Solid Waste Management – History and Future Outlook

The disposal of municipal solid waste is the second most major concern for public health in developing countries because of population explosion, rampant poverty and high urbanization rates combined with poor government funding to curb waste management. Factors such as waste composition, technologies and lack of infrastructure have been found to set apart the good management of solid wastes in developing nations. Municipal waste is mainly comprised of paper, vegetable matter, plastics, metals, textiles, rubber and glass. In some countries (developing as well as developed), municipal solid waste is mixed with medical wastes and this may pose health risk to waste handlers and general public.

Burying the wastes has become most preferred method for waste management in many countries. This method is still used in many more countries. Tackling environmental issues has become more important and more preferred than pollution and consumption of unsustainable utilization of resources. Most importantly, the primary objective of waste management is to put emphasis on protecting the people and environment from potentially harmful effects of waste.

Methods of Solid Waste Management

Depending on the types of wastes generated, four methods of solid waste management has been used throughout the history, i.e. dumping, incineration, recycling and waste prevention. Waste generated from household is much different from industrial waste, agricultural waste, medical waste or mining wastes.

When wastes contain any hazardous component, or it has capability to become hazardous with time, poses very serious threat to environment and health. Hazardous wastes generated needs to be handled very carefully, with special techniques. This is one of the major reasons of open landfills are getting replaced with sanitary landfills.

At a landfill, wastes are covered with thick layer of soil. By the late 1950, this practice was very common for waste management across the world. Earlier landfills had considerable sludge and methane emissions, which were harmful to the environment as well as animal and human health. But these issues have been resolved largely by modern disposal methods, which were developed around 20 years ago. Modern landfills are equipped with thick layer of clay followed by plastic sheets. This method was practiced by some nations and still going on.

In 1930-1940, many cities in USA adopted new technology to curb waste issues by burning at high temperature, this method is known as incineration. During initial years, this method was not very efficient and emit very large amount of poisonous gasses, this is the major reason of incinerators shut down during that period. During mid-1970s, scientists modified incinerators to generate energy, which are known as waste to energy plants. But after around a decade, it has become major issue to build these plants, again because of emission issues.

With development of technology, waste burning in advanced form of incinerators became common in 1970s, researchers across the world bet on incinerators or waste to energy plants for solution to energy crisis in 1973. However, with realisation of impact on environment and air quality, it become very difficult to find location to build any waste to energy plants, mainly because of public opposition. Another issue with incinerator is production of ashes, which contain huge amount of heavy metals, toxic and inorganic compounds.


Incineration is the most common waste-to-energy method used worldwide.

Future Outlook of Solid Waste Management

The overall concept of wastes needs to be considered economically, it will be more considered as economically viable product if waste is considered as an inefficiency of the production process not as rejected residue of waste product. A permanent rejection or heavy restriction into products which produces waste that cannot be accumulated back into the environment safely.

The major challenge in waste management is to persuade people/community to consider waste as a resource, rather than a liability on society, which can be created with more innovation and technological development of manufacturing industry, waste processing industry and new business model and plans.

This planning system will create circular economy where product value created by inputs (e.g. energy, materials, labour etc.) is extended by enabling a material that goes into circular economy, beyond product life. We go from mineral to metals to product then back to minerals/metals. By understanding economic cycle of waste, people will understand the creation of opportunities to more sustainable product in future with limited resources.

About Salman Zafar

Salman Zafar is the CEO of BioEnergy Consult, and an international consultant, advisor and trainer with expertise in waste management, biomass energy, waste-to-energy, environment protection and resource conservation. His geographical areas of focus include Asia, Africa and the Middle East. Salman has successfully accomplished a wide range of projects in the areas of biogas technology, biomass energy, waste-to-energy, recycling and waste management. Salman has participated in numerous national and international conferences all over the world. He is a prolific environmental journalist, and has authored more than 300 articles in reputed journals, magazines and websites. In addition, he is proactively engaged in creating mass awareness on renewable energy, waste management and environmental sustainability through his blogs and portals. Salman can be reached at or
Tagged , , , , , , , , . Bookmark the permalink.

Share your Thoughts

This site uses Akismet to reduce spam. Learn how your comment data is processed.