Pelletization of Municipal Solid Wastes

MSW is a poor-quality fuel and its pre-processing is necessary to prepare fuel pellets to improve its consistency, storage and handling characteristics, combustion behaviour and calorific value. Technological improvements are taking place in the realms of advanced source separation, resource recovery and production/utilisation of recovered fuel in both existing and new plants for this purpose. There has been an increase in global interest in the preparation of RDF containing a blend of pre-processed MSW with coal suitable for combustion in pulverised coal and fluidised bed boilers.

Pelletization of municipal solid waste involves the processes of segregating, crushing, mixing high and low heat value organic waste material and solidifying it to produce fuel pellets or briquettes, also referred to as Refuse Derived Fuel (RDF). The process is essentially a method that condenses the waste or changes its physical form and enriches its organic content through removal of inorganic materials and moisture. The calorific value of RDF pellets can be around 4000 kcal/ kg depending upon the percentage of organic matter in the waste, additives and binder materials used in the process.

The calorific value of raw MSW is around 1000 kcal/kg while that of fuel pellets is 4000 kcal/kg. On an average, about 15–20 tons of fuel pellets can be produced after treatment of 100 tons of raw garbage. Since pelletization enriches the organic content of the waste through removal of inorganic materials and moisture, it can be very effective method for preparing an enriched fuel feed for other thermochemical processes like pyrolysis/ gasification, apart from incineration. Pellets can be used for heating plant boilers and for the generation of electricity. They can also act as a good substitute for coal and wood for domestic and industrial purposes. The important applications of RDF are found in the following spheres:

  • Cement kilns
  • RDF power plants
  • Coal-fired power plants
  • Industrial steam/heat boilers
  • Pellet stoves

The conversion of solid waste into briquettes provides an alternative means for environmentally safe disposal of garbage which is currently disposed off in non-sanitary landfills. In addition, the pelletization technology provides yet another source of renewable energy, similar to that of biomass, wind, solar and geothermal energy. The emission characteristics of RDF are superior compared to that of coal with fewer emissions of pollutants like NOx, SOx, CO and CO2.

RDF production line consists of several unit operations in series in order to separate unwanted components and condition the combustible matter to obtain the required characteristics. The main unit operations are screening, shredding, size reduction, classification, separation either metal, glass or wet organic materials, drying and densification. These unit operations can be arranged in different sequences depending on raw MSW composition and the required RDF quality.

Various qualities of fuel pellets can be produced, depending on the needs of the user or market. A high quality of RDF would possess a higher value for the heating value, and lower values for moisture and ash contents. The quality of RDF is sufficient to warrant its consideration as a preferred type of fuel when solid waste is being considered for co-firing with coal or for firing alone in a boiler designed originally for firing coal.

MSW to Energy at a Glance

MSW-to-Energy is the use of thermochemical and biochemical technologies to recover energy, usually in the form of electricity and steam, from urban wastes. These new technologies can reduce the volume of the original waste by 90%, depending upon composition and use of outputs. The main categories of MSW-to-energy technologies are physical technologies, which process waste to make it more useful as fuel; thermal technologies, which can yield heat, fuel oil, or syngas from both organic and inorganic wastes; and biological technologies, in which bacterial fermentation is used to digest organic wastes to yield fuel.

Components of MSW-to-Energy Systems

  1. Front-end MSW preprocessing
  2. Conversion unit (reactor or anaerobic digester)
  3. Gas cleanup and residue treatment plant
  4. Energy recovery plant (optional)
  5. Emissions clean up

Incineration

  • Combustion of raw MSW, moisture less than 50%
  • Sufficient amount of oxygen is required to fully oxidize the fuel
  • Combustion temperatures are in excess of 850oC
  • Waste is converted into CO2 and water concern about toxics (dioxin, furans)
  • Any non-combustible materials (inorganic such as metals, glass) remain as a solid, known as bottom ash (used as feedstock in cement and brick manufacturing)
  • Fly ash APC (air pollution control residue) particulates, etc
  • Needs high calorific value waste to keep combustion process going, otherwise requires high energy for maintaining high temperatures

Anaerobic Digestion

  •  Well-known biochemical technology for organic fraction of MSW and domestic sewage.
  • Biological conversion of biodegradable organic materials in the absence of oxygen at mesophilic or thermophilic temperatures.
  • Residue is stabilized organic matter that can be used as soil amendment
  • Digestion is used primarily to reduce quantity of sludge for disposal / reuse
  • Methane gas is generated which is used for heat and power generation.

