4 Ways to Make Your Next Home Greener

There is a huge spotlight on the construction industry when it comes to green initiatives – and rightly so. After all, this is one of the biggest contributors to all of the sustainable problems that the world faces. However, this increased focus does prompt some problems. It can make some people believe that going green in the home is out of the question – and is only going to be achieved through some really costly implementations.

Granted, there are some major infrastructure projects you can invest in if you are building a home, with solar power and ground source heat pumps tending to grab the headlines. At the same time, there are smaller wins – and these shouldn’t be underestimated, such as solid wood flooring. In fact, if everyone was to invest in these, we’d suggest that the typical carbon footprint across cities such as San Diego would drop substantially.

Taking this into account, let’s now take a look at some of the quick, green wins you can succeed with as you bid to make your next home greener and more sustainable.

1. It starts with the placement of your windows

As we work with our architect in the initial design phase of our project, many of us are more concerned about the size of our bedrooms and so on.

A common afterthought is the placement of windows. Sure, some people might think about this as they consider natural light implications – but it’s time to think bigger.

Let’s not forget that as well as allowing rooms to heat naturally, windows are something that lets warm air escape. It means that their position is crucial, and treating them as an afterthought is asking for a completely inefficient dwelling.

2. Never forget insulation

In some ways, we were almost tempted not to include this next point. After all, insulation is an old classic when it comes to energy efficiency. It is something that has been suggested for years, mainly because it is incredibly cheap to implement whilst also being very effective.

Of course, it’s always easier to install insulation during the early phases of a project. Try and remember to focus on the roof and walls; this is where most of your heat is lost and is where you can make the biggest difference.

3. It’s not just about energy; think water as well

A lot of today’s guide has looked at energy, and rightly so. We are also going to dip into a point about water consumption, though.

This is something that often gets forgotten about, but the benefits are substantial. A lot of older, traditional bathroom fittings are anything but efficient – they deliver water at a ridiculous rate, and ultimately waste it.

If you turn to modern-day solutions, you’ll find that you can save gallons every year. Suffice to say, this isn’t just going to benefit your environment, but your pocket as well.

4. Your roof is crucial

Finally, if there was just one area of your next home to concentrate on, your roof should be up there as a priority. Nowadays, there are all sorts of materials that can help your plight. For example, for those of you who reside in hot countries, you can turn to roofs with reflective paint to deal with the heat somewhat. Green roofs are another solution which are surging in popularity but in truth, the list could go on.

Recommended Green Resources:

Everything You Should Know About Electricity

Electricity, we use it every day but what is it? The dictionary defines it as a form of energy resulting from the existence of charged particles (such as electrons or protons), either statically as an accumulation of charge or dynamically as a current. This may sound confusing, but by breaking it down we can understand how it works. Electricity is used for many everyday things but breakthroughs of how to use it have resulted in many cool inventions, some of which you can explore on thehomesecuritysuperstore.

A Closer Look at Atoms

So, what is electricity? To understand how electricity works we have to break it down, starting with the charged particles. Everything is made of atoms, and these atoms are mostly empty space. Moving around in the empty space are electrons and protons. These each carry an electric charge, electrons being negative and protons being positive. These opposite charges attract each other. The atom is in balance when there are an equal number of protons and electrons. The number of protons determines what kind of element the atom is, and these numbers and elements are shown on the periodic table.

Imagine the atom as having rings around the nucleus, the center of the atom. These rings can hold a certain number of electrons which move constantly around the nucleus which holds the protons. When the rings hold electrons that are attracted to the protons the strength of this attraction can push an electron out of its orbit and even make them shift from one atom to another. This is where electricity occurs.

Traveling in Circuits

Now that we know the basics of electricity, we can look at how it works. For a basic understanding of how electricity travels through circuits and how we use electricity we will look at batteries and light bulbs. Batteries can produce electricity through a chemical substance called an electrolyte.

