Top 5 Tips For Reducing Waste in Your Home

Reducing waste in your home is more important now than ever. As the environment is becoming more in danger because of greenhouse gases, climate change, and pollution, the need for humans to reduce their carbon footprint is imperative. However, even if people want to make an effort to save the environment, many people don’t know where to start and how to go about changing their everyday lives in order to become more eco-friendly.

Starting in your home is a great way to begin working towards an eco-friendly lifestyle. A custom home builder in Cherry Hill New Jersey, said, “Making your home environmentally savvy can mean installing something as large as solar panels or it can mean something much smaller; like using reusable shopping bags at the grocery store and not buying plastic products. Either way, making your home eco-friendly is important.”

Reducing waste in your home is easy and will have an outstanding impact on the environment. Here are some quick and easy tips to keep in mind that will help you reduce waste in your home:

1. Start Composting

Starting a compost pile creates less trash by recycling leftover food that would otherwise go in the trash. The point of a compost pile is to put the leftover, and even expired, food back into the earth rather than letting it sit in the garbage or in landfills.

compost_strategies

A compost pile is easy to start, all you need is a bin and some extra space. After you’re done eating something (as long as it isn’t meat, a milk product, or greasy processed food), you can put it in this bin and then incorporate it into your garden or yard every few weeks. Your food won’t go to waste and your garden/yard will get the nutrients it needs.

2. DIY Beauty and Household Products

Buying less plastic products is another great way to reduce waste in your home. However, most beauty and household products are packaged in plastic containers which makes reducing plastic in this way a major obstacle.

A possible solution to this issue is making your own beauty and household products like floor cleaner, and toothpaste. Making your own natural deodorant is also a great way to reduce waste generation.

Though buying the ingredients to make these products may create a small amount of waste, the ingredients are easier to buy in bulk so you will have to buy them less frequently and will be able to create ample amounts of beauty and household products.

office-cleaning

Creating homemade products is also a great way to ensure you aren’t getting chemicals in your products that are damaging to the environment and will create waste or harmful toxins.

3. Meal Plan

Food waste is a huge issue in households. Often, between ¼ to ½  of a household’s weekly produce, meats, and milk products are thrown out at the end of the week. This is preventable with the incorporation of meal planning and meal prepping in your life. By starting a meal plan, you will only buy what you need and will be less likely to waste products because they expired.

food-waste-management

This will generate less waste in terms of food that will end up sitting in a landfill but also in terms of plastic packaging waste that food is packaged in.

4. Repair Instead of Replace

This is an easy way to create little waste in your home that many people don’t think about. When something in your home breaks, whether it is a small kitchen appliance or something large like a heater or part of a couch, take the time to repair it instead of getting a new one. If you repair an item, the original one won’t make its way to a landfill and you will get more life out of your products.

If an appliance or piece of furniture is unable to be repaired, make an effort to recycle some of the important parts; or, if you are in the market to buy a replacement, look online for used products or go to a secondhand store. This will create less waste and will also save you money.

5. Cancel and/or Recycle Junk Mail

Easy and free, by canceling and recycling junk mail will immediately reduce waste in your home. Most people don’t even look at the junk mail and toss it right in the garbage can. Canceling subscriptions only requires a phone call or email and will significantly cut back the waste that is generated in your home.

If you receive junk mail that is not sent to you via subscription and you are unable to cancel it, make sure to at least recycle it.

Eliminating junk mail will also help with decluttering your coffee tables and countertops, an added benefit to helping the environment.

Bottom Line

There is always room for improvement when trying to improve your lifestyle in terms of creating less waste. These tips are a great way to start making an impact on saving the environment before it’s too late. Reduce the waste in your life with minimal effort and small, simple changes.

What You Need to Know About Food Waste Management

Food waste is an untapped energy source that mostly ends up rotting in landfills, thereby releasing greenhouse gases into the atmosphere. Food waste is difficult to treat or recycle since it contains high levels of sodium salt and moisture, and is mixed with other waste during collection. Major generators of food wastes include hotels, restaurants, supermarkets, residential blocks, cafeterias, airline caterers, food processing industries, etc.

In United States, food waste is the third largest waste stream after paper and yard waste. Around 13 percent of the total municipal solid waste generated in the country is contributed by food scraps. According to USEPA, more than 35 million tons of food waste are thrown away into landfills or incinerators each year, which is around 40 percent of all food consumed in the country.

