How Eco-friendly Batteries Can Benefit From Biomass Energy?

Organisations and more importantly, battery manufacturers are recognising the need to overcome the problem of global warming. The objective is to develop ways of producing carbon-neutral sources of energy. One of the areas currently being explored is the use of biomass resources to create sustainable, eco-friendly batteries which are suitable for use across a wide range of business sectors. With different forms of biomass energy available, the challenge is finding products that provide high performance along with being commercially viable.

Biomass-Resources

A quick glance at popular biomass resources

What is Biomass Energy?

Biomass is something that we are all familiar with. It is derived from plants and animals and is now becoming an increasingly viable form of renewable energy. Initially, the energy comes from the sun, and in plants, it is converted via photosynthesis.

Regardless of its origin, the biomass will either be converted into biogas, biofuels or burnt directly to create heat. Of course, different sources of biomass produce varying amounts of energy, affecting their efficiency. As a result, high precision battery testing equipment is required to ascertain their viability.

Forms of Biomass Used for Energy

1. Wood and Products

Renewable sources of timber and the by-products of wood such as wood chip are burned in the home to create heat and in industry, burned to generate electricity. Typically, softwood such as pine is used as it is quicker to replenish than hardwood such as oak.

2. Agricultural Crops and Waste

With large amounts of waste produced from the farming sector, it is natural that this is an ideal source of energy. The materials are either converted to liquid biofuels or burned directly to generate heat or electricity.

3. Food and Household Waste

The amount of waste households produced has been increasing annually, and up until recently, the majority was disposed of it landfill sites. Nowadays, this garbage is thermochemically processed in waste-to-energy plants to produce electricity or converted into biogas at existing landfill sites.

4. Animal Manure and Human Waste

We frequently hear about the link between animal waste and global warming. Inevitably, the same is also true of human waste. Both can be converted into biogas and burned as a fuel.

How is Biomass Converted to Energy?

Biomass can be converted to energy using different methods depending on the source. Solid forms of biomass such as garbage and wood are generally burned to created heat while other types will be initially converted into either biogas or biofuels such as ethanol or other biodiesel-related fuels used to power vehicles or generators.

Human sewage and animal manure are placed in vessels known as digesters to create biogas. Liquid fuels such as biodiesel are derived from oils and animal fats. Any form of biomass must be burned at some point to generate energy.

Biomass and Batteries

The most common form of battery used in domestic appliances and mobile devices is lithium-ion batteries. However, the performance and capacity are still below what is demanded by manufacturers and consumers. As a result, manufacturers are investigating alternatives such as biomass. Naturally, high precision testing equipment such as that produced by Arbin is required to assess their potential and commercial viability accurately.

The potential of elemental sulphur has been explored although due to its poor electrical conductivity, has failed to make it onto the mass market. A composite of sulphur and porous carbon appears to be a far more viable option although this is a complicated and time-consuming process.

Carbon is one of the best conductors available, albeit at a relatively high cost. Therefore, the objective is to source carbon from biowaste, such as popular catkin that can be combined with sulphur. Popular catkin is a highly porous carbon and ideal for Li/S batteries.

High Precision Battery Testing

High precision battery testing is required to establish the commercial viability of popular catkin and other biowaste products. Marginal improvement could have a significant impact and give cell manufacturers a competitive advantage over their rivals.

Naturally, extensive research needs to be conducted to assess a variety of bioproducts that are presenting themselves as potentially viable alternative products. Increasing battery capacity and battery life is something that is required in several sectors such as with EVs, mobile devices and home appliances. Major manufacturers will be eagerly awaiting the findings of testing that is currently ongoing.

Plastic Wastes and Role of EPR

In just a few decades plastics have become omnipresent in our society. But, unfortunately, the consequences of their use last far beyond their useful lifetime. Everyone is aware of their overwhelming dispersion in our landscapes. The situation in the oceans is not better [1]. As a reaction, a few thoughts spring to my mind.

First of all, it is clear that the industry is assuming very little responsibility, and that Public Administrations are complicit with this. Extended Producer Pesponsibility (abbreviated as EPR) only affects –and only partially– those plastics used as light packaging, in vehicles, in tyres or as part of electric and electronic equipment, not any of the others. Also, recycling levels are not sufficiently high, as a result of poor separate collection systems and inefficient treatment facilities. As a consequence, society has to face not only the problems created by those materials which are not recycled, but also has to assume a high share of the costs of managing them as waste.

Secondly, it illustrates the importance of the quality of the materials that we aim to recycle, and thus the importance of separate waste collection; for all materials, but particularly for biowaste. Although most composting and anaerobic digestion facilities have the capacity to separate some of the impurities (of which around 40% can be plastics), this separation is far from perfect.

Two recent studies confirm that the quality of compost is influenced by the presence of impurities in biowaste [2] and that, in turn, the presence of impurities is influenced by several factors [3], among which particularly the type of separate collection scheme, door to door separate collection models being those presenting better results.

Thirdly, it makes clear the urgency to adopt measures that address the root of the problem. High quality separate collection and sound waste treatment are necessary, and allow enormous room for improvement, but they are end-of-pipe solutions. It is also important to promote greener consumption patterns through environmental awareness campaigns, but this is not enough either.

We have to address the problem where it is created. And this requires measures of higher impact, such as taxes on certain products (e.g. disposable ones) or on certain materials, compulsory consideration of eco-design criteria, generalisation of the extended producer responsibility or prohibition of certain plastics (e.g. oxo-degradable ones) or of certain uses (e.g. microplastic beads in cosmetics).

glitter-plastic-pollution

One can think that these measures are a bit too hard, but honestly, after wandering around beaches and mountains, and finding plastics absolutely everywhere, I am bit disappointed with the outcome of soft solutions.

On 16th January 2018 the European Strategy for Plastics in a Circular Economy was adopted [4]. A number of measures will need to be applied by the European Union (listed in Annex I of the Strategy), by Member States and by the industry (Annex II), but also by Regional Governments and Local Authorities. No doubt that implementing the Strategy will bring about significant advances, but only time will say if it is sufficient to address the huge challenge we face.

The European Union has also recently adopted the much-awaited Directive 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment [5], which introduces several bans and restrictions on different uses and materials. This is indeed a huge step, which needs to be followed by others, both in Europe, but also elsewhere, as this is truly a global challenge.

Note: An earlier version of this article was published in February 2018: https://mailchi.mp/db1fd794d528/sent-11-april-2018

References

[1] See for example: https://tinyurl.com/yxra3cod

[2] Campos Rodrigues, L., Puig Ventosa, I., López, M., Martínez, X. (2016) Anàlisi de la incidència dels impropis de la FORM sobre la qualitat del compost de les plantes de compostatge de Catalunya https://tinyurl.com/y37ncton

[3] Puig-Ventosa, I., Freire-González, J., Jofra-Sora, M. (2013) Determining factors for the presence of impurities in selectively collected biowaste, Waste Management and Research, 31: 510-517.

[4] The strategy and several accompanying documents can be found in this portal: http://ec.europa.eu/environment/waste/plastic_waste.htm

[5] Directive 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment.