Energy Potential of Coconut Biomass

coconut-shell-biomassCoconuts are produced in 92 countries worldwide on about more than 10 million hectares. Indonesia, Philippines and India account for almost 75% of world coconut production with Indonesia being the world’s largest coconut producer. A coconut plantation is analogous to energy crop plantations, however coconut plantations are a source of wide variety of products, in addition to energy. The current world production of coconuts has the potential to produce electricity, heat, fiberboards, organic fertilizer, animal feeds, fuel additives for cleaner emissions, eco-friendly cutlery, health drinks, etc.

The coconut fruit yields 40 % coconut husks containing 30 % fiber, with dust making up the rest. The chemical composition of coconut husks consists of cellulose, lignin, pyroligneous acid, gas, charcoal, tar, tannin, and potassium. Coconut dust has high lignin and cellulose content. The materials contained in the casing of coco dusts and coconut fibers are resistant to bacteria and fungi.

Coconut husk and shells are an attractive biomass fuel and are also a good source of charcoal. The major advantage of using coconut biomass as a fuel is that coconut is a permanent crop and available round the year so there is constant whole year supply. Activated carbon manufactured from coconut shell is considered extremely effective for the removal of impurities in wastewater treatment processes.

Coconut Shell

Coconut shell is an agricultural waste and is available in plentiful quantities throughout tropical countries worldwide. In many countries, coconut shell is subjected to open burning which contributes significantly to CO2 and methane emissions.  Coconut shell is widely used for making charcoal. The traditional pit method of production has a charcoal yield of 25–30% of the dry weight of shells used. The charcoal produced by this method is of variable quality, and often contaminated with extraneous matter and soil. The smoke evolved from pit method is not only a nuisance but also a health hazard.

The coconut shell has a high calorific value of 20.8MJ/kg and can be used to produce steam, energy-rich gases, bio-oil, biochar etc. It is to be noted that coconut shell and coconut husk are solid fuels and have the peculiarities and problems inherent in this kind of fuel.  Coconut shell is more suitable for pyrolysis process as it contain lower ash content, high volatile matter content and available at a cheap cost. The higher fixed carbon content leads to the production to a high-quality solid residue which can be used as activated carbon in wastewater treatment. Coconut shell can be easily collected in places where coconut meat is traditionally used in food processing.

Coconut Husk

Coconut husk has high amount of lignin and cellulose, and that is why it has a high calorific value of 18.62MJ/kg. The chemical composition of coconut husks consists of cellulose, lignin, pyroligneous acid, gas, charcoal, tar, tannin, and potassium. The predominant use of coconut husks is in direct combustion in order to make charcoal, otherwise husks are simply thrown away. Coconut husk can be transformed into a value-added fuel source which can replace wood and other traditional fuel sources. In terms of the availability and costs of coconut husks, they have good potential for use in power plants.

Overview of Biomass Energy Systems

Biomass is a versatile energy source that can be used for production of heat, power, transport fuels and biomaterials, apart from making a significant contribution to climate change mitigation. Currently, biomass-driven combined heat and power, co-firing, and combustion plants provide reliable, efficient, and clean power and heat.

Feedstock for biomass energy plants can include residues from agriculture, forestry, wood processing, and food processing industries, municipal solid wastes, industrial wastes and biomass produced from degraded and marginal lands.

The terms biomass energy, bioenergy and biofuels cover any energy products derived from plant or animal or organic material. The increasing interest in biomass energy and biofuels has been the result of the following associated benefits:

  • Potential to reduce GHG emissions.
  • Energy security benefits.
  • Substitution for diminishing global oil supplies.
  • Potential impacts on waste management strategy.
  • Capacity to convert a wide variety of wastes into clean energy.
  • Technological advancement in thermal and biochemical processes for waste-to-energy transformation.

Biomass can play the pivotal role in production of carbon-neutral fuels of high quality as well as providing feedstock for various industries. This is a unique property of biomass compared to other renewable energies and which makes biomass a prime alternative to the use of fossil fuels. Performance of biomass-based systems for heat and power generation has been already proved in many situations on commercial as well as domestic scales.