The battery is attached to two metals, one on either end, and produces a negative charge in one metal and a positive charge in the other metal. When the battery is then connected on either end by a conductor such as a wire the electrical charge is balanced. If you were to attach a light bulb to the wire in between the sides of the battery, the electrical current would then travel through the light bulb to get to the other side of the battery and thus powering the light.

LED-lighting-workplace

Electricity moves through electrical circuits and must have a complete path for the electrons to move through. The switch or power button on electronic devices opens and closes this path. When you turn on the light switch the circuit is closed and electrons can move freely to turn on your lights. When you turn off the switch it opens the circuit not allowing the electrons through and turning off your lights. When light bulbs burn out the small wire connecting the circuit inside the light bulb breaks and stops the flow of electrons.

Final Thoughts

Energy flows through our entire world and understanding how electricity works is just the beginning. Of course, most of the electricity in your life is not connected to a single battery as in the example above, but the understanding on a basic level is very interesting.

Electricity literally powers everything in our lives and a world without it would be very different. Understanding how these things work lets us enrich our knowledge of the world around us and provides us with practical information we can use in our everyday life. Electricity is all around us and is used in more interesting ways than just light bulbs and batteries.

Zena Fly- Feeding the World on Insect

Meeting an ever increasing demand for food/feed/energy and managing waste have become two of the major global challenges. The global world population is estimated to increase from 7.3 billion in 2015 to 9.7 billion in 2050. Approximately one third of the global food produced for human composition is wasted. Currently, approximately 1.3 billion metric tons of waste are disposed with significant environmental impact as far as greenhouse gases and economic footprints and the current waste management practices are not costly sustainable.

zena-fly-waste-management

Increase in Global Energy Demand

Global energy demand is estimated to increase from 524 Quadrillion btu in 2010, to 820 Quadrillion btu by 2040 (a 56% increase). Similarly, global demand of food and animal products are projected to increase by 70-100% and 50-70%, respectively, by 2050. To cope up with the demand for animal products, a substantial increase in nutritious animal feed is needed.

On one hand, the production of conventional feedstuff such as soybean meal and fish meal is reported as the major contributor to land occupation, ocean depletion, climate change, water and energy consumption. Moreover, such conventional animal feedstuff are not only limited in supply but also are becoming more expensive over the years. Additionally, there is an already strong and increasing competition for resources such as food, feed and biofuel production.

Need for alternative non-conventional source of food, feed, and fuel

Thus there is a pressing need for identifying and exploring the potential of alternative non-conventional source of food, feed, and fuel, which are economically viable, environmentally friendly, and socially acceptable.

By 2030 the Bio-based Economy is expected to have grown significantly. A pillar of this is biorefining, the sustainable processing of biomass into a spectrum of marketable products and energy. To satisfy this demand biorefineries need to be better integrated, flexible and operating more substantially. This means that a major yield, more efficient use of nutrients and water and greater pest and disease resistance should be achieve.

Zena Fly: A Startup Worth Watching

In this context an Italian-based start-up, Zena Fly, designed an innovative process for the future integrated biorefinery by mimicking nature’s ability. In fact, Zena Fly utilizes the natural insect life cycle to manage large quantity of organic waste produced in urban and industrial context, in order to generate sustainable and valuable by-products. The project of three young entrepreneurs foresees a combined bio-refinery where waste is turned into high-quality by-products by the anaerobic insect digestion.

The Concept

The basic concept is to convert waste into high-valuable products utilizing the black soldier flies (H. illucens), a now globally distributed insect. With a modern technique, the typical insect life cycle of these insects can be utilized in order to manage urban and industrial waste. The voracious larvae can reduce by more than 40-70% (based on the nature of the substrate-waste) the substrate where reared (waste) within 12-14 days.

From the anaerobic waste digestion, large quantity of fine protein meal for feed composition (more than 50-60% in protein), fat, fertilizing oil and other by-products of great interest such as chitin, and high-quality biofuel are then extracted.