Gasification

  • Can be seen as between pyrolysis and combustion (incineration) as it involves partial oxidation.
  • Exothermic process (some heat is required to initialize and sustain the gasification process).
  • Oxygen is added but at low amounts not sufficient for full oxidation and full combustion.
  • Temperatures are above 650oC
  • Main product is syngas, typically has net calorific value of 4 to 10 MJ/Nm3
  • Other product is solid residue of non-combustible materials (ash) which contains low level of carbon

Pyrolysis

  • Thermal degradation of organic materials through use of indirect, external source of heat
  • Temperatures between 300 to 850oC are maintained for several seconds in the absence of oxygen.
  • Product is char, oil and syngas composed primarily of O2, CO, CO2, CH4 and complex hydrocarbons.
  • Syngas can be utilized for energy production or proportions can be condensed to produce oils and waxes
  • Syngas typically has net calorific value (NCV) of 10 to 20 MJ/Nm

Plasma Gasification

  • Use of electricity passed through graphite or carbon electrodes, with steam and/or oxygen / air injection to produce electrically conducting gas (plasma)
  • Temperatures are above 3000oC
  • Organic materials are converted to syngas composed of H2, CO
  • Inorganic materials are converted to solid slag
  • Syngas can be utilized for energy production or proportions can be condensed to produce oils and waxes
  •  

MSW-to-energy technologies can address a host of environmental issues, such as land use and pollution from landfills, and increasing reliance on fossil fuels. In many countries, the availability of landfill capacity has been steadily decreasing due to regulatory, planning and environmental permitting constraints. As a result, new approaches to waste management are rapidly being written into public and institutional policies at local, regional and national levels.

Trends in Utilization of Palm Kernel Shells

palm-kernel-shell-usesThe palm kernel shells used to be initially dumped in the open thereby impacting the environment negatively without any economic benefit. However, over time, palm oil mills in Southeast Asia and elsewhere realized their brilliant properties as a fuel and that they can easily replace coal as an industrial fuel for generating heat and steam.

Major Applications

Nowadays, the primary use of palm kernel shells (PKS) is as a boiler fuel supplementing the fibre which is used as primary fuel. In recent years kernel shells are extensively sold as alternative fuel around the world. Besides selling shells in bulk, there are companies that produce fuel briquettes from shells which may include partial carbonisation of the material to improve the combustion characteristics.

Palm kernel shells have a high dry matter content (>80% dry matter). Therefore the shells are generally considered a good fuel for the boilers as it generates low ash amounts and the low K and Cl content will lead to less ash agglomeration. These properties are also ideal for production of biomass for export.

As a raw material for fuel briquettes, palm shells are reported to have the same calorific characteristics as coconut shells. The relatively smaller size makes it easier to carbonise for mass production, and its resulting palm shell charcoal can be pressed into a heat efficient biomass briquette.

Although the literature on using oil palm shells (and fibres) is not as extensive as EFB, common research directions of using shells, besides energy, are to use it as raw material for light-weight concrete, fillers, activated carbon, and other materials. However, none of the applications are currently done on a large-scale. Since shells are dry and suitable for thermal conversion, technologies that further improve the combustion characteristics and increase the energy density, such as torrefaction, could be relevant for oil palm shells.

Torrefaction is a pretreatment process which serves to improve the properties of biomass in relation to the thermochemical conversion technologies for more efficient energy generation. High lignin content for shells affects torrefaction characteristics positively (as the material is not easily degraded compared to EFB and fibres).

Furthermore, palm oil shells are studied as feedstock for fast pyrolysis. To what extent shells are a source of fermentable sugars is still not known, however the high lignin content in palm kernel shells indicates that shells are less suitable as raw material for fermentation.

Future Outlook

The leading palm oil producers in the world should consider limiting the export of palm-kernel shells (PKS) to ensure supplies of the biomass material for renewable energy projects, in order to decrease dependency on fossil fuels. For example, many developers in Indonesia have expressed an interest in building palm kernel shell-fired power plants. However, they have their concerns over supplies, as many producers prefer to sell their shells overseas currently. Many existing plants are facing problems on account of inconsistent fuel quality and increasing competition from overseas PKS buyers. PKS market is well-established in provinces like Sumatra and export volumes to Europe and North Asia as a primary fuel for biomass power plants is steadily increasing.