As far as United Kingdom is concerned, households throw away around 4.5 million tons of food each year. These statistics are an indication of tremendous amount of food waste generated all over the world.

food_waste

Food Waste Management Strategy

The proportion of food waste in municipal waste stream is gradually increasing and hence a proper food waste management strategy needs to be devised to ensure its eco-friendly and sustainable disposal. The two most common methods for food waste recycling are:

  • Composting: A treatment that breaks down biodegradable waste by naturally occurring micro-organisms with oxygen, in an enclosed vessel or tunnel;
  • Anaerobic digestion (AD): A treatment that breaks down biodegradable waste in the absence of oxygen, producing a renewable energy (biogas) that can be used to generate electricity and heat.

Currently, only about 3 percent of food waste is recycled throughout USA, mainly through composting. Composting provides an alternative to landfill disposal of food waste, however it requires large areas of land, produces volatile organic compounds and consumes energy. Consequently, there is an urgent need to explore better recycling alternatives.

Anaerobic digestion has been successfully used in several European and Asian countries to stabilize food wastes, and to provide beneficial end-products. Sweden, Austria, Denmark, Germany and England have led the way in developing new advanced biogas technologies and setting up new projects for conversion of food waste into energy.

biogas-enrichment

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be used as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, abattoir wastes, etc.

Food waste is one of the single largest constituent of municipal solid waste stream. Diversion of food waste from landfills can provide significant contribution towards climate change mitigation, apart from generating revenues and creating employment opportunities. Rising energy prices and increasing environmental pollution makes it more important to harness renewable energy from food wastes.

Anaerobic digestion technology is widely available worldwide and successful projects are already in place in several European as well as Asian countries which makes it imperative on waste generators and environmental agencies in USA to strive for a sustainable food waste management system.

Composting in Qatar: An Overview

Composting in Qatar is mainly done at the Domestic Solid Waste Management Centre (DSWMC) in Mesaieed, which houses the largest composting facility in the country and one of the largest in the world.  The waste that enters the plant initially goes through anaerobic digestion, which produces biogas that can power the facility’s gas engine and generators, followed by aerobic treatment which yields the final product.

Two types of compost are generated: Grade A (compost that comes from green waste, such as yard/park trimmings, leftovers from kitchen or catering services, and wastes from markets) and Grade B (compost produced from MSW).  The plant started its operation in 2011 and when run at full capacity is able to process 750 tons of waste and produce 52 tons of Grade A compost, 377 tons of Grade B compost, liquid fertilizer which is composed of 51 tons of Grade A compost and 204 tons of Grade B compost, and 129 tons of biogas.

benefits-composting

This is a significant and commendable development in Qatar’s implementation of its solid waste management plan, which is to reduce, reuse, recycle and recover from waste, and to avoid disposing in landfills as much as possible.  However, the large influx of workers to Qatar in the coming years as the country prepares to host the World Cup in 2022 is expected to substantially increase solid waste generation and apart from its investments in facilities like the composting plant and in DSWMC in general, the government may have to tap into the efforts of organizations and communities to implement its waste management strategy.

Future Outlook

Thankfully, several organizations recognize the importance of composting in waste management and are raising awareness on its benefits.  Qatar Green Building Council (QGBC) has been actively promoting composting through its Solid Waste Interest Group.  Last year, they were one of the implementers of the Baytna project, the first Passivhaus experiment in the country.

This project entails the construction of an energy-efficient villa and a comparative study will be performed as to how the carbon footprint of this structure would compare to a conventional villa.  The occupants of the Passivhaus villa will also be made to implement a sustainable waste management system which includes composting of food waste and garden waste, which is meant to lower greenhouse gas emissions compared to landfilling.

Qatar Foundation is also currently developing an integrated waste management system for the entire Education City and the Food Services group is pushing for composting to be included as a method to treat food and other organic waste.  And many may not know this but composting can be and has been done by individuals in their own backyard and can even be done indoors with the right equipment.

Katrin Scholz-Barth, previous president of SustainableQatar, a volunteer-based organization that fosters sustainable culture through awareness, skills and knowledge, is an advocate of composting and has some great resources on how to start and maintain your own composting bin as she has been doing it herself.

A simple internet search will also reveal that producing compost at home is a relatively simple process that can be achieved with minimal tools.  At present, very few families in Qatar are producing their own compost and Scholz-Barth believes there is much room for improvement.

