomethane):

  • 25 billion m3 of biomethane from Palm Oil Mill Effluent (POME).
  • 2 billion m3 of bio-methane from Sewage Treatment Plant (STP).
  • 9 billion m3 of bio-methane from Municipal Solid Waste (MSW).

Malaysia (3 billion m3 of biomethane):

  • 1 billion m3 of biomethane from Palm Oil Mill Effluent (POME).
  • 2 billion m3 of biomethane from Sewage Treatment Plant (STP).
  • 8 billion m3 of biomethane from Municipal Solid Waste (MSW).

The Asian Pacific Biogas Alliance estimates that the potential of conversion of biomass to biomethane is sufficient to replace 25 percent of the natural gas demand by renewable biogas (Asian Pacific Biogas Alliance, 2015).

To sum up, due to the high fraction of organic materials, POME has a large energetic potential. By unlocking the energetic potential of these streams through conversion/ digesting and capture of biomethane, plant owners have the opportunity to combine waste management with a profitable business model.

Co-Authors: H. Dekker and E.H.M. Dirkse (DMT Environmental Technology)

References

Alawi Sulaiman, Z. B. (2007). Biomethane production from pal oil mill effluent (POME) in a semi-commercial closed anaerobic digester. Seminar on Sustainable Palm Biomass initiatives. Japan Society on Promotion of Science (JSPS).

Asia Biogas Group. (2015, 08 15). Retrieved from Asia Biogas : http://www.asiabiogas.com

Asian Pacific Biogas Alliance. (2015). Biogas Opportunities in South East Asia. Asian Pacific Biogas Alliance/ICESN.

Chin May Ji, P. P. (2013). Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malysia’s perspective. Renewable and Sustainable Energy Reviews , 717-726.

Malaysian Palm Oil Board. (2015, 08 26). Biogas capture and CMD project implementation for palm oil mills. Retrieved from Official Portal Of Malaysian Palm Oild Board:

Sulaiman, N. A. (2013). The Oil Palm Wastes in Malaysia. In M. D. Matovic, “Biomass Now – Sustainable Growth and Use”. InTech.

VIV Asia. (2015, 08 26). The international platform from feed to food in Asia. Retrieved from http://www.vivasia.nl

Note: This is the first article in the special series on ‘Sustainable Utilization of POME-based Biomethane’ by Langerak et al of DMT Environmental Technology (Holland)

Biomass Wastes from Palm Oil Mills

The Palm Oil industry generates large quantity of wastes whose disposal is a challenging task. In the Palm Oil mill, fresh fruit bunches are sterilized after which the oil fruits can be removed from the branches. The empty fruit bunches (are left as residues, and the fruits are pressed in oil mills. The Palm Oil fruits are then pressed, and the kernel is separated from the press cake (mesocarp fibers). The palm kernels are then crushed and the kernels then transported and pressed in separate mills.

In a typical Palm Oil plantation, almost 70% of the fresh fruit bunches are turned into wastes in the form of empty fruit bunches, fibers and shells, as well as liquid effluent. These by-products can be converted to value-added products or energy to generate additional profit for the Palm Oil Industry.

Palm Kernel Shells (PKS)

Palm kernel shells (or PKS) are the shell fractions left after the nut has been removed after crushing in the Palm Oil mill. Kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres.

Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%. Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content.

Press fibre and shell generated by the Palm Oil mills are traditionally used as solid fuels for steam boilers. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a Palm Oil mill.

Empty Fruit Bunches (EFBs)

In a typical Palm Oil mill, empty fruit bunches are abundantly available as fibrous material of purely biological origin. EFB contains neither chemical nor mineral additives, and depending on proper handling operations at the mill, it is free from foreign elements such as gravel, nails, wood residues, waste etc. However, it is saturated with water due to the biological growth combined with the steam sterilization at the mill. Since the moisture content in EFB is around 67%, pre-processing is necessary before EFB can be considered as a good fuel.

In contrast to shells and fibers, empty fruit bunches are usually burnt causing air pollution or returned to the plantations as mulch. Empty fruit bunches can be conveniently collected and are available for exploitation in all Palm Oil mills. Since shells and fibres are easy-to-handle, high quality fuels compared to EFB, it will be advantageous to utilize EFB for on-site energy demand while making shells and fibres available for off-site utilization which may bring more revenues as compared to burning on-site.

Palm Oil Mill Effluent (POME)

Palm Oil processing also gives rise to highly polluting waste-water, known as Palm Oil Mill Effluent, which is often discarded in disposal ponds, resulting in the leaching of contaminants that pollute the groundwater and soil, and in the release of methane gas into the atmosphere. POME could be used for biogas production through anaerobic digestion. At many Palm-oil mills this process is already in place to meet water quality standards for industrial effluent. The gas, however, is flared off.

In a conventional Palm Oil mill, 600-700 kg of POME is generated for every ton of processed FFB. Anaerobic digestion is widely adopted in the industry as a primary treatment for POME. Liquid effluents from palm oil mills can be anaerobically converted into biogas which in turn can be used to generate power through gas turbines or gas-fired engines.

Conclusions

Most of the Biomass residues from Palm Oil Mills are either burnt in the open or disposed off in waste ponds. The Palm Oil industry, therefore, contributes significantly to global climate change by emitting carbon dioxide and methane. Like sugar mills, Palm Oil mills have traditionally been designed to cover their own energy needs (process heat and electricity) by utilizing low pressure boilers and back pressure turbo-generators. Efficient energy conversion technologies, especially thermal systems for crop residues, that can utilize all Palm Oil residues, including EFBs, are currently available.

In the Palm Oil value chain there is an overall surplus of by-products and their utilization rate is negligible, especially in the case of POME and EFBs. For other mill by-products the efficiency of the application can be increased. Presently, shells and fibers are used for in-house energy generation in mills but empty fruit bunches is either used for mulching or dumped recklessly. Palm Oil industry has the potential of generating large amounts of electricity for captive consumption as well as export of surplus power to the public grid.