The creation of a biomass supply chain in palm oil producing countries may be instrumental in discouraging palm mills to sell their PKS stocks to brokers for export to foreign countries. Establishment of a biomass exchange in leading countries, like Indonesia, Malaysia and Nigeria, will also be a deciding factor in tapping the unharnessed potential of palm kernel shells as biomass resource.

Biomass Wastes from Palm Oil Mills

The Palm Oil industry generates large quantity of wastes whose disposal is a challenging task. In the Palm Oil mill, fresh fruit bunches are sterilized after which the oil fruits can be removed from the branches. The empty fruit bunches (are left as residues, and the fruits are pressed in oil mills. The Palm Oil fruits are then pressed, and the kernel is separated from the press cake (mesocarp fibers). The palm kernels are then crushed and the kernels then transported and pressed in separate mills.

In a typical Palm Oil plantation, almost 70% of the fresh fruit bunches are turned into wastes in the form of empty fruit bunches, fibers and shells, as well as liquid effluent. These by-products can be converted to value-added products or energy to generate additional profit for the Palm Oil Industry.

Palm Kernel Shells (PKS)

Palm kernel shells (or PKS) are the shell fractions left after the nut has been removed after crushing in the Palm Oil mill. Kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres.

Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%. Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content.

Press fibre and shell generated by the Palm Oil mills are traditionally used as solid fuels for steam boilers. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a Palm Oil mill.

Empty Fruit Bunches (EFBs)

In a typical Palm Oil mill, empty fruit bunches are abundantly available as fibrous material of purely biological origin. EFB contains neither chemical nor mineral additives, and depending on proper handling operations at the mill, it is free from foreign elements such as gravel, nails, wood residues, waste etc. However, it is saturated with water due to the biological growth combined with the steam sterilization at the mill. Since the moisture content in EFB is around 67%, pre-processing is necessary before EFB can be considered as a good fuel.

In contrast to shells and fibers, empty fruit bunches are usually burnt causing air pollution or returned to the plantations as mulch. Empty fruit bunches can be conveniently collected and are available for exploitation in all Palm Oil mills. Since shells and fibres are easy-to-handle, high quality fuels compared to EFB, it will be advantageous to utilize EFB for on-site energy demand while making shells and fibres available for off-site utilization which may bring more revenues as compared to burning on-site.

Palm Oil Mill Effluent (POME)

Palm Oil processing also gives rise to highly polluting waste-water, known as Palm Oil Mill Effluent, which is often discarded in disposal ponds, resulting in the leaching of contaminants that pollute the groundwater and soil, and in the release of methane gas into the atmosphere. POME could be used for biogas production through anaerobic digestion. At many Palm-oil mills this process is already in place to meet water quality standards for industrial effluent. The gas, however, is flared off.

In a conventional Palm Oil mill, 600-700 kg of POME is generated for every ton of processed FFB. Anaerobic digestion is widely adopted in the industry as a primary treatment for POME. Liquid effluents from palm oil mills can be anaerobically converted into biogas which in turn can be used to generate power through gas turbines or gas-fired engines.

Conclusions

Most of the Biomass residues from Palm Oil Mills are either burnt in the open or disposed off in waste ponds. The Palm Oil industry, therefore, contributes significantly to global climate change by emitting carbon dioxide and methane. Like sugar mills, Palm Oil mills have traditionally been designed to cover their own energy needs (process heat and electricity) by utilizing low pressure boilers and back pressure turbo-generators. Efficient energy conversion technologies, especially thermal systems for crop residues, that can utilize all Palm Oil residues, including EFBs, are currently available.

In the Palm Oil value chain there is an overall surplus of by-products and their utilization rate is negligible, especially in the case of POME and EFBs. For other mill by-products the efficiency of the application can be increased. Presently, shells and fibers are used for in-house energy generation in mills but empty fruit bunches is either used for mulching or dumped recklessly. Palm Oil industry has the potential of generating large amounts of electricity for captive consumption as well as export of surplus power to the public grid.

Palm Kernel Shells: An Attractive Biomass Fuel for Europe

palm-kernel-shellsEurope is targeting an ambitious renewable energy program aimed at 20% renewable energy in the energy mix by 2020 with biomass energy being key renewable energy resource across the continent. However, the lack of locally-available biomass resources has hampered the progress of biomass energy industry in Europe as compared with solar and wind energy industries. The European biomass industry is largely dependent on wood pellets and crop residues.