As part of its solid waste management plan as stated in the National Development Strategy for 2011-2016, Qatar aims to maintain domestic waste generation at 1.6 kg per capita per day.  This will probably involve encouraging greater recycling and reuse efforts and the reduction of waste from its source.

It would also be worthwhile to include programs that will promote and boost composting efforts among institutions, organizations and individuals, encouraging them with the fact that apart from its capability of significant waste diversion from landfills, composting can also be an attractive source of income.

Note: The article is being republished with the permission of our collaborative partner EcoMENA. The original article can be viewed at this link.

Composting with Worms

Vermicomposting is a type of composting in which certain species of earthworms are used to enhance the process of organic waste conversion and produce a better end-product. It is a mesophilic process utilizing microorganisms and earthworms. Earthworms feeds the organic waste materials and passes it through their digestive system and gives out in a granular form (cocoons) which is known as vermicompost.

Worm

Simply speaking, vermicompost is earthworm excrement, called castings, which can improve biological, chemical, and physical properties of the soil. The chemical secretions in the earthworm’s digestive tract help break down soil and organic matter, so the castings contain more nutrients that are immediately available to plants.

Production of Vermicompost

A wide range of agricultural residues, such as straw, husk, leaves, stalks, weeds etc can be converted into vermicompost. Other potential feedstock for vermicompost production are livestock wastes, poultry litter, dairy wastes, food processing wastes, organic fraction of MSW, bagasse, digestate from biogas plants etc.

Earthworms consume organic wastes and reduce the volume by 40–60 percent. Each earthworm weighs about 0.5 to 0.6 gram, eats waste equivalent to its body weight and produces cast equivalent to about 50 percent of the waste it consumes in a day. The moisture content of castings ranges between 32 and 66 percent and the pH is around 7. The level of nutrients in compost depends upon the source of the raw material and the species of earthworm.

Types of Earthworms

There are nearly 3600 types of earthworms which are divided into burrowing and non-burrowing types. Red earthworm species, like Eisenia foetida, and are most efficient in compost making. The non-burrowing earthworms eat 10 percent soil and 90 percent organic waste materials; these convert the organic waste into vermicompost faster than the burrowing earthworms.

They can tolerate temperatures ranging from 0 to 40°C but the regeneration capacity is more at 25 to 30°C and 40–45 percent moisture level in the pile. The burrowing types of earthworms come onto the soil surface only at night. These make holes in the soil up to a depth of 3.5 m and produce 5.6 kg casts by ingesting 90 percent soil and 10 percent organic waste.

Types of Vermicomposting

The types of vermicomposting depend upon the amount of production and composting structures. Small-scale vermicomposting is done to meet personal requirements and farmers/gardeners can harvest 5-10 tons of vermicompost annually.

On the other hand, large-scale vermicomposting is done at commercial scale by recycling large quantities of organic waste in modern facilities with the production of more than hundreds of tons annually.

Benefits of Vermicompost

The worm castings contain higher percentage of both macro and micronutrients than the garden compost. Apart from other nutrients, a fine worm cast is rich in NPK which are in readily available form and are released within a month of application. Vermicompost enhances plant growth, suppresses disease in plants, increases porosity and microbial activity in soil, and improves water retention and aeration.

Vermicompost also benefits the environment by reducing the need for chemical fertilizers and decreasing the amount of waste going to landfills. Vermicompost production is trending up worldwide and it is finding increasing use especially in Western countries, Asia-Pacific and Southeast Asia.

Vermicompost Tea

A relatively new product from vermicomposting is vermicompost tea which is a liquid fertilizer produced by extracting organic matter, microorganisms, and nutrients from vermicompost. Unlike vermicompost and compost, this tea may be applied directly to plant foliage, reportedly to enhance disease suppression. Vermicompost tea also may be applied to the soil as a supplement between compost applications to increase biological activity.

Potential Market

Vermicompost may be sold in bulk or bagged with a variety of compost and soil blends. Markets include home improvement centers, nurseries, landscape contractors, greenhouses, garden supply stores, grocery chains, flower shops, discount houses, indoor gardens, and the general public.

Waste Management Outlook for India

Waste management crisis in India should be approached holistically; while planning for long term solutions, focus on addressing the immediate problems should be maintained. National and local governments should work with their partners to promote source separation, achieve higher percentages of recycling and produce high quality compost from organics. While this is being achieved and recycling is increased, provisions should be made to handle the non-recyclable wastes that are being generated and will continue to be generated in the future.