Since the adult fly do not feed, and do not fly around for feeding, these animals are exceptionally valuable from a sanitary perspective (larvae has been demonstrate to reduce/eliminate E.coli and Salmonella).

Business Model

Zena Fly business model foresees to replicate their integrated biorefineries next to any waste management companies or industrial production areas where large quantity of waste need to be reduced and transformed. This is a win/win operation, where the waste management cost would be cut in half and the process will generate appealing opportunities for investments in a market where the increasing demand is already way higher than the products availability.

Zena Fly is now seeking for the right partner-investor in order to scale up quickly. For more information, please visit www.zena-fly.com or email us on info@zena-fly.com

Biogas Prospects in Rural Areas: Perspectives

Biogas, sometimes called renewable natural gas, could be part of the solution for providing people in rural areas with reliable, clean and cheap energy. In fact, it could provide various benefits beyond clean fuel as well, including improved sanitation, health and environmental sustainability.

What is Biogas?

Biogas is the high calorific value gas produced by anaerobic decomposition of organic wastes. Biogas can come from a variety of sources including organic fraction of MSW, animal wastes, poultry litter, crop residues, food waste, sewage and organic industrial effluents. Biogas can be used to produce electricity, for heating, for lighting and to power vehicles.

Using manure for energy might seem unappealing, but you don’t burn the organic matter directly. Instead, you burn the methane gas it produces, which is odorless and clean burning.

Biogas Prospects in Rural Areas

Biogas finds wide application in all parts of the world, but it could be especially useful to developing countries, especially in rural areas. People that live in these places likely already use a form of biomass energy — burning wood. Using wood fires for heat, light and cooking releases large amounts of greenhouse gases into the atmosphere.

The smoke they release also has harmful health impacts, particularly when used indoors. You also need a lot to burn a lot of wood when it’s your primary energy source. Collecting this wood is a time-consuming and sometimes difficult as well as dangerous task.

Many of these same communities that rely on wood fires, however, also have an abundant supply of another fuel source. They just need the tools to capture and use it. Many of these have a lot of dung from livestock and lack sanitation equipment. This lack of sanitation creates health hazards.

Turning that waste into biogas could solve both the energy problem and the sanitation problem. Creating a biogas system for a rural home is much simpler than building other types of systems. It requires an airtight pit lined and covered with concrete and a way to feed waste from animals and latrines into the pit. Because the pit is sealed, the waste will decompose quickly, releasing methane.

This methane flows through a PCV pipe to the home where you can turn it on and light on when you need to use it. This system also produces manure that is free of pathogens, which farmers can use as fertilizer.

A similar but larger setup using rural small town business idea can provide similar benefits for urban areas in developing countries and elsewhere.

Benefits of Biogas for Rural Areas

Anaerobic digestion systems are beneficial to developing countries because they are low-cost compared to other technologies, low-tech, low-maintenance and safe. They provide reliable fuel as well as improved public health and sanitation. Also, they save people the labor of collecting large amounts of firewood, freeing them up to do other activities. Thus, biomass-based energy systems can help in rural development.

Biogas for rural areas also has environmental benefits. It reduces the need to burn wood fires, which helps to slow deforestation and eliminates the emissions those fires would have produced. On average, a single home biogas system can replace approximately 4.5 tons of firewood annually and eliminate the associated four tons of annual greenhouse gas emissions, according to the World Wildlife Fund.

Biogas is also a clean, renewable energy source and reduces the need for fossil fuels. Chemically, biogas is the same as natural gas. Biogas, however, is a renewable fuel source, while natural gas is a fossil fuel. The methane in organic wastes would release into the atmosphere through natural processes if left alone, while the greenhouse gases in natural gas would stay trapped underground. Using biogas as a fuel source reduces the amount of methane released by matter decomposing out in the open.

What Can We Do?