Biomass energy systems have the potential to address many environmental issues, especially global warming and greenhouse gases emissions, and foster sustainable development among poor communities. Biomass fuel sources are readily available in rural and urban areas of all countries. Biomass-based industries can provide appreciable employment opportunities and promote biomass re-growth through sustainable land management practices.

The negative aspects of traditional biomass utilization in developing countries can be mitigated by promotion of modern waste-to-energy technologies which provide solid, liquid and gaseous fuels as well as electricity as shown. Biomass wastes can be transformed into clean and efficient energy by biochemical as well as thermochemical technologies.

The most common technique for producing both heat and electrical energy from biomass wastes is direct combustion. Thermal efficiencies as high as 80 – 90% can be achieved by advanced gasification technology with greatly reduced atmospheric emissions. Combined heat and power (CHP) systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity.  Biochemical processes, like anaerobic digestion and sanitary landfills, can also produce clean energy in the form of biogas and producer gas which can be converted to power and heat using a gas engine.

In addition, biomass wastes can also yield liquid fuels, such as cellulosic ethanol, which can be used to replace petroleum-based fuels. Cellulosic ethanol can be produced from grasses, wood chips and agricultural residues by biochemical route using heat, pressure, chemicals and enzymes to unlock the sugars in lignocellulosic biomass. Algal biomass is also emerging as a good source of energy because it can serve as natural source of oil, which conventional refineries can transform into jet fuel or diesel fuel.

4 Hacks to Make Your Next Home Greener

There is a huge spotlight on the construction industry when it comes to green initiatives – and rightly so. After all, this is one of the biggest contributors to all of the sustainable problems that the world faces. However, this increased focus does prompt some problems. It can make some people believe that going green in the home is out of the question – and is only going to be achieved through some really costly implementations.

Granted, there are some major infrastructure projects you can invest in if you are building a home, with solar power and ground source heat pumps tending to grab the headlines. At the same time, there are smaller wins – and these shouldn’t be underestimated, such as solid wood flooring. In fact, if everyone was to invest in these, we’d suggest that the typical carbon footprint across cities such as San Diego would drop substantially.

Taking this into account, let’s now take a look at some of the quick, green wins you can succeed with as you bid to make your next home more sustainable.

It starts with the placement of your windows

As we work with our architect in the initial design phase of our project, many of us are more concerned about the size of our bedrooms and so on.

A common afterthought is the placement of windows. Sure, some people might think about this as they consider natural light implications – but it’s time to think bigger.

Let’s not forget that as well as allowing rooms to heat naturally, windows are something that lets warm air escape. It means that their position is crucial, and treating them as an afterthought is asking for a completely inefficient dwelling.

Never forget insulation

In some ways, we were almost tempted not to include this next point. After all, insulation is an old classic when it comes to energy efficiency. It is something that has been suggested for years, mainly because it is incredibly cheap to implement whilst also being very effective.

Of course, it’s always easier to install insulation during the early phases of a project. Try and remember to focus on the roof and walls; this is where most of your heat is lost and is where you can make the biggest difference.

It’s not just about energy; think water as well

A lot of today’s guide has looked at energy, and rightly so. We are also going to dip into a point about water consumption, though.

This is something that often gets forgotten about, but the benefits are substantial. A lot of older, traditional bathroom fittings are anything but efficient – they deliver water at a ridiculous rate, and ultimately waste it.

If you turn to modern-day solutions, you’ll find that you can save gallons every year. Suffice to say, this isn’t just going to benefit your environment, but your pocket as well.

Your roof is crucial

Finally, if there was just one area of your next home to concentrate on, your roof should be up there as a priority. Nowadays, there are all sorts of materials that can help your plight. For example, for those of you who reside in hot countries, you can turn to roofs with reflective paint to deal with the heat somewhat. Green roofs are another solution which are surging in popularity but in truth, the list could go on.

Recommended Green Resources:

Inside the World of Electricity

Electricity, we use it every day but what is it? The dictionary defines it as a form of energy resulting from the existence of charged particles (such as electrons or protons), either statically as an accumulation of charge or dynamically as a current. This may sound confusing, but by breaking it down we can understand how it works. Electricity is used for many everyday things but breakthroughs of how to use it have resulted in many cool inventions, some of which you can explore on thehomesecuritysuperstore.