Recycling, composting and waste-to-energy are all integral parts of the waste disposal solution and they are complementary to each other; none of them can solve India’s waste crisis alone. Any technology should be considered as a means to address public priorities, but not as an end goal in itself. Finally, discussion on waste management should consider what technology can be used, to what extent in solving the bigger problem and within what timeframe.

Experts believe India will have more than nine waste-to-energy projects in different cities across India in the next three years, which will help alleviate the situation to a great extent. However, since waste-to-energy projects are designed to replace landfills, they also tend to displace informal settlements on the landfills. Here, governments should welcome discussions with local communities and harbor the informal recycling community by integrating it into the overall waste management system to make sure they do not lose their rights for the rest of the city’s residents.

This is important from a utilitarian perspective too, because in case of emergency situations like those in Bengaluru, Kerala, and elsewhere, the informal recycling community might be the only existing tool to mitigate damage due to improper waste management as opposed to infrastructure projects which take more than one year for completion and public awareness programs which take decades to show significant results.

Involvement of informal recycling community is vital for the success of any SWM program in India

Indian policy makers and municipal officials should utilize this opportunity, created by improper waste management examples across India, to make adjustments to the existing MSW Rules 2000, and design a concrete national policy based on public needs and backed by science. If this chance passes without a strong national framework to improve waste management, the conditions in today’s New Delhi, Bengaluru, Thiruvananthapuram, Kolkata, Mumbai, Chennai, Coimbatore and Srinagar will arise in many more cities as various forcing factors converge. This is what will lead to a solid waste management crisis affecting large populations of urban Indians.

The Indian Judiciary proved to be the most effective platform for the public to influence government action. The majority of local and national government activity towards improving municipal solid waste management is the result of direct public action, funneled through High Courts in each state, and the Supreme Court. In a recent case (Nov 2012), a slew of PILs led the High Court of Karnataka to threaten to supersede its state capital Bengaluru’s elected municipal council, and its dissolution, if it hinders efforts to improve waste management in the city.

In another case in the state of Haryana, two senior officials in its urban development board faced prosecution in its High Court for dumping waste illegally near suburbs. India’s strong and independent judiciary is expected to play an increasing role in waste management in the future, but it cannot bring about the required change without the aid of a comprehensive national policy.

Waste Management in Global North and Global South

Waste management is highly context specific. Therefore it is important to distinguish between the conditions in the Global North and the Global South. Recent ILO figures suggest that 24 million people around the world are involved in the informal waste recycling sector, 80% of whom are waste pickers. Some estimates say that 1% of urban population in developing countries makes their primary household income through informal sector waste management activities.  In Latin America alone, 4-5 million waste pickers earn their livelihood by being a part of the global recyclables supply chain.

waste-management-latin-america

Municipal budgets in the Global South are often limited and only a small percentage of that budget is assigned to waste management as compared to other municipal services. In the Global North waste management is recognized as a necessary public good and there is a greater willingness to pay for this service. Solid waste management (e.g. waste collection, transportation and recycling) is generally more labour intensive than in North America and Europe.

Urbanization in the Global South is often haphazard and unplanned; creating pockets of high and low income neighbourhoods. This creates logistical issues for the waste management service provision limiting options for viable waste collection and transportation. It is often the informal sector that steps in to fill this service gap.

The maturity and strength of the legal framework differs between the Global South and Global North. In North America and Europe the legal framework of waste management actively promotes and provides incentives for waste reduction, reuse and recovery whereas, despite recent developments in some countries, in Latin America legal frameworks remain focused upon mixed waste collection, transportation and disposal.

Recycling rates in Argentina are at 11% of the total waste stream with 95% of this material is recovered by the informal sector. This situation is replicated in many other countries. The informal sector recovers between 50% (e.g. Mexico) and 90% (e.g. Nicaragua) of the waste recovered and in the different countries of the region. Resource recovery and recycling is driven by market conditions. Materials that have a value are diverted from landfill through an informal network of recyclers and waste collectors.

The composition of waste is also very different in the Global South where organic waste is a much larger percentage of the waste stream. Because of the high percentage of organics in the waste stream in many cities in the Global South, innovations in decentralised composting and small scale biogas have been seen across the Global South (particularly in India) and can be used effectively by the informal sector, making a zero waste future a real possibility.