Europe is the largest producer of wood pellets, which is currently estimated at 13.5 million tons per year while its consumption is 18.8 million tons per year. The biggest wood pellet producing countries in Europe are Germany and Sweden. Europe relies on America and Canada to meet its wood pellet requirements and there is an urgent need to explore alternative biomass resources. In recent years, palm kernel shells (popularly known as PKS) from Southeast Asia has emerged has an attractive biomass resources which can replace wood pellets in biomass power plants across Europe.

What are Palm Kernel Shells

Palm kernel shells are the shell fractions left after the nut has been removed after crushing in the Palm Oil mill. Kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres.

Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%. Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content.

Press fibre and shell generated by the palm oil mills are traditionally used as solid fuels for steam boilers. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a palm oil mill.

Advantages of Palm Kernel Shells

PKS has almost the same combustion characteristics as wood pellets, abundantly available are and are cheap. Indonesia and Malaysia are the two main producers of PKS. Indonesian oil palm plantations cover 12 million hectares in Indonesia and 5 million hectares in Malaysia, the number of PKS produced from both countries has exceeded 15 million tons per year. Infact, the quantity of PKS generated in both countries exceeds the production of wood pellets from the United States and Canada, or the two largest producers of wood pellets today.

Interestingly, United States and Canada cannot produce PKS, because they do not have oil palm plantations, but Indonesia and Malaysia can also produce wood pellets because they have large forests. The production of wood pellets in Indonesia and Malaysia is still small today, which is less than 1 million tons per year, but the production of PKS is much higher which can power biomass power plants across Europe and protect forests which are being cut down to produce wood pellets in North America and other parts of the world.

PKS as a Boiler Fuel

Although most power plants currently use pulverized coal boiler technology which reaches around 50% of the world’s electricity generation, the use of grate combustion boiler technology and fluidized bed boilers is also increasing. Pulverized coal boiler is mainly used for very large capacity plants (> 100 MW), while for ordinary medium capacity uses fluidized bed technology (between 20-100 MW) and for smaller capacity with combustor grate (<20 MW). The advantage of boiler combustion and fluidized bed technology is fuel flexibility including tolerance to particle size.

When the pulverized coal boiler requires a small particle size (1-2 cm) like sawdust so that it can be atomized on the pulverizer nozzle, the combustor grate and fluidized bed the particle size of gravel (max. 8 cm) can be accepted. Based on these conditions, palm kernel shells has a great opportunity to be used as a boiler fuel in large-scale power plants.

Use of PKS in pulverized coal boiler

There are several things that need to be considered for the use of PKS in pulverized coal boilers. The first thing that can be done is to reduce PKS particle size to a maximum of 2 cm so that it can be atomized in a pulverized system. The second thing to note is the percentage of PKS in coal, or the term cofiring. Unlike a grate and a fluidized bed combustion that can be flexible with various types of fuel, pulverized coal boilers use coal only. There are specific things that distinguish biomass and coal fuels, namely ash content and ash chemistry, both of which greatly influence the combustion characteristics in the pulverized system.

PKS-biomass

PKS has emerged as an attractive biomass commodity in Japan

Coal ash content is generally greater than biomass, and coal ash chemistry is very different from biomass ash chemistry. Biomass ash has lower inorganic content than coal, but the alkali content in biomass can change the properties of coal ash, especially aluminosilicate ash.

Biomass cofiring with coal in small portions for example 3-5% does not require modification of the pulverized coal power plant. For example, Shinci in Japan with a capacity of 2 x 1,000 MW of supercritical pulverized fuel with 3% cofiring requires 16,000 tons per year of biomass and no modification. Similarly, Korea Southeast Power (KOSEP) 5,000 MW with 5% cofiring requires 600,000 tons per year of biomass without modification.

PKS cofiring in coal-based power plants

Pulverized coal-based power plants are the predominant method of large-scale electricity production worldwide including Europe. If pulverised fuel power plants make a switch to co-firing of biomass fuels, it will make a huge impact on reducing coal usage, reducing carbon emissions and making a transition to renewable energy. Additionally, the cheapest and most effective way for big coal-based power plants to enter renewable energy sector is biomass cofiring. Palm kernel shells can be pyrolyzed to produce charcoal while coal will produce coke if it is pyrolyzed. Charcoal can be used for fuel, briquette production and activated charcoal.