A Closer Look at Atoms

So, what is electricity? To understand how it works we have to break it down, starting with the charged particles. Everything is made of atoms, and these atoms are mostly empty space. Moving around in the empty space are electrons and protons. These each carry an electric charge, electrons being negative and protons being positive. These opposite charges attract each other. The atom is in balance when there are an equal number of protons and electrons. The number of protons determines what kind of element the atom is, and these numbers and elements are shown on the periodic table.

Imagine the atom as having rings around the nucleus, the center of the atom. These rings can hold a certain number of electrons which move constantly around the nucleus which holds the protons. When the rings hold electrons that are attracted to the protons the strength of this attraction can push an electron out of its orbit and even make them shift from one atom to another. This is where electricity occurs.

Traveling in Circuits

Now that we know the basics of what electricity is, we can look at how it works. For a basic understanding of how electricity travels through circuits and how we use electricity we will look at batteries and light bulbs. Batteries can produce electricity through a chemical substance called an electrolyte.

The battery is attached to two metals, one on either end, and produces a negative charge in one metal and a positive charge in the other metal. When the battery is then connected on either end by a conductor such as a wire the electrical charge is balanced. If you were to attach a light bulb to the wire in between the sides of the battery, the electrical current would then travel through the light bulb to get to the other side of the battery and thus powering the light.

Electricity moves through electrical circuits and must have a complete path for the electrons to move through. The switch or power button on electronic devices opens and closes this path. When you turn on the light switch the circuit is closed and electrons can move freely to turn on your lights. When you turn off the switch it opens the circuit not allowing the electrons through and turning off your lights. When light bulbs burn out the small wire connecting the circuit inside the light bulb breaks and stops the flow of electrons.

Final Thoughts

Energy flows through our entire world and understanding how it works is just the beginning. Of course, most of the electricity in your life is not connected to a single battery as in the example above, but the understanding on a basic level is very interesting.

Electricity literally powers everything in our lives and a world without it would be very different. Understanding how these things work lets us enrich our knowledge of the world around us and provides us with practical information we can use in our everyday life. Electricity is all around us and is used in more interesting ways than just light bulbs and batteries.

Zena Fly- Feeding the World on Insect

Meeting an ever increasing demand for food/feed/energy and managing waste have become two of the major global challenges. The global world population is estimated to increase from 7.3 billion in 2015 to 9.7 billion in 2050. Approximately one third of the global food produced for human composition is wasted. Currently, approximately 1.3 billion metric tons of waste are disposed with significant environmental impact as far as greenhouse gases and economic footprints and the current waste management practices are not costly sustainable.

Increase in Global Energy Demand

Global energy demand is estimated to increase from 524 Quadrillion btu in 2010, to 820 Quadrillion btu by 2040 (a 56% increase). Similarly, global demand of food and animal products are projected to increase by 70-100% and 50-70%, respectively, by 2050. To cope up with the demand for animal products, a substantial increase in nutritious animal feed is needed.

On one hand, the production of conventional feedstuff such as soybean meal and fish meal is reported as the major contributor to land occupation, ocean depletion, climate change, water and energy consumption. Moreover, such conventional animal feedstuff are not only limited in supply but also are becoming more expensive over the years. Additionally, there is an already strong and increasing competition for resources such as food, feed and biofuel production.

Need for alternative non-conventional source of food, feed, and fuel

Thus there is a pressing need for identifying and exploring the potential of alternative non-conventional source of food, feed, and fuel, which are economically viable, environmentally friendly, and socially acceptable.

By 2030 the Bio-based Economy is expected to have grown significantly. A pillar of this is biorefining, the sustainable processing of biomass into a spectrum of marketable products and energy. To satisfy this demand biorefineries need to be better integrated, flexible and operating more substantially. This means that a major yield, more efficient use of nutrients and water and greater pest and disease resistance should be achieve.

Zena Fly: A Startup Worth Watching

In this context an Italian-based start-up, Zena Fly, designed an innovative process for the future integrated bio-refinery by mimicking nature’s ability. In fact, Zena Fly utilizes the natural insect life cycle to manage large quantity of organic waste produced in urban and industrial context, in order to generate sustainable and valuable by-products. The project of three young entrepreneurs foresees a combined bio-refinery where waste is turned into high-quality by-products by the anaerobic insect digestion.