Role of Informal Recycling Sector

The informal sector can be highly effective at collecting and diverting garbage from landfill. When empowered with a facilitating legal framework, and collectively organized, the informal sector can be a key part of a sustainable resource recovery system. Using people power to increase recycling and diversion rates decreases the need for expensive, fixed, high technology solutions.

Understanding that the context for waste management is different between the Global North and Global South, and even in different areas within a city or region, means that no two situations will be the same. However, if there is one principle to follow it may well be to consider the context and look for the simplest solution. The greenest cities of the future may well be those that use flexible, adaptable solutions and maximize the work that the informal sector is already doing.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Plastic Wastes and Role of EPR

In just a few decades plastics have become omnipresent in our society. But, unfortunately, the consequences of their use last far beyond their useful lifetime. Everyone is aware of their overwhelming dispersion in our landscapes. The situation in the oceans is not better [1]. As a reaction, a few thoughts spring to my mind.

First of all, it is clear that the industry is assuming very little responsibility, and that Public Administrations are complicit with this. Extended Producer Pesponsibility (abbreviated as EPR) only affects –and only partially– those plastics used as light packaging, in vehicles, in tyres or as part of electric and electronic equipment, not any of the others. Also, recycling levels are not sufficiently high, as a result of poor separate collection systems and inefficient treatment facilities. As a consequence, society has to face not only the problems created by those materials which are not recycled, but also has to assume a high share of the costs of managing them as waste.

Secondly, it illustrates the importance of the quality of the materials that we aim to recycle, and thus the importance of separate waste collection; for all materials, but particularly for biowaste. Although most composting and anaerobic digestion facilities have the capacity to separate some of the impurities (of which around 40% can be plastics), this separation is far from perfect.

Two recent studies confirm that the quality of compost is influenced by the presence of impurities in biowaste [2] and that, in turn, the presence of impurities is influenced by several factors [3], among which particularly the type of separate collection scheme, door to door separate collection models being those presenting better results.

Thirdly, it makes clear the urgency to adopt measures that address the root of the problem. High quality separate collection and sound waste treatment are necessary, and allow enormous room for improvement, but they are end-of-pipe solutions. It is also important to promote greener consumption patterns through environmental awareness campaigns, but this is not enough either.

We have to address the problem where it is created. And this requires measures of higher impact, such as taxes on certain products (e.g. disposable ones) or on certain materials, compulsory consideration of eco-design criteria, generalisation of the extended producer responsibility or prohibition of certain plastics (e.g. oxo-degradable ones) or of certain uses (e.g. microplastic beads in cosmetics).

glitter-plastic-pollution

One can think that these measures are a bit too hard, but honestly, after wandering around beaches and mountains, and finding plastics absolutely everywhere, I am bit disappointed with the outcome of soft solutions.

On 16th January 2018 the European Strategy for Plastics in a Circular Economy was adopted [4]. A number of measures will need to be applied by the European Union (listed in Annex I of the Strategy), by Member States and by the industry (Annex II), but also by Regional Governments and Local Authorities. No doubt that implementing the Strategy will bring about significant advances, but only time will say if it is sufficient to address the huge challenge we face.

The European Union has also recently adopted the much-awaited Directive 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment [5], which introduces several bans and restrictions on different uses and materials. This is indeed a huge step, which needs to be followed by others, both in Europe, but also elsewhere, as this is truly a global challenge.

Note: An earlier version of this article was published in February 2018: https://mailchi.mp/db1fd794d528/sent-11-april-2018

References

[1] See for example: https://tinyurl.com/yxra3cod

[2] Campos Rodrigues, L., Puig Ventosa, I., López, M., Martínez, X. (2016) Anàlisi de la incidència dels impropis de la FORM sobre la qualitat del compost de les plantes de compostatge de Catalunya https://tinyurl.com/y37ncton

[3] Puig-Ventosa, I., Freire-González, J., Jofra-Sora, M. (2013) Determining factors for the presence of impurities in selectively collected biowaste, Waste Management and Research, 31: 510-517.

[4] The strategy and several accompanying documents can be found in this portal: http://ec.europa.eu/environment/waste/plastic_waste.htm

[5] Directive 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment.

Save Money with Sustainable Gardening

If you’re looking for ways to create a sustainable and energy-efficient home, make sure to consider your gardening practices. Gardening is a great way to produce your own fruits and vegetables. If you’re gardening, you’re already helping to reduce plastic waste because your food is coming right from your backyard rather than from the store.