A Primer on Waste-to-Energy

Waste-to-Energy is the use of modern combustion and biochemical technologies to recover energy, usually in the form of electricity and steam, from urban wastes. These new technologies can reduce the volume of the original waste by 90%, depending upon composition and use of outputs.

Energy is the driving force for development in all countries of the world. The increasing clamor for energy and satisfying it with a combination of conventional and renewable resources is a big challenge. Accompanying energy problems in different parts of the world, another problem that is assuming critical proportions is that of urban waste accumulation.

The quantity of waste produced all over the world amounted to more than 12 billion tonnes in 2006, with estimates of up to 13 billion tonnes in 2011. The rapid increase in population coupled with changing lifestyle and consumption patterns is expected to result in an exponential increase in waste generation of upto 18 billion tonnes by year 2020.

Waste generation rates are affected by socio-economic development, degree of industrialization, and climate. Generally, the greater the economic prosperity and the higher percentage of urban population, the greater the amount of solid waste produced. Reduction in the volume and mass of solid waste is a crucial issue especially in the light of limited availability of final disposal sites in many parts of the world. Millions of tonnes of household wastes are generated each year with the vast majority disposed of in open fields or burnt wantonly.

The main categories of waste-to-energy technologies are physical technologies, which process waste to make it more useful as fuel; thermal technologies, which can yield heat, fuel oil, or syngas from both organic and inorganic wastes; and biological technologies, in which bacterial fermentation is used to digest organic wastes to yield fuel.

The three principal methods of thermochemical conversion are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air. The most common technique for producing both heat and electrical energy from wastes is direct combustion. Combined heat and power (CHP) or cogeneration systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity.

Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. In addition, wastes can also yield liquid fuels, such as cellulosic ethanol, which can be used to replace petroleum-based fuels. Cellulosic ethanol can be produced from grasses, wood chips and agricultural residues by biochemical route using heat, pressure, chemicals and enzymes to unlock the sugars in biomass wastes.

Waste-to-energy plants offer two important benefits of environmentally safe waste management and disposal, as well as the generation of clean electric power.  The growing use of waste-to-energy as a method to dispose of solid and liquid wastes and generate power has greatly reduced environmental impacts of municipal solid waste management, including emissions of greenhouse gases.

Cogeneration of Bagasse

Cogeneration of bagasse is one of the most attractive and successful energy projects that have already been demonstrated in many sugarcane producing countries such as Mauritius, Reunion Island, India and Brazil. Combined heat and power from sugarcane in the form of power generation offers renewable energy options that promote sustainable development, take advantage of domestic resources, increase profitability and competitiveness in the industry, and cost-effectively address climate mitigation and other environmental goals.

According to World Alliance for Decentralized Energy (WADE) report on Bagasse Cogeneration, bagasse-based cogeneration could deliver up to 25% of current power demand requirements in the world’s main cane producing countries. The overall potential share in the world’s major developing country producers exceeds 7%. There is abundant opportunity for the wider use of bagasse-based cogeneration in sugarcane-producing countries. It is especially great in the world’s main cane producing countries like Brazil, India, Thailand, Pakistan, Mexico, Cuba, Colombia, Philippines and Vietnam. Yet this potential remains by and large unexploited.

Using bagasse to generate power represents an opportunity to generate significant revenue through the sale of electricity and carbon credits. Additionally, cogeneration of heat and power allows sugar producers to meet their internal energy requirements and drastically reduce their operational costs, in many cases by as much as 25%. Burning bagasse also removes a waste product through its use as a feedstock for the electrical generators and steam turbines.

Most sugarcane mills around the globe have achieved energy self-sufficiency for the manufacture of raw sugar and can also generate a small amount of exportable electricity. However, using traditional equipment such as low-pressure boilers and counter-pressure turbo alternators, the level and reliability of electricity production is not sufficient to change the energy balance and attract interest for export to the electric power grid.

On the other hand, revamping the boiler house of sugar mills with high pressure boilers and condensing extraction steam turbine can substantially increase the level of exportable electricity. This experience has been witnessed in Mauritius, where, following major changes in the processing configurations, the exportable electricity from its sugar factory increased from around 30-40 kWh to around 100–140 kWh per ton cane crushed. In Brazil, the world’s largest cane producer, most of the sugar mills are upgrading their boiler configurations to 42 bars or even higher pressure of up to 67 bars.

