Plastic Wastes and Role of EPR

In just a few decades plastics have become omnipresent in our society. But, unfortunately, the consequences of their use last far beyond their useful lifetime. Everyone is aware of their overwhelming dispersion in our landscapes. The situation in the oceans is not better [1]. As a reaction, a few thoughts spring to my mind.

First of all, it is clear that the industry is assuming very little responsibility, and that Public Administrations are complicit with this. Extended producer responsibility (abbreviated as EPR) only affects –and only partially– those plastics used as light packaging, in vehicles, in tyres or as part of electric and electronic equipment, not any of the others. Also, recycling levels are not sufficiently high, as a result of poor separate collection systems and inefficient treatment facilities. As a consequence, society has to face not only the problems created by those materials which are not recycled, but also has to assume a high share of the costs of managing them as waste.

Secondly, it illustrates the importance of the quality of the materials that we aim to recycle, and thus the importance of separate waste collection; for all materials, but particularly for biowaste. Although most composting and anaerobic digestion facilities have the capacity to separate some of the impurities (of which around 40% can be plastics), this separation is far from perfect. Two recent studies confirm that the quality of compost is influenced by the presence of impurities in biowaste [2] and that, in turn, the presence of impurities is influenced by several factors [3], among which particularly the type of separate collection scheme, door to door separate collection models being those presenting better results.

Thirdly, it makes clear the urgency to adopt measures that address the root of the problem. High quality separate collection and sound waste treatment are necessary, and allow enormous room for improvement, but they are end-of-pipe solutions. It is also important to promote greener consumption patterns through environmental awareness campaigns, but this is not enough either. We have to address the problem where it is created. And this requires measures of higher impact, such as taxes on certain products (e.g. disposable ones) or on certain materials, compulsory consideration of eco-design criteria, generalisation of the extended producer responsibility or prohibition of certain plastics (e.g. oxo-degradable ones) or of certain uses (e.g. microplastic beads in cosmetics). One can think that these measures are a bit too hard, but honestly, after wandering around beaches and mountains, and finding plastics absolutely everywhere, I am bit disappointed with the outcome of soft solutions.

On 16th January 2018 the European Strategy for Plastics in a Circular Economy was adopted [4]. A number of measures will need to be applied by the European Union (listed in Annex I of the Strategy), by Member States and by the industry (Annex II), but also by Regional Governments and Local Authorities. No doubt that implementing the Strategy will bring about significant advances, but only time will say if it is sufficient to address the huge challenge we face.

The European Union has also recently adopted the much-awaited Directive 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment [5], which introduces several bans and restrictions on different uses and materials. This is indeed a huge step, which needs to be followed by others, both in Europe, but also elsewhere, as this is truly a global challenge.

Note: An earlier version of this article was published in February 2018: https://mailchi.mp/db1fd794d528/sent-11-april-2018

References

[1] See for example: https://tinyurl.com/yxra3cod

[2] Campos Rodrigues, L., Puig Ventosa, I., López, M., Martínez, X. (2016) Anàlisi de la incidència dels impropis de la FORM sobre la qualitat del compost de les plantes de compostatge de Catalunya https://tinyurl.com/y37ncton

[3] Puig-Ventosa, I., Freire-González, J., Jofra-Sora, M. (2013) Determining factors for the presence of impurities in selectively collected biowaste, Waste Management and Research, 31: 510-517.

[4] The strategy and several accompanying documents can be found in this portal: http://ec.europa.eu/environment/waste/plastic_waste.htm

[5] Directive 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment.

Metal Fence Vs Electric Fence: Save Money with Sustainable Gardening

If you’re looking for ways to create a sustainable and energy-efficient home, make sure to consider your gardening practices. Gardening is a great way to produce your own fruits and vegetables. If you’re gardening, you’re already helping to reduce plastic waste because your food is coming right from your backyard rather than from the store.