You can become even more green by practicing sustainable gardening! Sustainable gardening uses principles and practices that help to protect the environment without doing further harm. It embraces organic gardening methods, conserves resources, and substitutes harmful practices (such as using pesticides) with more eco-friendly practices. And not only is it good for the environment, but it can also help save you money!

Here are 5 ways you can begin using sustainable practices in your own garden.

Reduce energy use

When planting and maintaining your garden, look for ways that you can be more energy efficient and create less pollution. For example, instead of using gas or electric-powered tools, look for tools that you can use by hand. Using a cheap cordless battery powered drill instead of an electric powered drill. Dig with shovels, clip with pruners, weed by hand.

Another way to reduce energy is to consider how you’re protecting your garden. Some people like to put an electric fence around their garden to keep out deer and other animals. Electric fences use painful electric shocks to deter animals from entering; depending on the setting of the fence, these shocks can be harmful to wildlife, pets, and humans. Instead of an electric fence, use a metal fence. A metal critter fence saves energy, is more cost-efficient, and does not harm animals.

Conserve water

Water is a precious, limited resource. Instead of watering your garden from a hose, create a collection system out of rain barrels. A rain barrel system collects runoff from your gutters when it rains. You can then empty the water from the container as needed to water your garden and other areas of your lawn. Sometimes we water the plants too much than needed. It also helps a lot in saving water that we know how much or when to water our plants. There are freely given learning materials about this all over the internet. One place in particular, the Occupy The Farm website, gives simple yet detailed guides regarding this.

You should also keep in mind that runoff from your garden makes its way back into the water supply. Herbicides or pesticides contain harmful chemicals that can contaminate our water. Using natural herbicides or pesticides, such as vinegar, can still help kill weeds and prevent pests without harming the environment.

Make your garden a habitat

Sustainable gardening can help you create a backyard wildlife habitat. Even if you’re hoping to keep larger animals out of your veggies, there is a way to open up your garden to smaller critters. There are certain plants you can grow that will help provide food and shelter to animals such as bees, butterflies, and birds. Habitats will vary by area.

Grow native plants

Growing plants that are native to your area means that the plants will naturally thrive in their environment. They’ll do well in the existing light, moisture, and soil conditions so you won’t have to put as much effort into taking care of them. Another reason to grow native plants is that they won’t disrupt the ecosystem. Non-native plants can seed and spread to surrounding areas and prevent native species from growing.

You can save seeds from your plants from season to season. For example, if tomatoes are native to your area and did well in your garden, save the seeds from one of your tomatoes to plant again next year. Some people also like to scout out woods and fields near their home for native plants that they can seed in their own garden.

Start composting

Composting is good for you and for the environment! When you compost waste, there is less material going into the landfill. That waste then creates an organic material that you can use in your garden. Compost helps maintain soil quality and fertility, serves as a natural fertilizer,  increases water retention, and improves plant growth.

benefits-composting

It is easy to start composting. There are a few different types of composters you can buy or create. Enclosed bins are the most practical method for most home gardeners. The type of materials you can compost will vary slightly depending on your composting strategy. In addition to various types of food waste, you can also add yard waste such as leaves or grass clippings.

Conclusion

Sustainable gardening practices don’t just help you save money, they help you protect the environment. Look over your current gardening practices to see if there are ways that you can reduce the amount of energy you’re using, if there are ways for you to produce less waste, and if there are ways you can help your local ecosystem.

Date Palm as Biomass Resource

Date palm is one of the principal agricultural products in the arid and semi-arid region of the world, especially Middle East and North Africa (MENA) region. There are more than 120 million date palm trees worldwide yielding several million tons of dates per year, apart from secondary products including palm midribs, leaves, stems, fronds and coir. The Arab world has more than 84 million date palm trees with the majority in Egypt, Iraq, Saudi Arabia, Iran, Algeria, Morocco, Tunisia and United Arab Emirates.

date-wastes

Date palm biomass is found in large quantities across the Middle East

Egypt is the world’s largest date producer with annual production of 1.47 million tons of dates in 2012 which accounted for almost one-fifth of global production. Saudi Arabia has more than 23 millions date palm trees, which produce about 1 million tons of dates per year.