Technology Options

The prime technology for sugar mill cogeneration is the conventional steam-Rankine cycle design for conversion of fuel into electricity. A combination of stored and fresh bagasse is usually fed to a specially designed furnace to generate steam in a boiler at typical pressures and temperatures of usually more than 40 bars and 440°C respectively. The high pressure steam is then expanded either in a back pressure or single extraction back pressure or single extraction condensing or double extraction cum condensing type turbo generator operating at similar inlet steam conditions.

Due to high pressure and temperature, as well as extraction and condensing modes of the turbine, higher quantum of power gets generated in the turbine–generator set, over and above the power required for sugar process, other by-products, and cogeneration plant auxiliaries. The excess power generated in the turbine generator set is then stepped up to extra high voltage of 66/110/220 kV, depending on the nearby substation configuration and fed into the nearby utility grid. As the sugar industry operates seasonally, the boilers are normally designed for multi-fuel operations, so as to utilize mill bagasse, procured Bagasse/biomass, coal and fossil fuel, so as to ensure year round operation of the power plant for export to the grid.

Latest Trends

Modern power plants use higher pressures, up to 87 bars or more. The higher pressure normally generates more power with the same quantity of Bagasse or biomass fuel. Thus, a higher pressure and temperature configuration is a key in increasing exportable surplus electricity.

In general, 67 bars pressure and 495°C temperature configurations for sugar mill cogeneration plants are well-established in many sugar mills in India. Extra high pressure at 87 bars and 510°C, configuration comparable to those in Mauritius, is the current trend and there are about several projects commissioned and operating in India and Brazil. The average increase of power export from 40 bars to 60 bars to 80 bars stages is usually in the range of 7-10%.

A promising alternative to steam turbines are gas turbines fuelled by gas produced by thermochemical conversion of biomass. The exhaust is used to raise steam in heat recovery systems used in any of the following ways: heating process needs in a cogeneration system, for injecting back into gas turbine to raise power output and efficiency in a steam-injected gas turbine cycle (STIG) or expanding through a steam turbine to boost power output and efficiency in a gas turbine/steam turbine combined cycle (GTCC). Gas turbines, unlike steam turbines, are characterized by lower unit capital costs at modest scale, and the most efficient cycles are considerably more efficient than comparably sized steam turbines.

Overview of Bioenergy Technologies

A wide range of technologies are available for realizing the energy potential of biomass wastes, ranging from very simple systems for disposing of dry waste to more complex technologies capable of dealing with large amounts of industrial waste. Conversion routes for biomass wastes are generally thermo-chemical or bio-chemical, but may also include chemical and physical.

Thermal Technologies

The three principal methods of thermo-chemical conversion corresponding to each of these energy carriers are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air. Direct combustion is the best established and most commonly used technology for converting wastes to heat. During combustion, biomass is burnt in excess air to produce heat. The first stage of combustion involves the evolution of combustible vapours from wastes, which burn as flames. Steam is expanded through a conventional turbo-alternator to produce electricity. The residual material, in the form of charcoal, is burnt in a forced air supply to give more heat.

Co-firing or co-combustion of biomass wastes with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels. Co-firing involves utilizing existing power generating plants that are fired with fossil fuel (generally coal), and displacing a small proportion of the fossil fuel with renewable biomass fuels. Co-firing has the major advantage of avoiding the construction of new, dedicated, waste-to-energy power plant. An existing power station is modified to accept the waste resource and utilize it to produce a minor proportion of its electricity.

Gasification systems operate by heating biomass wastes in an environment where the solid waste breaks down to form a flammable gas. The gasification of biomass takes place in a restricted supply of air or oxygen at temperatures up to 1200–1300°C. The gas produced—synthesis gas, or syngas—can be cleaned, filtered, and then burned in a gas turbine in simple or combined-cycle mode, comparable to LFG or biogas produced from an anaerobic digester. The final fuel gas consists principally of carbon monoxide, hydrogen and methane with small amounts of higher hydrocarbons. This fuel gas may be burnt to generate heat; alternatively it may be processed and then used as fuel for gas-fired engines or gas turbines to drive generators. In smaller systems, the syngas can be fired in reciprocating engines, micro-turbines, Stirling engines, or fuel cells.