Although biogas systems cost less than some other technologies, affording them is often still a challenge for low-income families in developing countries, especially in villages. Many of these families need financial and technical assistance to build them. Both governments and non-governmental organizations can step in to help in this area.

Once people do have biogas systems in place though, with minimal maintenance of the system, they can live healthier, more comfortable lives, while also reducing their impacts on the environment.

Trends in Utilization of Palm Kernel Shells

The palm kernel shells used to be initially dumped in the open thereby impacting the environment negatively without any economic benefit. However, over time, palm oil mills in Southeast Asia and elsewhere realized their brilliant properties as a fuel and that they can easily replace coal as an industrial fuel for generating heat and steam.

palm-kernel-shell-uses

Palm kernel shells is an abundant biomass resource in Southeast Asia

Major Applications

Nowadays, the primary use of palm kernel shells is as a boiler fuel supplementing the fibre which is used as primary fuel. In recent years kernel shells are extensively sold as alternative fuel around the world. Besides selling shells in bulk, there are companies that produce fuel briquettes from shells which may include partial carbonisation of the material to improve the combustion characteristics.

Palm kernel shells have a high dry matter content (>80% dry matter). Therefore the shells are generally considered a good fuel for the boilers as it generates low ash amounts and the low K and Cl content will lead to less ash agglomeration. These properties are also ideal for production of biomass for export.

As a raw material for fuel briquettes, palm shells are reported to have the same calorific characteristics as coconut shells. The relatively smaller size makes it easier to carbonise for mass production, and its resulting palm shell charcoal can be pressed into a heat efficient biomass briquette.

Although the literature on using oil palm shells (and fibres) is not as extensive as EFB, common research directions of using shells, besides energy, are to use it as raw material for light-weight concrete, fillers, activated carbon, and other materials. However, none of the applications are currently done on a large-scale. Since shells are dry and suitable for thermal conversion, technologies that further improve the combustion characteristics and increase the energy density, such as torrefaction, could be relevant for oil palm shells.

Torrefaction is a pretreatment process which serves to improve the properties of biomass in relation to the thermochemical conversion technologies for more efficient energy generation. High lignin content for shells affects torrefaction characteristics positively (as the material is not easily degraded compared to EFB and fibres).

Furthermore, palm oil shells are studied as feedstock for fast pyrolysis. To what extent shells are a source of fermentable sugars is still not known, however the high lignin content in palm kernel shells indicates that shells are less suitable as raw material for fermentation.

Future Outlook

The leading palm oil producers in the world should consider limiting the export of palm kernel shells (PKS) to ensure supplies of the biomass material for renewable energy projects, in order to decrease dependency on fossil fuels. For example, many developers in Indonesia have expressed an interest in building palm kernel shell-fired power plants.

However, they have their concerns over supplies, as many producers prefer to sell their shells overseas currently. Many existing plants are facing problems on account of inconsistent fuel quality and increasing competition from overseas PKS buyers. PKS market is well-established in provinces like Sumatra and export volumes to Europe and North Asia as a primary fuel for biomass power plants is steadily increasing.

The creation of a biomass supply chain in palm oil producing countries may be instrumental in discouraging palm mills to sell their PKS stocks to brokers for export to foreign countries. Establishment of a biomass exchange in leading countries, like Indonesia, Malaysia and Nigeria, will also be a deciding factor in tapping the unharnessed potential of palm kernel shells as biomass resource.

Progress of Waste-to-Energy in the USA

Rising rates of consumption necessitate an improved approach to resource management. Around the world, from Europe to Asia, governments have adapted their practices and policies to reflect renewability. They’ve invested in facilities that repurpose waste as source of energy, affording them a reliable and cheap source of energy.

This seems like progress, given the impracticality of older methods. Traditional sources of energy like fossil fuels are no longer a realistic option moving forward, not only for their finite nature but also within the context of the planet’s continued health. That said, the waste-to-energy sector is subject to scrutiny.

