Unending Benefits of Solar Street Lights

solar-steer-lightsSolar power is getting increasing popularity as a dependable source for street lighting all over the world. Some of the benefits associated with solar street lights include reduced dependence on conventional energy, conservation of energy and less reliance on the national grid. In countries experiencing abundance of sunlight, solar lights are the best option to illuminate the streets, garden, parks and other public spaces.

Nowadays, solar street lights are powered by PV panels, in-built battery, LED lights and smart sensors, all integrated into a single compact unit. Solar LED street lights have emerged as a cost-effective and environment-friendly to light up roads and public spaces. LED lights are widely acknowledged for energy conservation, are long-lasting and good-looking, and are maintenance-free. These characteristics make LED-base solar street lights well-suited for commercial as well as domestic lighting applications.

Key Features

A modern solar street light has embedded solar panel, inbuilt lithium-ion batteries, battery management system, night and motion sensors as well as automatic controls. The fully automatic device comes with LEDs, inbuilt and replaceable Lithium-ion battery and passive infrared (PIR) sensors. A typical solar street light is weather-proof and water-resistant, has low insect attraction rate and low glare and has a longer life.

The embedded solar panel converts solar power into electrical energy which is stored in the inbuilt battery, and used for dusk-to-dawn lighting operations. The main innovation of modern solar street lights is the battery management system which is facilitated by the presence of night and motion sensors. During the first 5 hours of night, the system works at average lumens brightness. Subsequently, the intensity of the light reduces till dawn or until PIR sensor is activated by human movement. When people are within a certain radius away from the light, it automatically turns to its full brightness. This smart feature makes solar street lights device a perfect combination of renewable energy and energy efficiency.

Solar powered lights by Deelat Industrial has been tried and successfully tested in a wide variety of domestic and commercial applications. The device is well-suited for lighting up streets, courtyards, gardens, parks, compounds, boundary walls, car parks etc. in an eco-friendly and cost-effective manner.

Unending Benefits

Due to off-grid nature of solar street lights, solar street lights incur minimal operational costs. Such lights are wireless in nature and are independent of the utility company. Compared to conventional street lights, solar street lights require almost zero maintenance. Due to the absence of external wires, these lights do not pose any threat of accidents like electrocution, strangulation and overheating. Infact, solar lights illuminate the streets throughout the night irrespective of power cuts and grid failures.

Solar-powered lights are a perfect eco-friendly green lighting solution

Solar-powered lights are a perfect eco-friendly green lighting solution

Solar street lights are a delight for environmentalists around the world as it can provide significant lowering of carbon footprint of individuals, homes and businesses. In other words, solar-powered lights are a perfect green lighting solution. In terms of cost, solar street lights are a better investment than conventional street lights if the capital as well as O&M costs are considered.

Renewables Market in MENA

MENA region has an attractive market for renewables due to abundant availability of solar and wind resources. According to a recent IRENA report, the region is anticipating renewable energy investment of $35 billion per year by 2020. Recently, the MENA region has received some of the lowest renewable energy prices awarded globally for solar PV and wind energy.

mena-renewables

Regional Developments

Among MENA countries, Morocco has emerged as a role model for the entire region. The government’s target of 2GW of solar and 2GW of wind power by 2020 is progressing smoothly with the commissioning of Nour-1 Solar project. Jordan and Egypt are also making steady progress in renewable energy sector.

As far as GCC is concerned, the UAE has also shown serious commitment to develop solar energy. The 100MW Shams CSP plant has been operational since 2014 in Abu Dhabi while 13MW Phase I of Dubai’s solar park was completed in 2013. In Saudi Arabia, the newly launched Vision 2030 document has put forward a strong regulatory and investment framework to develop Saudi clean energy sector which should catalyse renewable energy development in the country.

Renewables – A boon for MENA

Renewable energy has multiple advantages for MENA in the form of energy security, improved air quality, reduced GHG emissions, employment opportunities, apart from augmenting water and food security.

The business case for renewable energy proliferation in MENA is strengthened by plentiful availability of natural energy resources and tumbling solar PV technology costs which are leading to record low renewable power generation costs. The recent auction for the Mohammed Bin Rashid Al Maktoum Solar Park 2 in Dubai yielded prices as low as 5.85 US cents per kWh which is one of the lowest worldwide.