You can become even more green by practicing sustainable gardening! Sustainable gardening uses principles and practices that help to protect the environment without doing further harm. It embraces organic gardening methods, conserves resources, and substitutes harmful practices (such as using pesticides) with more eco-friendly practices. And not only is it good for the environment, but it can also help save you money!

Here are 5 ways you can begin using sustainable practices in your own garden.

Reduce energy use

When planting and maintaining your garden, look for ways that you can be more energy efficient and create less pollution. For example, instead of using gas or electric-powered tools, look for tools that you can use by hand. Dig with shovels, clip with pruners, weed by hand.

Another way to reduce energy is to consider how you’re protecting your garden. Some people like to put an electric fence around their garden to keep out deer and other animals. Electric fences use painful electric shocks to deter animals from entering; depending on the setting of the fence, these shocks can be harmful to wildlife, pets, and humans. Instead of an electric fence, use a metal fence. A metal critter fence saves energy, is more cost-efficient, and does not harm animals.

Conserve water

Water is a precious, limited resource. Instead of watering your garden from a hose, create a collection system out of rain barrels. A rain barrel system collects runoff from your gutters when it rains. You can then empty the water from the container as needed to water your garden and other areas of your lawn.

You should also keep in mind that runoff from your garden makes its way back into the water supply. Herbicides or pesticides contain harmful chemicals that can contaminate our water. Using natural herbicides or pesticides, such as vinegar, can still help kill weeds and prevent pests without harming the environment.

Make your garden a habitat

Sustainable gardening can help you create a backyard wildlife habitat. Even if you’re hoping to keep larger animals out of your veggies, there is a way to open up your garden to smaller critters. There are certain plants you can grow that will help provide food and shelter to animals such as bees, butterflies, and birds. Habitats will vary by area.

Grow native plants

Growing plants that are native to your area means that the plants will naturally thrive in their environment. They’ll do well in the existing light, moisture, and soil conditions so you won’t have to put as much effort into taking care of them. Another reason to grow native plants is that they won’t disrupt the ecosystem. Nonnative plants can seed and spread to surrounding areas and prevent native species from growing.

You can save seeds from your plants from season to season. For example, if tomatoes are native to your area and did well in your garden, save the seeds from one of your tomatoes to plant again next year. Some people also like to scout out woods and fields near their home for native plants that they can seed in their own garden.

Start composting

Composting is good for you and for the environment! When you compost waste, there is less material going into the landfill. That waste then creates an organic material that you can use in your garden. Compost helps maintain soil quality and fertility, serves as a natural fertilizer,  increases water retention, and improves plant growth.

It is easy to start composting. There are a few different types of composters you can buy or create. Enclosed bins are the most practical method for most home gardeners. The type of materials you can compost will vary slightly depending on your composting strategy. In addition to various types of food waste, you can also add yard waste such as leaves or grass clippings.

Conclusion

Sustainable gardening practices don’t just help you save money, they help you protect the environment. Look over your current gardening practices to see if there are ways that you can reduce the amount of energy you’re using, if there are ways for you to produce less waste, and if there are ways you can help your local ecosystem.

Date Palm as Biomass Resource

date-wastesDate palm is one of the principal agricultural products in the arid and semi-arid region of the world, especially Middle East and North Africa (MENA) region. There are more than 120 million date palm trees worldwide yielding several million tons of dates per year, apart from secondary products including palm midribs, leaves, stems, fronds and coir. The Arab world has more than 84 million date palm trees with the majority in Egypt, Iraq, Saudi Arabia, Iran, Algeria, Morocco, Tunisia and United Arab Emirates.

Egypt is the world’s largest date producer with annual production of 1.47 million tons of dates in 2012 which accounted for almost one-fifth of global production. Saudi Arabia has more than 23 millions date palm trees, which produce about 1 million tons of dates per year. Date palm trees produce huge amount of agricultural wastes in the form of dry leaves, stems, pits, seeds etc. A typical date tree can generate as much as 20 kilograms of dry leaves per annum while date pits account for almost 10 percent of date fruits. Some studies have reported that Saudi Arabia alone generates more than 200,000 tons of date palm biomass each year.