The Concept

The basic concept is to convert waste into high-valuable products utilizing the black soldier flies (H. illucens), a now globally distributed insect. With a modern technique, the typical insect life cycle of these insects can be utilized in order to manage urban and industrial waste. The voracious larvae can reduce by more than 40-70% (based on the nature of the substrate-waste) the substrate where reared (waste) within 12-14 days.

From the anaerobic waste digestion, large quantity of fine protein meal for feed composition (more than 50-60% in protein), fat, fertilizing oil and other by-products of great interest such as chitin, and high-quality biofuel are then extracted.

Since the adult fly do not feed, and do not fly around for feeding, these animals are exceptionally valuable from a sanitary perspective (larvae has been demonstrate to reduce/eliminate E.coli and Salmonella).

Business Model

Zena Fly business model foresees to replicate their integrated biorefineries next to any waste management companies or industrial production areas where large quantity of waste need to be reduced and transformed. This is a win/win operation, where the waste management cost would be cut in half and the process will generate appealing opportunities for investments in a market where the increasing demand is already way higher than the products availability.

Zena Fly is now seeking for the right partner-investor in order to scale up quickly. For more information, please visit www.zena-fly.com or email us on info@zena-fly.com

Biogas Prospects in Rural Areas: Perspectives

Biogas, sometimes called renewable natural gas, could be part of the solution for providing people in rural areas with reliable, clean and cheap energy. In fact, it could provide various benefits beyond clean fuel as well, including improved sanitation, health and environmental sustainability.

What Is Biogas?

Biogas is the high calorific value gas produced by anaerobic decomposition of organic wastes. Biogas can come from a variety of sources including organic fraction of MSW, animal wastes, poultry litter, crop residues, food waste, sewage and organic industrial effluents. Biogas can be used to produce electricity, for heating, for lighting and to power vehicles.

Using manure for energy might seem unappealing, but you don’t burn the organic matter directly. Instead, you burn the methane gas it produces, which is odorless and clean burning.

Biogas Prospects in Rural Areas

Biogas finds wide application in all parts of the world, but it could be especially useful to developing countries, especially in rural areas. People that live in these places likely already use a form of biomass energy — burning wood. Using wood fires for heat, light and cooking releases large amounts of greenhouse gases into the atmosphere.

The smoke they release also has harmful health impacts, particularly when used indoors. You also need a lot to burn a lot of wood when it’s your primary energy source. Collecting this wood is a time-consuming and sometimes difficult as well as dangerous task.

Many of these same communities that rely on wood fires, however, also have an abundant supply of another fuel source. They just need the tools to capture and use it. Many of these have a lot of dung from livestock and lack sanitation equipment. This lack of sanitation creates health hazards.

Turning that waste into biogas could solve both the energy problem and the sanitation problem. Creating a biogas system for a rural home is much simpler than building other types of systems. It requires an airtight pit lined and covered with concrete and a way to feed waste from animals and latrines into the pit. Because the pit is sealed, the waste will decompose quickly, releasing methane.

This methane flows through a PCV pipe to the home where you can turn it on and light on when you need to use it. This system also produces manure that is free of pathogens, which farmers can use as fertilizer.

A similar but larger setup can provide similar benefits for urban areas in developing countries and elsewhere.

Benefits of Biogas

Anaerobic digestion systems are beneficial to developing countries because they are low-cost compared to other technologies, low-tech, low-maintenance and safe. They provide reliable fuel as well as improved public health and sanitation. Also, they save people the labor of collecting large amounts of firewood, freeing them up to do other activities. Thus, biomass-based energy systems can help in rural development.

Biogas also has environmental benefits. It reduces the need to burn wood fires, which helps to slow deforestation and eliminates the emissions those fires would have produced. On average, a single home biogas system can replace approximately 4.5 tons of firewood annually and eliminate the associated four tons of annual greenhouse gas emissions, according to the World Wildlife Fund.

Biogas is also a clean, renewable energy source and reduces the need for fossil fuels. Chemically, biogas is the same as natural gas. Biogas, however, is a renewable fuel source, while natural gas is a fossil fuel. The methane in organic wastes would release into the atmosphere through natural processes if left alone, while the greenhouse gases in natural gas would stay trapped underground. Using biogas as a fuel source reduces the amount of methane released by matter decomposing out in the open.