Impact of Falling Costs

The falling costs will have a significant positive impact in the developing world where tens of millions of people still lack access to cheap and reliable supply of energy. Reducing costs will help MENA, especially GCC, to meet its target of steady transition towards renewable energy and thus reducing dependence on fossil fuels for power generation and seawater desalination.

The slump in renewable energy tariffs will also encourage utility companies in emerging markets to include more renewable energy in transmission and meet the targets set by respective countries. However, it should also be noted that there have been several instances where the actual renewable energy production failed to take place because of low bids.

Emerging Trends

Off-grid renewable energy technologies have tremendous potential to popularize clean energy among remote and marginalized communities across the world. Access to clean, reliable and relatively cheap energy from renewable resources, especially solar power, will usher in a new era in developing countries. Off-grid (or standalone) renewable power systems are already making a meaningful difference in the lives of millions of people across the developing world.

In recent years, Morocco has made remarkably swift progress in renewable energy sector.

In recent years, Morocco has made remarkably swift progress in renewable energy sector.

Advancements in battery energy storage have pushed this particular sector into media as well as public spotlight. With big industry names like Tesla and Nissan leading from the front, energy storage technologies are expected to make great contribution in transition to green grid powered by intermittent energy sources like solar PV, CSP, wind and biomass.

Concentrated solar power (CSP) has the potential to transform seawater desalination industry, one of the largest energy consumers in the Middle East. CSP offers an attractive option to power industrial-scale desalination plants that require both high temperature fluids and electricity.  CSP can provide stable energy supply for continuous operation of desalination plants, based on thermal or membrane processes. Leading CSP technology companies are already taking a keen interest in Middle East CSP market and rapid developments are expected in the coming years.

Key Hurdles to Overcome

Lack of strong regulatory framework, low renewable energy tariffs and weak off-take mechanisms are some of the issues confronting renewable energy projects in MENA. Regulatory framework in the GCC is in early stages and marred by heavy subsidy for oil and gas. The largest barrier to growth of solar sector in MENA has been the lack of renewable energy policy framework, legislations, institutional support, feed-in-tariffs and grid access.

The power sector in MENA is, by and large, dominated by state utilities which discourage entrepreneurs and Independent Power Producers (IPPs) to enter the local markets. Lack of open and transparent market conditions in MENA are acting as deterrent for investors, technology companies and project developers.

Among regional countries, Jordan and Morocco have the most advanced legal infrastructure in place to support renewable energy projects, followed by Saudi Arabia and the UAE.

Tips for New Entrants

MENA solar market is complex due to different electricity market structure and myriad challenges in each country. Different countries have different motivations for renewable energy. Solar companies who want to foray in MENA market must give special attention to land access, grid access, transparent licensing schemes, high-quality meteorological data, creditworthy customers, long-term off-take contracts, soiling of PV panels and related issues.

Biomass Energy in Nigeria: An Overview

Oil and gas accounts for over 70% of energy consumed in Nigeria, according to the World Bank. Considering this dependency on fossil oil and possibility of it running out in the future, there should be an urgent intervention to look into other ways to generate energy in Nigeria. The world is moving away gradually from fossil oil and aligning towards sustainable energy resources to substitute conventional fuel, Nigeria should not be exempted from this movement. Biomass, a popular form of renewable energy, is considered as a credible and green alternative source of energy which many developed and developing countries have been maximizing to its potential.

biomass-sustainability

Power generation and supply have been inadequate in Nigeria. This inadequacy of power limits human, commercial and industrial productivity and economic growth . What is the use of infrastructure without constant electricity? Even God created light first. Sustainable and constant supply of power should be one of the priority of government in nation development. Investing in biomass will cause an increase in the amount of power generated in Nigeria. Infact, biomass energy has the potential to resolve the energy crisis in the country in the not so distant future.

What is Biomass

The word biomass refers to organic matter (mainly plants) which acts as a source of sustainable and renewable energy. It is a renewable energy source because the plants can be replaced as oppose to the conventional fossil fuel which is not renewable. Biomass energy is a transferred energy from the sun; plants derives energy from the sun through photosynthesis which is further transferred through the food chain to animals’ bodies and their waste.

Biomass has the potential to provide an affordable and sustainable source of energy, while at the same time help in curbing the green house effect. In India the total biomass generation capacity is 8,700 MW according to U.S. of Commerce’s International Trade Administration, whereas the generating capacity in U.S. is 20,156  MW with 178 biomass power plants, according to Biomass Magazine.