Pyrolysis is thermal decomposition occurring in the absence of oxygen. During the pyrolysis process, biomass waste is heated either in the absence of air (i.e. indirectly), or by the partial combustion of some of the waste in a restricted air or oxygen supply. This results in the thermal decomposition of the waste to form a combination of a solid char, gas, and liquid bio-oil, which can be used as a liquid fuel or upgraded and further processed to value-added products.

Biochemical Technologies

Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. Anaerobic digestion is a series of chemical reactions during which organic material is decomposed through the metabolic pathways of naturally occurring microorganisms in an oxygen depleted environment. In addition, wastes can also yield liquid fuels, such as cellulosic ethanol and biodiesel, which can be used to replace petroleum-based fuels.

Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biogas and biofertilizer. Almost any organic material can be processed with anaerobic digestion. This includes biodegradable waste materials such as municipal solid waste, animal manure, poultry litter, food wastes, sewage and industrial wastes. An anaerobic digestion plant produces two outputs, biogas and digestate, both can be further processed or utilized to produce secondary outputs. Biogas can be used for producing electricity and heat, as a natural gas substitute and also a transportation fuel. Digestate can be further processed to produce liquor and a fibrous material. The fiber, which can be processed into compost, is a bulky material with low levels of nutrients and can be used as a soil conditioner or a low level fertilizer.

A variety of fuels can be produced from biomass wastes including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues. The largest potential feedstock for ethanol is lignocellulosic biomass wastes, which includes materials such as agricultural residues (corn stover, crop straws and bagasse), herbaceous crops (alfalfa, switchgrass), short rotation woody crops, forestry residues, waste paper and other wastes (municipal and industrial). The three major steps involved in cellulosic ethanol production are pretreatment, enzymatic hydrolysis, and fermentation. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms. Bioethanol production from these feedstocks could be an attractive alternative for disposal of these residues. Importantly, lignocellulosic feedstocks do not interfere with food security.

Rice Straw As Bioenergy Resource

The cultivation of rice results in two types of biomass residues – straw and husk – having attractive potential in terms of energy. Rice husk, the main by-product from rice milling, accounts for roughly 22% of paddy weight, while rice straw to paddy ratio ranges from 1.0 to 4.3. Although the technology for rice husk utilization is well-established worldwide, rice straw is sparingly used as a source of renewable energy. One of the main reasons for the preferred use of husk is its easy procurement. In case of rice straw, however, its collection is difficult and its availability is limited to harvest time.

Rice straw can either be used alone or mixed with other biomass materials in direct combustion, whereby combustion boilers are used in combination with steam turbines to produce electricity and heat. The energy content of rice straw is around 14 MJ per kg at 10 percent moisture content.  The by-products are fly ash and bottom ash, which have an economic value and could be used in cement and/or brick manufacturing, construction of roads and embankments, etc.

Straw fuels have proved to be extremely difficult to burn in most combustion furnaces, especially those designed for power generation. The primary issue concerning the use of rice straw and other herbaceous biomass for power generation is fouling, slagging, and corrosion of the boiler due to alkaline and chlorine components in the ash. Europe, and in particular, Denmark, currently has the greatest experience with straw-fired power and CHP plants.

Because of the large amount of cereal grains (wheat and oats) grown in Denmark, the surplus straw plays a large role in the country’s renewable energy strategy. Technology developed includes combustion furnaces, boilers, and superheat concepts purportedly capable of operating with high alkali fuels and having handling systems which minimize fuel preparation.

A variety of methods are employed by the European plants to prepare straw for combustion. Most use automated truck unloading bridge cranes that clamp up to 12 bales at a time and stack them 4-5 bales high in covered storage. Some systems feed whole bales into the boiler. Probably the best known whole bale feeder is the “Vølund cigar feeding” concept, originally applied by Vølund (now Babcock and Wilcox-Vølund). Whole bales are pushed into the combustion chamber and the straw burned off the face of the bale.

However, the newer Danish plants have moved away from whole-bale systems to shredded straw feed for higher efficiency. For pulverized coal co-firing, the straw usually needs to be ground or cut to small sizes in order to burn completely within relatively short residence times (suspension fired systems) or to feed and mix upon injection with bed media in fluidized bed systems.