Date palm is considered a renewable natural resource because it can be replaced in a relatively short period of time. It takes 4 to 8 years for date palms to bear fruit after planting, and 7 to 10 years to produce viable yields for commercial harvest. Usually date palm wastes are burned in farms or disposed in landfills which cause environmental pollution in dates-producing nations. In countries like Iraq and Egypt, a small portion of palm biomass in used in making animal feed.

The major constituents of date palm biomass are cellulose, hemicelluloses and lignin. In addition, date palm has high volatile solids content and low moisture content. These factors make date biomass an excellent waste-to-energy resource in the MENA region. A wide range of thermal and biochemical technologies exists to convert the energy stored in date palm biomass to useful forms of energy. The low moisture content in palm wastes makes it well-suited to thermochemical conversion technologies like combustion, gasification and pyrolysis which may yield steam, syngas, bio oil etc. On the other hand, the high volatile solids content in date palm biomass indicates its potential towards biogas production in anaerobic digestion plants, possibly by codigestion with sewage sludge, animal wastes and/and food wastes. The cellulosic content in date palm wastes can be transformed into biofuel (bioethanol) by making use of the fermentation process. The highly organic nature of date palm biomass makes it highly suitable for compost production which can be used to replace chemical fertilizers in date palm plantations. Thus, abundance of date palm trees in the MENA and the Mediterranean region, can catalyze the development of biomass and biofuels sector in the region.

Concept of Zero Waste and Role of MRFs

zero-waste-MRFCommunities across the world are grappling with waste disposal issues. A consensus is emerging worldwide that the ultimate way to deal with waste is to eliminate it. The concept of Zero Waste encourages redesign of resource life cycles so that all products are reused, thereby systematically avoiding and eliminating the volume and toxicity of waste and materials.

The philosophy of Zero Waste strives to ensure that products are designed to be repaired, refurbished, re-manufactured and generally reused. Among key zero waste facilities are material recovery facilities, composting plants, reuse facilities, wastewater/biosolids plants etc.

Material recovery facilities (MRFs) are an essential part of a zero waste management program as it receives separates and prepares recyclable materials for marketing to end-user manufacturers. The main function of the MRF is to maximize the quantity of recyclables processed, while producing materials that will generate the highest possible revenues in the market. MRFs can also process wastes into a feedstock for biological conversion through composting and anaerobic digestion.

A materials recovery facility accepts materials, whether source separated or mixed, and separates, processes and stores them for later use as raw materials for remanufacturing and reprocessing. MRFs serve as an intermediate processing step between the collection of recyclable materials from waste generators and the sale of recyclable materials to markets for use in making new products. There are basically four components of a typical MRF: sorting, processing, storage, and load-out. Any facility design plan should accommodate all these activities which promote efficient and effective operation of a recycling program. MRFs may be publicly owned and operated, publicly owned and privately operated, or privately owned and operated.

There are two types of MRFs – dirty and clean. A dirty MRF receives mixed waste material that requires labor intense sorting activities to separate recyclables from the mixed waste. A clean MRF accepts recyclable materials that have already been separated from the components in municipal solid waste (MSW) that are not recyclable. A clean MRF reduces the potential for material contamination.

A typical Zero Waste MRF (ZWMRF) may include three-stream waste collection infrastructure, resource recovery center, reuse/recycling ecological part, residual waste management facility and education centers.

The primary objective of all MRFs is to produce clean and pure recyclable materials so as to ensure that the commodities produced are marketable and fetch the maximum price. Since waste streams vary in composition and volume from one place to another, a MRF should be designed specifically to meet the short and long term waste management goals of that location. The real challenge for any MRF is to devise a recycling strategy whereby no residual waste stream is left behind.