Power Sector in Nigeria

Unfortunately, the total installed electricity capacity generated in Nigeria is 12,522 MW, well below the current demand of 98,000MW . The actual output is about 3,800MW, resulting in a demand shortfall of 94,500MW throughout the country. As a result of this wide gap between demand and output, only 45% of Nigeria’s population has access to electricity. Renewable energy contributed 19% of total electricity generated in Nigeria out of which biomass contribution is infinitesimal.

Electricity generation for Nigeria’s grid is largely dominated by two sources; non-renewable thermal (natural gas and coal) and renewable (hydro). Nigeria depends on non-renewable energy despite its vast potential in renewable sources such as solar, wind, biomass and hydro. The total potential of these renewables is estimated at over 68,000MW, which is more than five times the current power output.

Biomass Resources in Nigeria

Biomass can come in different forms like wood and wood waste, agriculture produce and waste, solid waste.

Wood

Electricity can be generated with wood and wood product/waste(like sawdust) in modern day through cogeneration, gasification or pyrolysis.

Agriculture Residues

In Nigeria, agricultural residues are highly important sources of biomass fuels for both the domestic and industrial sectors. Availability of primary residues for energy application is usually low since collection is difficult and they have other uses as fertilizer, animal feed etc.

However secondary residues are usually available in relatively large quantities at the processing site and may be used as captive energy source for the same processing plant involving minimal transportation and handling cost.

Municipal Solid Waste

Back then in secondary school, I learnt that gas could be tapped from septic tank which could further be used for cooking.  Any organic waste (like animal waste, human waste) when decomposed by anaerobic microorganisms releases biogas which can be tapped and stored for either cooking or to generate electricity.

Biomass can be used to provide heat and electricity as well as biofuel and biogas for transport. There are enough biomass capacity to meet our demand for electricity and other purposes. From climatic point of view, there is a warm climate in Nigeria which is a good breeding ground for bacteria to grow and decompose the wastes. There are plant and animal growth all year round which in turn create waste and consequently produce biomass.

In November 2016, The Ebonyi State Government  took over  the United Nations Industrial Development Organization (UNIDO) demonstration biomass gasifier power plant located at the UNIDO Mini -industrial cluster in Ekwashi Ngbo in Ohaukwu Local Government Area of the State. The power plant is to generate 5.5 Megawatt energy using rice husk and other available waste materials available. More of these type of power plants and commitment are needed to utilize the potential of biomass fully.

Why Biomass Energy?

Since biomass makes use of waste to supply energy, it helps in waste management. It also has the potential to supply more energy (10 times) than the one produced from sun and wind. Biomass will lead to increase in revenue generation and conserves our foreign exchange. Increase in energy generation will yield more productivity for industries and the rate at which they are shutting down due to the fact that they spend more on power will be reduced to minimal.

Many local factories/companies will spring up and foreign investors will be eager to invest in Nigeria with little concern about power. Establishment of biopower plants will surely create more jobs and indirectly reduce the number of people living in poverty which is increasing everyday at an alarming rate.

Africa’s most populous country needs more than 10 times its current electricity output to guarantee supply for its 198 million people – nearly half of whom have no access at all, according to power minister Babatunde Fashola. Biomass energy potential in Nigeria is promising –  with heavy investment, stake holder cooperation and development of indigenous technologies. The deployment of large-scale biomass energy systems will not only significantly increase Nigeria’s electricity capacity but also ease power shortages in the country.

Renewable Energy in Refugee Camps

Access to clean, affordable and renewable energy is a prerequisite for sustainable development of mankind, and refugees are no exception. Refugee camps across the world house more than 65 million people, and almost all refugee camps are plagued by fuel poverty. Needless to say, urgent measure are required to make camps livable and sustainable.

dabaab-refugee-camp

Rapid advancements in renewable energy technologies have made it possible to deploy such systems on various scales.  The scalability potential of renewable energy systems makes them well-suited for refugee camps, especially in conflict-afflicted areas of the Middle East, Asia and Africa.

Renewable energy in refugee camps can be made available in the form of solar energy, biomass energy and wind energy. Solar panels, solar cooking units, solar lanterns, biomass cookstoves and biogas plants are some of the popular renewable energy technologies that can improve living standards in refugee camps. It is important to focus on specific needs of refugees and customization of technology towards local conditions. For example, solar technologies are better understood than biogas systems in Jordan.