We’ll detail the reasons for this scrutiny, the waste-to-energy sector’s current status within the United States and speculations for the future. Through a concise analysis of obstacles and opportunities, we’ll provide a holistic perspective of the waste-to-energy progress, with a summation of its positive and negative attributes.

Status of Waste-to-Energy Sector

The U.S. currently employs 86 municipal waste-to-energy facilities across 25 states for the purpose of energy recovery. While several have expanded to manage additional waste, the last new facility opened in 1995. To understand this apparent lack of progress in the area of thermochemical treatment of MSW, budget represents a serious barrier.

One of the primary reasons behind the shortage of waste-to-energy facilities in the USA is their cost. The cost of construction on a new plant often exceeds $100 million, and larger plants require double or triple that figure to build. In addition to that, the economic benefits of the investment aren’t immediately noticeable.

The Palm Beach County Renewable Energy Facility is a RDF-based waste-to-energy (WTE) facility.

The U.S. also has a surplus of available land. Where smaller countries like Japan have limited space to work within, the U.S. can choose to pursue more financially viable options such as landfills. The expenses associated with a landfill are far less significant than those associated with a waste-to-energy facility.

Presently, the U.S. processes 14 percent of its trash in waste-to-energy (WTE) plants, which is still a substantial amount of refuse given today’s rate of consumption. On a larger scale, North America ranks third in the world in the waste-to-energy movement, behind the European nations and the Asia Pacific region.

Future of WTE Sector

Certain factors influence the framework of an energy policy. Government officials have to consider the projected increase in energy demand, concentrations of CO2 in the atmosphere, space-constrained or preferred land use, fuel availability and potential disruptions to the supply chain.

A waste-to-energy facility accounts for several of these factors, such as space constraints and fuel availability, but pollution remains an issue. Many argue that the incineration of trash isn’t an effective means of reducing waste or protecting the environment, and they have evidence to support this.

The waste-to-energy sector extends beyond MSW facilities, however. It also encompasses biofuel, which has seen an increase in popularity. The aviation industry has shown a growing dedication to biofuel, with United Airlines investing $30 million in the largest producer of aviation biofuel.

If the interest of United Airlines and other companies is any indication, the waste-to-energy sector will continue to expand. Though negative press and the high cost of waste-to-energy facilities may impede its progress, advances in technology promise to improve efficiency and reduce expenses.

Positives and Negatives

The waste-to-energy sector provides many benefits, allowing communities a method of repurposing their waste. It has negative aspects that are also important to note, like the potential for pollution. While the sector offers solutions, some of them come at a cost.

It’s true that resource management is essential, and adapting practices to meet high standards of renewability is critical to the planet’s health. However, it’s also necessary to recognize risk, and the waste-to-energy sector is not without its flaws. How those flaws will affect the sector moving forward is critical to consider.

How the Biofuel Industry is Growing in the US

Biofuels were once forgotten in the United States, mainly when huge petroleum deposits kept fuel prices low.  With the increase in oil prices recently, the biofuel industry in the US is rising significantly.  Experts predict that this green energy efficient industry will continue to grow within the next 7 to 10 years.

drop-in-biofuels

The Source of Biofuels

Those who are concerned with the prospect of global warming love the potential use of biofuels. Produced either directly or indirectly from used cooking oil, animal waste and plant materials, biofuels are less costly than other types of fuel.  Already in the national and global market, the trend for this fuel is rising.

Online Reverse Auction Software

Due to the growth of the biofuel industry, online software for energy brokers and energy suppliers is an available market for entrepreneurs.  The software to efficiently sell energy services to purchasers is a must have for suppliers and brokers.  The reverse auction process effectively conducts online business for those in the biofuel industry.