What Can We Do?

Although biogas systems cost less than some other technologies, affording them is often still a challenge for low-income families in developing countries, especially in villages. Many of these families need financial and technical assistance to build them. Both governments and non-governmental organizations can step in to help in this area.

Once people do have biogas systems in place though, with minimal maintenance of the system, they can live healthier, more comfortable lives, while also reducing their impacts on the environment.

Finding the Most Appropriate Renewable Energy

Energy is very important nowadays. Contemporary people can hardly imagine their existence without it. Humans always tried to produce cheaper and safer energy. Nature provides us with the energy we can renew daily. It provides people with the benefit which nobody can argue. It almost has no negative impact on the surrounding and is considered to be rather safe.

The cost of alternative energy systems has dropped sharply in recent years

When the scientists revealed that greenhouse gas effect led to the change of world’s climate they began to look for all possible ways to prevent the catastrophe. Fossil fuel does not give the chance to renew it after the use while sustainable energy can. In addition, fossil fuel is running out. That forces people to search some new ways to restore it. The depletion of sources motivated scientists to develop new methods of energy production.

A country or even some particular geographical area should select a suitable type of renewable energy source. It usually depends on sources the region possesses. For example, countries which are situated on the equator can benefit from solar energy while those regions which lack sunny weather should better provide themselves with hydro energy or biomass energy.

There are regions which are trying to find the most appropriate renewable energy type. For instance, Massachusetts varies the use of different renewable energy sources. The state government proves that their region is able to provide the citizens with more wind’s energy than with any other ecologically safe power supply. The use of wind energy is beneficial for the state not only because it is ecologically safe but also because it has an economic advantage. They produce both offshore and onshore winds’ energy.

Yearly industry report manifests that the first one is even cheaper and ranges up to sixteen cents one kilowatt per hour. Such energy is clean and beneficial. In 2009 the government of Massachusetts issued the project of developing offshore ocean energy for a number of its regions. This plan proves the indisputable convenience of wind power use for this concrete state of America.

Despite the fact that wind power is rather sustainable, the US industry report relies greatly on solar energy use. This conclusion is based on three main reasons. The first and most influential is the fact that not all American regions can provide wind energy because of geographical peculiarities. By the way, some scientists and consumers find it rather complicated due to huge transmission lines it requires. That is why solar energy is more effective.

All regions receive the sun energy almost equally and they can depend on it mostly. The next factor that influences the choice of solar energy is its permanency and regularity. Wind turbines are more inconstant than the solar ones. Solar panels are able to generate energy even if there is no sun. Clouds cannot stop the penetration of sun rays completely. Due to that, scientists in Massachusetts also found solar energy to be rather beneficial and constant. The last factor that contributes to the number of advantages of solar panels use is their productivity. They are capable to produce more energy than the turbines which are enabled by winds.

The experiment of solar and wind energy testing lasted during thirteen days in Massachusetts. It took place at the beginning of January. Solar panels managed to produce thirty-five kilowatt-hours of pure electricity. At the same time, the winds turbines had hardly provided the territory with fourteen kilowatt-hours of clean energy. The outcome of the experiment supported the idea of solar panels efficiency compared to the wind turbines productivity on Massachusetts territory.

The investigation reasoned the use of solar and winds’ energy. Even if some type of renewable energy is less effective still it provides humans with ecologically safe power. It is unsound to refuse at least from one of them. All renewable energy gives the chance to save the planet from ecological disaster and improve human lifestyle and health condition.

About the Author

Lauren Bradshaw started academic writing in 2003. Since then she tried her hand in SEO and website copywriting, writing for blogs, and working as a professional writer at CustomWritings professional essay writing service. Her major interests lie in content marketing, developing communication skills, and blogging. She’s also passionate about environment, philosophy, psychology, literature and painting.

Trends in Utilization of Palm Kernel Shells

The palm kernel shells used to be initially dumped in the open thereby impacting the environment negatively without any economic benefit. However, over time, palm oil mills in Southeast Asia and elsewhere realized their brilliant properties as a fuel and that they can easily replace coal as an industrial fuel for generating heat and steam.

palm-kernel-shell-uses

Palm kernel shells is an abundant biomass resource in Southeast Asia

Major Applications

Nowadays, the primary use of palm kernel shells is as a boiler fuel supplementing the fibre which is used as primary fuel. In recent years kernel shells are extensively sold as alternative fuel around the world. Besides selling shells in bulk, there are companies that produce fuel briquettes from shells which may include partial carbonisation of the material to improve the combustion characteristics.