Solar Energy

Solar energy can provide long-term resilience to people living in refugee camps. With many camps effectively transformed into full-fledged towns and cities, it is essential to harness the power of sun to run these camps smoothly. Solar cookers, solar lanterns and solar water heaters are already being used in several refugee camps, and focus has now shifted to grid-connected solar power projects.

The 5MW Azraq solar project is the world’s first grid-connected renewable energy project to be established in a refugee camp. The project is being funded entirely by Ikea through the Brighter Lives for Refugees campaign. The program, now in its third year, seeks to improve the lives of refugees around the world by providing access to sustainable energy supplies.

Biomass Energy

Due to lack of land and resources, refugee camps puts tremendous pressure on natural vegetation, especially supply of fuel wood to camp-dwellers. Replacement of traditional stoves with efficient biomass-fired cook stoves can save as much as 80% of cooking fuel.

Instead of wood, it would be also be a good option to use agricultural wastes, like husk and straw. Another interesting proposition for refugee camps is to set up small-scale DIY biogas plants, based on human wastes and food residuals. The biogas produced can be used as a cooking medium as well as for power/heat generation.

Wind Energy

Small wind turbines can also play a key role in providing energy to dwellers of refugee camps. Such turbines are used for micro-generation and can provide power from 1kW to 300kW. Majority of small wind turbines are traditional horizontal axis wind turbines but vertical axis wind turbines are a growing type of wind turbine in the small wind market. Small wind turbines are usually mounted on a tower to raise them above any nearby obstacles, and can sited in refugee camps experiencing wind speeds of 4m/s or more.

Solar lights in Azraq Refugee Camp (Jordan)

Solar lights in Azraq Refugee Camp (Jordan)

Conclusions

Renewable energy systems have the potential to improve living standards in refugee camps and ease the sufferings of displaced and impoverished communities. Solar panels, biogas system, biomass stoves and micro wind turbines are some of the renewable energy systems that can be customized for refugee camps and transform them into a less harsh place for displaced people.

Managing Your Business Maintenance Waste

Just 6% of businesses consider their maintenance department to be well established, showing just how little attention companies are paying to this area. No employee likes trash piling up in the bins around the office. The only solution to this problem is to help arrange a Roll Off Dumpster Berks County that can be placed under the company building and emptied on specific days of the week. This can get your business to be more organized just by making waste removal services more accessible.

As a result, wastage is often high, which eats into profit margins. When an office is refurbished, there will inevitably be some waste created, which the company must pay for. In order to mitigate the damage, business managers should put more attention into their maintenance strategy, acting preventatively rather than reactively. This way, waste will be limited. The resulting waste can then be converted into energy, thus becoming a money maker rather than a drain on resources.

Benefits of Sustainability for Business

Sustainability is really a no-brainer from a business perspective, yet many companies are failing to hit a sustainable level of waste management. US consumers are beginning to care more about a business’s environmental impact over the price of their products, with 67% supporting an end to single-use plastic straws. Not only will restructuring your waste strategy save you money on cleanup, but it will improve the image of your company. In these eco-conscious times, this is essential.

Furthermore, a recent poll by Michigan State University found that 88% of Americans take steps to reduce their food wastage. This shows how high a priority this is for the average customer. If you can target more resources towards sustainable waste management, then you are bound to see increased profits in other areas.

Scheduling and Planning

Cutting waste is all about taking preventative actions rather than reacting to circumstances as they arise. By planning your maintenance ahead of time, it is possible to identify areas where wastage will occur and take steps to avoid this. Work with the most experienced maintenance waste managers for the best results. You are probably already a top planner when it comes to marketing and sales, but are you using these skills when maintenance work needs carrying out?

Before any big construction or renovation project, have an expert identify the quantity of waste that will be produced. You will then be able to schedule in workers to come and remove it immediately, increasing efficiency and lowering costs. It is then up to you to dispose of this waste in a way which is responsible.

Profit From Your Waste

The average business uses between 15,000 and 25,000 kWh per year. This energy has to come from somewhere. Given the amount of waste produced by a typical company, why not put this back into your operation by converting it to energy or transforming it into useful products? This is a win-win situation. You get to carry out the necessary maintenance to keep your business running, while receiving free energy to power your company and promoting an eco-friendly brand image.

Maintenance is an important part of every business, but many managers neglect the cost of waste. Staying on top of your waste management is guaranteed to cut costs and boost profits. Have a waste management schedule in place and use the trash to provide a sustainable energy source as well as useful products.