Both regulated and deregulated gas and electricity markets are involved in the reverse auction process in which the buyer and seller roles are reversed.  The buyer is given the option of testing and evaluating multiple pricing parameters to find a good fit.  Commercial, industrial, and manufacturing facilities take advantage of this platform.

Reverse Auction Benefits

Reverse auctions in the biofuel industry have been said to cut costs tremendously.  Although the seller pays a fee to the service provider, the bidding process cuts costs all around for both buyer and seller.  A situation in which both sides win is seen as a huge benefit by all involved.

As a very lucrative market, the biofuel industry benefits from reverse auctions.  Market efficiency is increased, and the process of obtaining the goods and services is enhanced.  Proper software and other technical aspects of the process is essential thus the reason that the online reverse auction software market is critical.  Quality and professional relationships are enhanced rather than compromised as is often the case in other markets.

Biofuel Market Projections and Uses

According to market research, the biofuel industry is expected to reach approximately 218 billion dollars by 2022.  A 4.5% growth is expected by 2022 as well.  Investors see these projections as an open door of opportunity.  By the year 2025, the increase is predicted to be at approximately 240 billion dollars.

Biofuel is used for other purposes besides first-generation fuel.  It is used in vegetable oil and cosmetics, and it is used to treat Vitamin A deficiency and other health issues. Biofuel is predicted to aid the improvement of economic conditions due to its health benefits and appeal to green energy supporters.  These factors explain the reasons for the projected growth and profit for this industry.

With the continued growth of the biofuel industry, reverse auctions will be a much-needed process.  The efficient software to accompany reverse auctions will keep the market flowing which will further aid the growth of the industry for years to come.

Biogas Sector in India: Perspectives

Biogas is an often overlooked and neglected aspect of renewable energy in India. While solar, wind and hydropower dominate the discussion in the cuntry, they are not the only options available. Biogas is a lesser known but highly important option to foster sustainable development in agriculture-based economies, such as India.

What is Biogas

Briefly speaking, biogas is the production of gaseous fuel, usually methane, by fermentation of organic material. It is an anaerobic process or one that takes place in the absence of oxygen. Technically, the yeast that causes your bread to rise or the alcohol in beer to ferment is a form of biogas. We don’t use it in the same way that we would use other renewable sources, but the idea is similar. Biogas can be used for cooking, lighting, heating, power generation and much more. Infact, biogas is an excellent and effective to promote development of rural and marginalized communities in all developing countries.

This presents a problem, however. The organic matter is putting off a gas, and to use it, we have to turn it into a liquid. This requires work, machinery and manpower. Research is still being done to figure out the most efficient methods to make it work, but there is a great deal of progress that has been made, and the technology is no longer new.

Fossil Fuel Importation

India has a rapidly expanding economy and the population to fit. This has created problems with electricity supplies to expanding areas. Like most countries, India mainly uses fossil fuels. However, as oil prices fluctuate and the country’s demand for oil grows, the supply doesn’t always keep up with the demand. In the past, India has primarily imported oil from the Middle East, specifically Saudi Arabia and Iraq.

Without a steady and sustainable fossil fuels supply, India has looking more seriously into renewable sources they can produce within the country. Biogas is an excellent candidate to meet those requirements and has been used for this goal before.

Biogas in India

There are significant differences between biogas and fossil fuels, but for India, one of the biggest is that you can create biogas at home. It’s pretty tricky to find, dig up and transform crude oil into gas, but biogas doesn’t have the same barriers. In fact, many farmers who those who have gardens or greenhouses could benefit with proper water management and temperature control so that plants can be grown year round, It still takes some learning and investment, but for many people, especially those who live in rural places, it’s doable.

This would be the most beneficial to people in India because it would help ease the strain of delivering reliable energy sources based on fossil fuels, and would allow the country to become more energy independent. Plus, the rural areas are places where the raw materials for biogas will be more available, such animal manure, crop residues and poultry litter. But this isn’t the first time most people there are hearing about it.