Palm kernel shells have a high dry matter content (>80% dry matter). Therefore the shells are generally considered a good fuel for the boilers as it generates low ash amounts and the low K and Cl content will lead to less ash agglomeration. These properties are also ideal for production of biomass for export.

As a raw material for fuel briquettes, palm shells are reported to have the same calorific characteristics as coconut shells. The relatively smaller size makes it easier to carbonise for mass production, and its resulting palm shell charcoal can be pressed into a heat efficient biomass briquette.

Although the literature on using oil palm shells (and fibres) is not as extensive as EFB, common research directions of using shells, besides energy, are to use it as raw material for light-weight concrete, fillers, activated carbon, and other materials. However, none of the applications are currently done on a large-scale. Since shells are dry and suitable for thermal conversion, technologies that further improve the combustion characteristics and increase the energy density, such as torrefaction, could be relevant for oil palm shells.

Torrefaction is a pretreatment process which serves to improve the properties of biomass in relation to the thermochemical conversion technologies for more efficient energy generation. High lignin content for shells affects torrefaction characteristics positively (as the material is not easily degraded compared to EFB and fibres).

Furthermore, palm oil shells are studied as feedstock for fast pyrolysis. To what extent shells are a source of fermentable sugars is still not known, however the high lignin content in palm kernel shells indicates that shells are less suitable as raw material for fermentation.

Future Outlook

The leading palm oil producers in the world should consider limiting the export of palm-kernel shells (PKS) to ensure supplies of the biomass material for renewable energy projects, in order to decrease dependency on fossil fuels. For example, many developers in Indonesia have expressed an interest in building palm kernel shell-fired power plants.

However, they have their concerns over supplies, as many producers prefer to sell their shells overseas currently. Many existing plants are facing problems on account of inconsistent fuel quality and increasing competition from overseas PKS buyers. PKS market is well-established in provinces like Sumatra and export volumes to Europe and North Asia as a primary fuel for biomass power plants is steadily increasing.

The creation of a biomass supply chain in palm oil producing countries may be instrumental in discouraging palm mills to sell their PKS stocks to brokers for export to foreign countries. Establishment of a biomass exchange in leading countries, like Indonesia, Malaysia and Nigeria, will also be a deciding factor in tapping the unharnessed potential of palm kernel shells as biomass resource.

Progress of Waste-to-Energy in the USA

Rising rates of consumption necessitate an improved approach to resource management. Around the world, from Europe to Asia, governments have adapted their practices and policies to reflect renewability. They’ve invested in facilities that repurpose waste as source of energy, affording them a reliable and cheap source of energy.

This seems like progress, given the impracticality of older methods. Traditional sources of energy like fossil fuels are no longer a realistic option moving forward, not only for their finite nature but also within the context of the planet’s continued health. That said, the waste-to-energy sector is subject to scrutiny.

We’ll detail the reasons for this scrutiny, the waste-to-energy sector’s current status within the United States and speculations for the future. Through a concise analysis of obstacles and opportunities, we’ll provide a holistic perspective of the waste-to-energy progress, with a summation of its positive and negative attributes.

Status of Waste-to-Energy Sector

The U.S. currently employs 86 municipal waste-to-energy facilities across 25 states for the purpose of energy recovery. While several have expanded to manage additional waste, the last new facility opened in 1995. To understand this apparent lack of progress in the area of thermochemical treatment of MSW, budget represents a serious barrier.

One of the primary reasons behind the shortage of waste-to-energy facilities in the USA is their cost. The cost of construction on a new plant often exceeds $100 million, and larger plants require double or triple that figure to build. In addition to that, the economic benefits of the investment aren’t immediately noticeable.

The Palm Beach County Renewable Energy Facility is a RDF-based waste-to-energy (WTE) facility.

The U.S. also has a surplus of available land. Where smaller countries like Japan have limited space to work within, the U.S. can choose to pursue more financially viable options such as landfills. The expenses associated with a landfill are far less significant than those associated with a waste-to-energy facility.