Tips to Choose the Budget-Friendly System of Energy for Your New Home

Newly arrived at your new home, the first thing is to make sure that you are going to pay the bill for the area that is in your use. That’s why the first day in your new home is advisable to take the meter reading. Good time to introduce yourself to the president of the community … or whoever wants to keep the keys of the accounting room. This advice also applies to gas, water, and other supplies whether it’s new construction or used housing, you should take a meter reading.  Look for iselect energy website! When moving, the first thing is to take note of the different counters (light, water, gas) in order to take responsibility only for what you are going to consume.

Your freedom of choice is sacred

It is very important that you know that you are always entitled to choose your electric company freely. You decide you send.  You have bought a house, or you are renting, this is a right of every consumer to choose the budget-friendly ways for electricity consumption. It is so legitimate that you are interested in changing or continuing with the electric company that you are hired.

What can you choose?

 The company that will send your electricity bill, that is, the electric energy trader.

What can you not choose?

The company that is responsible for providing the energy to your home, that is, the distributor. You do not choose it because you have to choose the one that corresponds to your place of residence.

When you arrive at a new house, it may happen that:

  1. The light is discharged, and both the power and the rate seem appropriate:

If so, and if you want to continue being a client of the same marketer, all you have to do is change the owner of the contract. This procedure is simple, fast and free.

  1. The light is discharged, but the power seems excessive or insufficient

You will have to make a change of power. This procedure costs money, although lowering the power can save a lot on your bill.

  1. The electricity connection is registered, but you want to change the tariff

When you arrive, you can “inherit” a contract with a certain company and a certain rate. If what you find does not convince you, you are free to change your electric energy provider. It is your choice, which service you want to choose for your home.

  1. The light has no connection to the electricity network

If your supply point has not been used for more than 3 years, this procedure costs money. The contract of registration is processed with the distributor, but it is the distributor that installs the meter and activates the supply. For this reason, the payment of this procedure will be made to the distributor in the first invoice.

The payment procedure for the efficient electricity providers is very simple and easy for the consumers. You can pay your bills and others online via credit and debit card.

15 Simple Ways Your Family Can Save the Planet

Life, the miracle of the universe, appeared about 4 billion years ago, and we, humans – only 200,000 years ago. But we have already succeeded in destroying the balance that is so important for the life on Earth. What do we actually know about life on Earth? The tenth part? Or maybe the hundredth? Earth is a real miracle. Life remains a mystery.

Trees grow towards the sun, which feeds their foliage. Animals are adapted to their pastures, and their pastures are adapted to them. As a result, everyone wins. Animals satisfy hunger, and plants flourish again. In this great life journey on Earth, each species has a particular function and takes a certain place. There are no useless creatures. They are all balanced.

And Homo sapiens – a man of sense – enters the arena of history. He received a fabulous inheritance that the Earth has carefully preserved for 4 billion years. He is only 200,000 years old, but he has already changed the face of the world. Despite his vulnerability, he captured all the habitats and conquered the territory like no other species before him. Today, life – our life – is only a link in the chain of countless lives following one another on Earth for 4 billion years.

For a long time, the relationship between people and the planet were fairly balanced and resembled a natural and equal union. Now, we rarely think about global issues, being lost in everyday concerns. Meanwhile, we are on the verge of a disaster. Thanks to the achievements of science and technology, people learned to satisfy their needs, but some inventions brought us much more harm than good. We are killing our planet gradually but purposefully.

Planting more trees and vegetation will go a long way in reducing heat in urban settings.

These 15 simple tips do not require you either time or extra effort. Only by changing your habits quite a bit, you and your loved one can make the world cleaner and safer.