Biomass Potential of Date Palm

Date palm trees produce huge amount of agricultural wastes in the form of dry leaves, stems, pits, seeds etc. A typical date tree can generate as much as 20 kilograms of dry leaves per annum while date pits account for almost 10 percent of date fruits. Some studies have reported that Saudi Arabia alone generates more than 200,000 tons of date palm biomass each year.

Date palm is considered a renewable natural resource because it can be replaced in a relatively short period of time. It takes 4 to 8 years for date palms to bear fruit after planting, and 7 to 10 years to produce viable yields for commercial harvest. Usually date palm wastes are burned in farms or disposed in landfills which cause environmental pollution in dates-producing nations. In countries like Iraq and Egypt, a small portion of palm biomass in used in making animal feed.

The major constituents of date palm biomass are cellulose, hemicelluloses and lignin. In addition, date palm has high volatile solids content and low moisture content. These factors make date biomass an excellent waste-to-energy resource in the MENA region.

Technology Options for Date Palm Biomass Utilization

A wide range of thermal and biochemical technologies exists to tap the energy stored in date palm biomass to useful forms of energy. The low moisture content in date palm wastes makes it well-suited to thermochemical conversion technologies like combustion, gasification and pyrolysis which may yield steam, syngas, bio oil etc.

On the other hand, the high volatile solids content in date palm biomass indicates its potential towards biogas production in anaerobic digestion plants, possibly by codigestion with sewage sludge, animal wastes and/and food wastes. The cellulosic content in date palm wastes can be transformed into biofuel (bioethanol) by making use of the fermentation process.

The highly organic nature of date palm waste makes it highly suitable for compost production which can be used to replace chemical fertilizers in date palm plantations. Thus, abundance of date palm trees in the MENA and the Mediterranean region, can catalyze the development of biomass and biofuels sector in the region.

Concept of Zero Waste and Role of MRFs

Communities across the world are grappling with waste disposal issues. A consensus is emerging worldwide that the ultimate way to deal with waste is to eliminate it. The concept of Zero Waste encourages redesign of resource life cycles so that all products are reused, thereby systematically avoiding and eliminating the volume and toxicity of waste and materials.

zero-waste-MRF

The philosophy of Zero Waste strives to ensure that products are designed to be repaired, refurbished, re-manufactured and generally reused. Among key zero waste facilities are material recovery facilities, composting plants, reuse facilities, wastewater/biosolids plants etc.

Material recovery facilities (MRFs) are an essential part of a zero waste management program as it receives separates and prepares recyclable materials for marketing to end-user manufacturers. The main function of the MRF is to maximize the quantity of recyclables processed, while producing materials that will generate the highest possible revenues in the market. MRFs can also process wastes into a feedstock for biological conversion through composting and anaerobic digestion.

A materials recovery facility accepts materials, whether source separated or mixed, and separates, processes and stores them for later use as raw materials for remanufacturing and reprocessing. MRFs serve as an intermediate processing step between the collection of recyclable materials from waste generators and the sale of recyclable materials to markets for use in making new products.

There are basically four components of a typical MRF: sorting, processing, storage, and load-out. Any facility design plan should accommodate all these activities which promote efficient and effective operation of a recycling program. MRFs may be publicly owned and operated, publicly owned and privately operated, or privately owned and operated.

There are two types of MRFs – dirty and clean. A dirty MRF receives mixed waste material that requires labor intense sorting activities to separate recyclables from the mixed waste. A clean MRF accepts recyclable materials that have already been separated from the components in municipal solid waste (MSW) that are not recyclable. A clean MRF reduces the potential for material contamination.

A typical Zero Waste MRF (ZWMRF) may include three-stream waste collection infrastructure, resource recovery center, reuse/recycling, residual waste management facility and education centers.

The primary objective of all MRFs is to produce clean and pure recyclable materials so as to ensure that the commodities produced are marketable and fetch the maximum price. Since waste streams vary in composition and volume from one place to another, a MRF should be designed specifically to meet the short and long term waste management goals of that location. The real challenge for any MRF is to devise a recycling strategy whereby no residual waste stream is left behind.

The basic equipment used in MRFs are conveyors & material handling equipment to move material through the system, screening equipment to sort material by size, magnetic separation to remove ferrous metals, eddy current separation to remove non-ferrous metals, air classifiers to sort materials by density, optical sorting equipment to separate plastics or glass by material composition, and baling equipment to prepare recovered material for market. Other specialized equipment such as bag breakers, shredders and sink-float tanks can also be specified as required by application.