Presently, the U.S. processes 14 percent of its trash in waste-to-energy (WTE) plants, which is still a substantial amount of refuse given today’s rate of consumption. On a larger scale, North America ranks third in the world in the waste-to-energy movement, behind the European nations and the Asia Pacific region.

Future of WTE Sector

Certain factors influence the framework of an energy policy. Government officials have to consider the projected increase in energy demand, concentrations of CO2 in the atmosphere, space-constrained or preferred land use, fuel availability and potential disruptions to the supply chain.

A waste-to-energy facility accounts for several of these factors, such as space constraints and fuel availability, but pollution remains an issue. Many argue that the incineration of trash isn’t an effective means of reducing waste or protecting the environment, and they have evidence to support this.

The waste-to-energy sector extends beyond MSW facilities, however. It also encompasses biofuel, which has seen an increase in popularity. The aviation industry has shown a growing dedication to biofuel, with United Airlines investing $30 million in the largest producer of aviation biofuel.

If the interest of United Airlines and other companies is any indication, the waste-to-energy sector will continue to expand. Though negative press and the high cost of waste-to-energy facilities may impede its progress, advances in technology promise to improve efficiency and reduce expenses.

Positives and Negatives

The waste-to-energy sector provides many benefits, allowing communities a method of repurposing their waste. It has negative aspects that are also important to note, like the potential for pollution. While the sector offers solutions, some of them come at a cost.

It’s true that resource management is essential, and adapting practices to meet high standards of renewability is critical to the planet’s health. However, it’s also necessary to recognize risk, and the waste-to-energy sector is not without its flaws. How those flaws will affect the sector moving forward is critical to consider.

How the Biofuel Industry is Growing in the US

Biofuels were once forgotten in the United States, mainly when huge petroleum deposits kept fuel prices low.  With the increase in oil prices recently, the biofuel industry in the US is rising significantly.  Experts predict that this green energy efficient industry will continue to grow within the next 7 to 10 years.

drop-in-biofuels

The Source of Biofuels

Those who are concerned with the prospect of global warming love the potential use of biofuels. Produced either directly or indirectly from animal waste and plant materials, biofuels are less costly than other types of fuel.  Already in the national and global market, the trend for this fuel is rising.

Online Reverse Auction Software

Due to the growth of the biofuel industry, online software for energy brokers and energy suppliers is an available market for entrepreneurs.  The software to efficiently sell energy services to purchasers is a must have for suppliers and brokers.  The reverse auction process effectively conducts online business for those in the biofuel industry.

Both regulated and deregulated gas and electricity markets are involved in the reverse auction process in which the buyer and seller roles are reversed.  The buyer is given the option of testing and evaluating multiple pricing parameters to find a good fit.  Commercial, industrial, and manufacturing facilities take advantage of this platform.

Reverse Auction Benefits

Reverse auctions in the biofuel industry have been said to cut costs tremendously.  Although the seller pays a fee to the service provider, the bidding process cuts costs all around for both buyer and seller.  A situation in which both sides win is seen as a huge benefit by all involved.

As a very lucrative market, the biofuel industry benefits from reverse auctions.  Market efficiency is increased, and the process of obtaining the goods and services is enhanced.  Proper software and other technical aspects of the process is essential thus the reason that the online reverse auction software market is critical.  Quality and professional relationships are enhanced rather than compromised as is often the case in other markets.

Biofuel Market Projections and Uses

According to market research, the biofuel industry is expected to reach approximately 218 billion dollars by 2022.  A 4.5% growth is expected by 2022 as well.  Investors see these projections as an open door of opportunity.  By the year 2025, the increase is predicted to be at approximately 240 billion dollars.

Biofuel is used for other purposes besides first-generation fuel.  It is used in vegetable oil and cosmetics, and it is used to treat Vitamin A deficiency and other health issues. Biofuel is predicted to aid the improvement of economic conditions due to its health benefits and appeal to green energy supporters.  These factors explain the reasons for the projected growth and profit for this industry.

With the continued growth of the biofuel industry, reverse auctions will be a much-needed process.  The efficient software to accompany reverse auctions will keep the market flowing which will further aid the growth of the industry for years to come.