  1. Make the most of natural ambient light. Turn off the light in the room or the computer monitor when you do not need it. And do not forget about the chargers in the appliance receptacle!
  2. Teach yourself to turn off the water at a time when you do not need it – for example, while brushing your teeth or rubbing the pan with a detergent. On average, according to statistics, 5-10 liters of water (depending on pressure) flows out of the tap per minute. Also, reduce the time spent in the shower for 1-2 minutes.
  3. Replace incandescent bulbs with LED: they save energy and last longer.
  4. Change to a bike. It is cool, fast, and comfortable. Having tried only once, you no longer want to get on the “hot bus” or spend time stuck in traffic jams. In addition, a bicycle is an excellent vehicle as it does not pollute the air with dangerous gases.
  5. Use phosphate-free detergents. On the Internet, there are many resources offering ecological household chemicals.
  6. Buy less plastic bags, go to the store with your eco-bag.
  7. Replace plastic with paper and glass. If you cannot do without disposable tableware – for example, when going on a picnic – use paper plates and cups rather than plastic ones.
  8. Choose cosmetics and chemicals especially carefully. You should give preference to products that have not been tested on animals and do not adversely affect the environment at different stages of production.
  9. Though it is as simple as ABC but very effective – try to bring plastic, glass, and paper for recycling.
  10. Bring batteries to special shops and institutions because this is a dangerous and very toxic type of waste.
  11. Refuse semi-finished products. Experts say that today, the manufacture of these products is fully controlled by monopoly companies that abuse antibiotics, overload the ecosystem, and apply the principles of intensive management for their own profit. Of course, in such conditions, quality suffers. Homemade food is much better. Do not know how to cook? A dating site may be helpful.
  12. Buy local food – the one that is made in your area. This food undergoes less chemical treatment which is sometimes used for long-term transportation.
  13. Use water filters. In this case, you do not need to spend money on bottled drinking water. Thus, you will not only save your family budget but also reduce the environmental impact caused by the production and transportation of plastic bottles.
  14. Plant flowers on window sills and trees in the courtyards. Do not let anyone cut down green spaces near your house.
  15. Support environmental organizations and encourage your family to do it.

“Orbiting Earth, I saw how beautiful our planet is. People, let us preserve and increase this beauty, not destroy it!”

– Yuri Gagarin

Waste-to-Energy in India: An Interview with Salman Zafar

waste-mountainIndia’s waste-to-energy sector, which kicked off in 1987, is still searching for a successful role model, even after tens of millions of dollars of investment. In recent years, many ambitious waste-to-energy projects have been established or are being planned in different parts of the country, and it is hoped that things will brighten up in the coming years. Salman Zafar, CEO of BioEnergy Consult, talks to Power Today magazine on India’s tryst with waste-to-energy and highlights major challenges and obstacles in making waste-to-energy a success story in India.

Power Today: What are the challenges that the Waste to Energy sector faces in the current scenario where there is a rejuvenated interest in clean energy? Do you think the buzz around solar and wind power has relegated the Waste to Energy sector to the back benches?

Salman Zafar: India’s experience with waste-to-energy has been lackluster until now. The progress of waste-to-energy sector in India is hampered by multiples issues including

  1. poor quality of municipal waste,
  2. high capital and O&M costs of waste-to-energy systems,
  3. lack of indigenous technology,
  4. lack of successful projects and failure of several ambitious projects,
  5. lack of coordination between municipalities, state and central governments,
  6. heavy reliance on government subsidies,
  7. difficulties in obtaining long-term Power Purchase Agreements (PPAs) with state electricity boards (SEBs)
  8. lukewarm response of banks and financial institutions and (9) weak supply chain.

Waste-to-energy is different from solar (or wind) as it essentially aims to reduce the colossal amount of solid wastes accumulating in cities and towns all over India. In addition to managing wastes, waste-to-energy has the added advantage of producing power which can be used to meet rapidly increasing energy requirements of urban India. In my opinion, waste-to-energy sector has attracted renewed interest in the last couple of years due to Swachch Bharat Mission, though government’s heavy focus on solar power has impacted the development of waste-to-energy as well as biomass energy sectors.

Power Today: India has a Waste to Energy potential of 17,000 MW, of which only around 1,365 MW has been realised so far. How much growth do you expect in the sector?

Salman Zafar: As per Energy Statistics 2015 (refer to http://mospi.nic.in/Mospi_New/upload/Energy_stats_2015_26mar15.pdf), waste-to-energy potential in India is estimated to be 2,556 MW, of which approximately 150 MW (around 6%) has been harnessed till March 2016.

The progress of waste-to-energy sector in India is dependent on resolution of MSW supply chain issues, better understanding of waste management practices, lowering of technology costs and flexible financial model. For the next two years, I am anticipating an increase of around 75-100 MW of installed capacity across India.

Power Today: On the technological front, what kinds of advancements are happening in the sector?