Biogas in India has been around for a long time. In the 1970’s the country began a program called the National Biogas and Manure Management Program (NBMMP) to deal with the same problem — a gas shortage. The country did a great deal of research and implemented a wide variety of ideas to help their people become more self-sufficient, regardless of the availability of traditional gasoline and other fossil fuel based products.

The original program was pioneering for its time, but the Chinese quickly followed suit and have been able to top the market in biogas production in relatively little time. Comparatively, India’s production of biogas is quite small. It only produces about 2.07 billion m3/year of biogas, while it’s estimated that it could produce as much as 48 billion m3/year. This means that there are various issues with the current method’s India is using in its biogas production.

Biogas_Animal

Biogas has the potential to rejuvenate India’s agricultural sector

The original planning in the NBMMP involved scientists who tried to create the most efficient biogas generators. This was good, but it slowed people’s abilities to adopt the techniques individually. China, on the other hand, explicitly worked to help their most rural areas create biogas. This allowed the country to spread the development of biogas to the most people with the lowest barriers to its proliferation.

If India can learn from the strategy that China has employed, they may be able to give their biogas production a significant boost which will also help in the rejuvenation of biomass sector in the country. Doing so will require the help and willingness of both the people and the government. Either way, this is an industry with a lot of room for growth.

Biomass Pelletization Process

Biomass pellets are a popular type of biomass fuel, generally made from wood wastes, agricultural biomass, commercial grasses and forestry residues. In addition to savings in transportation and storage, pelletization of biomass facilitates easy and cost effective handling. Dense cubes pellets have the flowability characteristics similar to those of cereal grains. The regular geometry and small size of biomass pellets allow automatic feeding with very fine calibration. High density of pellets also permits compact storage and rational transport over long distance. Pellets are extremely dense and can be produced with a low moisture content that allows them to be burned with very high combustion efficiency.

biomass-pellets

Biomass pelletization is a standard method for the production of high density, solid energy carriers from biomass. Pellets are manufactured in several types and grades as fuels for electric power plants, homes, and other applications. Pellet-making equipment is available at a variety of sizes and scales, which allows manufacture at domestic as well industrial-scale production. Pellets have a cylindrical shape and are about 6-25 mm in diameter and 3-50 mm in length. There are European standards for biomass pellets and raw material classification (EN 14961-1, EN 14961-2 and EN 14961-6) and international ISO standards under development (ISO/DIS 17225-1, ISO/DIS 17225-2 and ISO/DIS 17225-6).

Process Description

The biomass pelletization process consists of multiple steps including raw material pre-treatment, pelletization and post-treatment. The first step in the pelletization process is the preparation of feedstock which includes selecting a feedstock suitable for this process, its filtration, storage and protection. Raw materials used are sawdust, wood shavings, wood wastes, agricultural residues like straw, switchgrass etc. Filtration is done to remove unwanted materials like stone, metal, etc. The feedstock should be stored in such a manner that it is away from impurities and moisture. In cases where there are different types of feedstock, a blending process is used to achieve consistency.

The moisture content in biomass can be considerably high and are usually up to 50% – 60% which should be reduced to 10 to 15%. Rotary drum dryer is the most common equipment used for this purpose. Superheated steam dryers, flash dryers, spouted bed dryers and belt dryers can also be used. Drying increases the efficiency of biomass and it produces almost no smoke on combustion. It should be noted that the feedstock should not be over dried, as a small amount of moisture helps in binding the biomass particles. The drying process is the most energy intensive process and accounts for about 70% of the total energy used in the pelletization process.

Schematic of Pelletization of Woody Biomass

Before feeding biomass to pellet mills, the biomass should be reduced to small particles of the order of not more than 3mm.  If the pellet size is too large or too small, it affects the quality of pellet and in turn increases the energy consumption. Therefore the particles should have proper size and should be consistent. Size reduction is done by grinding using a hammer mill equipped with a screen of size 3.2 to 6.4 mm. If the feedstock is quite large, it goes through a chipper before grinding.