The chemical composition of feedstock has a major influence on the efficiency of biomass cogeneration. The low feedstock quality of rice straw is primarily determined by high ash content (10–17%) as compared with wheat straw (around 3%) and also high silica content in ash. On the other hand, rice straw as feedstock has the advantage of having a relatively low total alkali content, whereas wheat straw can typically have more than 25% alkali content in ash.

However, straw quality varies substantially within seasons as well as within regions. If straw is exposed to precipitation in the field, alkali and alkaline compounds are leached, improving the feedstock quality. In turn, moisture content should be less than 10% for combustion technology.

In straw combustion at high temperatures, potassium is transformed and combines with other alkali earth materials such as calcium. This in turn reacts with silicates, leading to the formation of tightly sintered structures on the grates and at the furnace wall. Alkali earths are also important in the formation of slag and deposits. This means that fuels with lower alkali content are less problematic when fired in a boiler.

Thermal Conversion of Biomass

A wide range of technologies exists to convert the energy stored in biomass to more useful forms of energy. These technologies can be classified according to the principal energy carrier produced in the conversion process. Carriers are in the form of heat, gas, liquid and/or solid products, depending on the extent to which oxygen is admitted to the conversion process (usually as air). The major methods of thermal conversion are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air.

Combustion

Conventional combustion technologies raise steam through the combustion of biomass. This steam may then be expanded through a conventional turbo-alternator to produce electricity. A number of combustion technology variants have been developed. Underfeed stokers are suitable for small scale boilers up to 6 MWth. Grate type boilers are widely deployed. They have relatively low investment costs, low operating costs and good operation at partial loads. However, they can have higher NOx emissions and decreased efficiencies due to the requirement of excess air, and they have lower efficiencies.

Fluidized bed combustors (FBC), which use a bed of hot inert material such as sand, are a more recent development. Bubbling FBCs are generally used at 10-30 MWth capacity, while Circulating FBCs are more applicable at larger scales. Advantages of FBCs are that they can tolerate a wider range of poor quality fuel, while emitting lower NOx levels.

Co-Firing

Co-firing or co-combustion of biomass wastes with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels. Co-firing involves utilizing existing power generating plants that are fired with fossil fuel (generally coal), and displacing a small proportion of the fossil fuel with renewable biomass fuels. Co-firing has the major advantage of avoiding the construction of new, dedicated, waste-to-energy power plant. Co-firing may be implemented using different types and percentages of wastes in a range of combustion and gasification technologies. Most forms of biomass wastes are suitable for co-firing. These include dedicated municipal solid wastes, wood waste and agricultural residues such as straw and husk.

Gasification

Gasification of biomass takes place in a restricted supply of oxygen and occurs through initial devolatilization of the biomass, combustion of the volatile material and char, and further reduction to produce a fuel gas rich in carbon monoxide and hydrogen. This combustible gas has a lower calorific value than natural gas but can still be used as fuel for boilers, for engines, and potentially for combustion turbines after cleaning the gas stream of tars and particulates. If gasifiers are ‘air blown’, atmospheric nitrogen dilutes the fuel gas to a level of 10-14 percent that of the calorific value of natural gas. Oxygen and steam blown gasifiers produce a gas with a somewhat higher calorific value. Pressurized gasifiers are under development to reduce the physical size of major equipment items.

A variety of gasification reactors have been developed over several decades. These include the smaller scale fixed bed updraft, downdraft and cross flow gasifiers, as well as fluidized bed gasifiers for larger applications. At the small scale, downdraft gasifiers are noted for their relatively low tar production, but are not suitable for fuels with low ash melting point (such as straw). They also require fuel moisture levels to be controlled within narrow levels.

Pyrolysis

Pyrolysis is the term given to the thermal degradation of wood in the absence of oxygen. It enables biomass to be converted to a combination of solid char, gas and a liquid bio-oil. Pyrolysis technologies are generally categorized as “fast” or “slow” according to the time taken for processing the feed into pyrolysis products. These products are generated in roughly equal proportions with slow pyrolysis. Using fast pyrolysis, bio-oil yield can be as high as 80 percent of the product on a dry fuel basis. Bio-oil can act as a liquid fuel or as a feedstock for chemical production. A range of bio-oil production processes are under development, including fluid bed reactors, ablative pyrolysis, entrained flow reactors, rotating cone reactors, and vacuum pyrolysis.