Salman Zafar: Nowadays, advanced thermal technologies like MBT, thermal depolymerisation, gasification, pyrolysis and plasma gasification are hogging limelight, mainly due to better energy efficiency, high conversion rates and less emissions. Incineration is still the most popular waste-to-energy technology, though there are serious emission concerns in developing countries as many project developers try to cut down costs by going for less efficient air pollution control system.

Power Today: What according to you, is the general sentiment towards setting up of Waste to Energy plants? Do you get enough cooperation from municipal bodies, since setting up of plants involves land acquisition and capital expenditure?

Salman Zafar: Waste-to-energy projects, be it in India or any other developing country, is plagued by NIMBY (not-in-my-backyard) effect. The general attitude towards waste-to-energy is that of indifference resulting in lukewarm public participation and community engagement in such projects.

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Lack of cooperation from municipalities is a major factor in sluggish growth of waste-to-energy sector in India. It has been observed that sometimes municipal officials connive with local politicians and ‘garbage mafia’ to create hurdles in waste collection and waste transport. Supply of poor quality feedstock to waste-to-energy plants by municipal bodies has led to failure of several high-profile projects, such as 6 MW MSW-to-biogas project in Lucknow, which was shut down within a year of commissioning due to waste quality issues.

Power Today: Do you think that government policies are in tandem when it comes to enabling this segment? What policies need to be changed, evolved or adopted to boost this sector?

Salman Zafar: A successful waste management strategy demands an integrated approach where recycling and waste-to-energy are given due importance in government policies. Government should strive to setup a dedicated waste-to-energy research centre to develop a lost-cost and low-tech solution to harness clean energy from millions of tons of waste generated in India.

The government is planning many waste-to-energy projects in different cities in the coming years which may help in easing the waste situation to a certain extent. However, government policies should be inclined towards inclusive waste management, whereby the informal recycling community is not robbed of its livelihood due to waste-to-energy projects.

Government should also try to create favourable policies for establishment of decentralized waste-to-energy plants as big projects are a logistical nightmare and more prone to failure than small-to-medium scale venture.

Note: This interview was originally published in June 2016 edition of Power Today magazine. The unabridged version is available at this link

Biomass Energy in China

Biomass energy in China has been developing at a rapid pace. The installed biomass power generation capacity in China increased sharply from 1.4 GW in 2006 to 14.88 GW in 2017. While the energy share of biomass remains relatively low compared to other sources of renewable energy, China plans to increase the proportion of biomass energy up to 15 percent and total installed capacity of biomass power generation to 30 GW by 2030.

biomass-china

In terms of impact, the theoretical biomass energy resource in China is about 5 billion tons coal equivalent, which equals 4 times of all energy consumption. As per conservative estimates, currently China is only using 5 percent of its total biomass potential.

According to IRENA, the majority of biomass capacity is in Eastern China, with the coastal province of Shandong accounting for 14 percent of the total alone. While the direct burning of mass for heat remains the primary use of biomass in China, in 2009, composition of China’s biomass power generation consisted in 62 percent of straw direct-fired power generation and 29 percent of waste incineration, with a mix of other feedstock accounting for the remaining 9 percent.

Biomass Resources in China

Major biomass resources in China include waste from agriculture, forestry, industries, animal manure and sewage, and municipal solid waste. While the largest contributing sources are estimated to be residues from annual crop production like wheat straw, much of the straw and stalk are presently used for cooking and heating in rural households at low efficiencies. Therefore, agricultural residues, forestry residues, and garden waste were found to be the most cited resources with big potential for energy production in China.

Agricultural residues are derived from agriculture harvesting such as maize, rice and cotton stalks, wheat straw and husks, and are most available in Central and northeastern China where most of the large stalk and straw potential is located. Because straw and stalks are produced as by-products of food production systems, they are perceived to be sustainable sources of biomass for energy that do not threaten food security.

Furthermore, it is estimated that China produces around 700 Mt of straw per year, 37 percent of which is corn straw, 28 percent rice, 20 percent wheat and 15 percent from various other crops. Around 50 percent of this straw is used for fertilizers, for which 350 Mt of straw is available for energy production per year.

Biomass resources are underutilized across China

Biomass resources are underutilized across China

Forestry residues are mostly available in the southern and central parts of China. While a few projects that use forestry wastes like tree bark and wood processing wastes are under way, one of the most cited resources with analyzed potential is garden waste. According to research, energy production from garden waste biomass accounted for 20.7 percent of China’s urban residential electricity consumption, or 12.6 percent of China’s transport gasoline demand in 2008.