The next and the most important step is pelletization where biomass is compressed against a heated metal plate (known as die) using a roller. The die consists of holes of fixed diameter through which the biomass passes under high pressure. Due to the high pressure, frictional forces increase, leading to a considerable rise in temperature. High temperature causes the lignin and resins present in biomass to soften which acts as a binding agent between the biomass fibers. This way the biomass particles fuse to form pellets.

The rate of production and electrical energy used in the pelletization of biomass  are strongly correlated to the raw material type and processing conditions such as moisture content and feed size. The The average energy required to pelletize biomass is roughly between 16 kWh/t and 49kWh/t. During pelletization, a large fraction of the process energy is used to make the biomass flow into the inlets of the press channels.

Binders or lubricants may be added in some cases to produce higher quality pellets. Binders increase the pellet density and durability. Wood contains natural resins which act as a binder. Similarly, sawdust contains lignin which holds the pellet together. However, agricultural residues do not contain much resins or lignin, and so a stabilizing agent needs to be added in this case. Distillers dry grains or potato starch is some commonly used binders. The use of natural additives depends on biomass composition and the mass proportion between cellulose, hemicelluloses, lignin and inorganics.

Due to the friction generated in the die, excess heat is developed. Thus, the pellets are very soft and hot (about 70 to 90oC). It needs to be cooled and dried before its storage or packaging. The pellets may then be passed through a vibrating screen to remove fine materials. This ensures that the fuel source is clean and dust free.

The pellets are packed into bags using an overhead hopper and a conveyor belt. Pellets are stored in elevated storage bins or ground level silos. The packaging should be such that the pellets are protected from moisture and pollutants. Commercial pellet mills and other pelletizing equipment are widely available across the globe.

4 Tips For Keeping Your Home Energy Prices Low

Heating can be very expensive nowadays and keeping the heat contained within your home can be a challenge. You will see that energy prices manage to hike year after year and it is important to keep the heat contained in a home where there is particularly cold weather outside to assist with your overall energy costs.

energy-monitor-for-home

Ensure efficient heating system

Modern houses normally have a good heating system and there is a lot of regulation around this to ensure that when people are buying new homes, the efficiency has been taken into consideration from the manufacturers. There are websites like myjobquote.co.uk that you can use in order to arrange local boiler engineers to come out and review your current heating systems to ensure they are effective.  They would also offer services such as a boiler power flush if it is required – again supporting the effectiveness of your appliance.

If your boiler or radiators are not working greatly then a boiler service cost quote may be required in order to make sure they get repaired and are working as well as possible. If any of your heating equipment is faulty and not working correctly then you will overcompensate in terms of the heating you put on in the home which would then significantly increase your costs.

Take action on drafts

If there are any potential drafts and air seeping out of the home, then it will affect the warmth of your home and ultimately your energy bill.  Be sure to take action when you recognise any of these problems.

Some common draft points will be doors and windows and are usually pretty noticeable if there is a problem. Nowadays most homes have double glazed windows and secured doors where this shouldn’t be an issue. If your house has a chimney, then this is another potential area for cold air to get in. If not in use you may wish to consider sealing this off in totality.

Set timers for heating

Putting the heating on and off all the time could also be affecting your bills. Consider getting a timer where you can control the heating at intervals that suit you. Clearly, this wouldn’t be suitable all the time and if you are in the home and there is additional heat required then you can “boost” to allow more heat to come out for longer.

Setting the timers will assist with being disciplined on a routine and you can know pretty accurately what it is that you will be spending every month.

Energy monitors

Energy monitors are becoming really popular nowadays with the users able to then see immediately how much energy they are consuming.  Most energy providers now give this service where you can get one of these appliances installed (generally for free or a very little cost).

The government is also doing a lot more to try and encourage every household to have one of these to help with the energy cost hike challenges.