Future Perspectives

The Chinese government believes that biomass feedstock should neither compete with edible food crops nor cause carbon debt or negative environmental impacts. As biomass takes on an increasing significant role in the China’s national energy-mix, future research specific to technology assessment, in addition to data collection and supply chain management of potential resources is necessary to continue to understand how biomass can become a game-changer in China’s energy future.

References

IRENA, 2014. Renewable Energy Prospects: China, REmap 2030 analysis. IRENA, Abu Dhabi. www.irena.org/remap

National Academy of Engineering and NRC, 2007: Energy Futures and Urban Air Pollution: Challenges for China and the United States.

Xingang, Z., Zhongfu, T., Pingkuo, L, 2013. Development goal of 30 GW for China’s biomass power generation: Will it be achieved? Renewable and Sustainable Energy Reviews, Volume 25, September 2013, 310–317.

Xingang, Z., Jieyu, W., Xiaomeng, L., Tiantian, F., Pingkuo, L, 2012. Focus on situation and policies for biomass power generation in China. Renewable and Sustainable Energy Reviews, Volume 16, Issue 6, August 2012, 3722–3729.

Li, J., Jinming, B. MOA/DOE Project Expert Team, 1998. Assessment of Biomass Resource Availability in China. China Environmental Science Press, Beijing, China.

Klimowicz, G., 2014. “China’s big plans for biomass,” Eco-Business, Global Biomass Series, accessed on Apr 6, 2015.

Shi, Y., Ge, Y., Chang, J., Shao, H., and Tang, Y., 2013. Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development. Renewable and Sustainable Energy Reviews 22 (2013) 432–437

Xu, J. and Yuan, Z, 2015. “An overview of the biomass energy policy in China,” BESustainable, May 21, 2015.

Green SMEs: Catalyst for Green Economy

With ‘green’ being the buzzword across all industries, greening of the business sector and development of green skills has assumed greater importance all over the world. SMEs, startups and ecopreneurs are playing a vital role in the transition to a low-carbon economy by developing new green business models for different industrial sectors. Infact, young and small firms are emerging as main drivers of radical eco-innovation in the industrial and services sectors.

Green SMEs

What are Green SMEs

Green SMEs adopt green processes and/or those producing green goods using green production inputs. A judicious exploitation of techno-commercial opportunities and redevelopment of business models, often neglected by established companies, have been the major hallmarks of green SMEs.

For example, SMEs operating in eco-design, green architecture, renewable energy, energy efficiency and sustainability are spearheading the transition to green economy across a wide range of industries. The path to green economy is achieved by making use of production, technology and management practices of green SMEs. Impact investment platforms, such as Swell Investing, allows individuals to invest in environmentally sustainable companies.

Categories of Green Industries

Environmental Protection Resource Management
Protection of ambient air Water management
Protection of climate Management of forest resources
Wastewater management Management of flora and fauna
Waste management Energy management
Noise and vibration abatement Management of minerals
Protection of biodiversity and landscape Eco-construction
Protection against radiation Natural resource management activities
Protection of soil, groundwater and surface water Eco-tourism
Environmental Monitoring and Instrumentation Organic agriculture
Research and Development Research and Development

Key Drivers

The key motivations for a green entrepreneur are to exploit the market opportunity and to promote environmental sustainability. A green business help in the implementation of innovative solutions, competes with established markets and creates new market niches. Green entrepreneurs are a role model for one and all as they combine environmental performance with market targets and profit outcomes, thus contributing to the expansion of green markets.

Some of the popular areas in which small green businesses have been historically successful are renewable energy production (solar, wind and biomass), smart metering, building retrofitting, hybrid cars and waste recycling.

As far as established green industries (such as waste management and wastewater treatment) are concerned, large companies tend to dominate, however SMEs and start-ups can make a mark if they can introduce innovative processes and systems. Eco-friendly transformation of existing practices is another attractive pathway for SMEs to participate in the green economy.

The Way Forward

Policy interventions for supporting green SMEs, especially in developing nations, are urgently required to overcome major barriers, including knowledge-sharing, raising environmental awareness, enhancing financial support, supporting skill development and skill formation, improving market access and implementing green taxation.

In recent decades, entrepreneurship in developing world has been increasing at a rapid pace which should be channeled towards addressing water, energy, environment and waste management challenges, thereby converting environmental constraints into business opportunities.