The basic equipment used in MRFs are conveyors & material handling equipment to move material through the system, screening equipment to sort material by size, magnetic separation to remove ferrous metals, eddy current separation to remove non-ferrous metals, air classifiers to sort materials by density, optical sorting equipment to separate plastics or glass by material composition, and baling equipment to prepare recovered material for market. Other specialized equipment such as bag breakers, shredders and sink-float tanks can also be specified as required by application.

An Introduction to Composting

The composting process is a complex interaction between organic waste and microorganisms. The microorganisms that carry out this process fall into three groups: bacteria, fungi, and actinomycetesActinomycetes are a form of fungi-like bacteria that break down organic matter. The first stage of the biological activity is the consumption of easily available sugars by bacteria, which causes a fast rise in temperature. The second stage involves bacteria and actinomycetes that cause cellulose breakdown. The last stage is concerned with the breakdown of the tougher lignins by fungi.

Central solutions are exemplified by low-cost composting without forced aeration, and technologically more advanced systems with forced aeration and temperature feedback. Central composting plants are capable of handling more than 100,000 tons of biodegradable waste per year, but typically the plant size is about 10,000 to 30,000 tons per year. Biodegradable wastes must be separated prior to composting: Only pure foodwaste, garden waste, wood chips, and to some extent paper are suitable for producing good-quality compost.

Composting Equipment

The composting plants consist of some or all of the following technical units: bag openers, magnetic and/or ballistic separators, screeners (sieves), shredders, mixing and homogenization equipment, turning equipment, irrigation systems, aeration systems, draining systems, bio-filters, scrubbers, control systems, and steering systems. The composting process occurs when biodegradable waste is piled together with a structure allowing for oxygen diffusion and with a dry matter content suiting microbial growth.

Biodegradable wastes must be separated prior to composting: Only pure food waste, garden waste, wood chips, and to some extent paper are suitable for producing good-quality compost.The temperature of the biomass increases due to the microbial activity and the insulation properties of the piled material. The temperature often reaches 65 to 75 degrees C within few days and then declines slowly. This high temperature hastens the elimination of pathogens and weed seeds.

Composting Methodologies

The methodology of composting can be categorized into three major segments—anaerobic composting, aerobic composting, and vermicomposting. In anaerobic composting, the organic matter is decomposed in the absence of air. Organic matter may be collected in pits and covered with a thick layer of soil and left undisturbed six to eight months. The compost so formed may not be completely converted and may include aggregated masses.

Aerobic composting is the process by which organic wastes are converted into compost or manure in presence of air and can be of different types. The most common is the Heap Method, where organic matter needs to be divided into three different types and to be placed in a heap one over the other, covered by a thin layer of soil or dry leaves. This heap needs to be mixed every week, and it takes about three weeks for conversion to take place. The process is same in the Pit Method, but carried out specially constructed pits. Mixing has to be done every 15 days, and there is no fixed time in which the compost may be ready.

Berkley Method uses a labor-intensive technique and has precise requirements of the material to be composted. Easily biodegradable materials, such as grass, vegetable matter, etc., are mixed with animal matter in the ratio of 2:1. Compost is usually ready in 15 days.

Vermicomposting involves use of earthworms as natural and versatile bioreactors for the process of conversion. It is carried out in specially designed pits where earthworm culture also needs to be done. Vermicomposting is a precision-based option and requires overseeing of work by an expert. It is also a more expensive option (O&M costs especially are high).

Solid Waste Management in South Asia: Key Lessons

swm-south-asiaSolid waste management is already a significant concern for municipal governments across South Asia. It constitutes one of their largest costs and the problem is growing year on year as urban populations swell. As with all waste management experiences, we have learned lessons and can see scope for improvement.

Collection and Transportation

There are two factors which have a significant impact on the costs and viability of a waste management system as it relates to collection and transportation: first, the distance travelled between collection and disposal point; and second, the extent to which ‘wet’ kitchen waste can be kept separate from dry waste much of which can be recycled. Separating waste in this way reduces the costs of manual sorting later on, and increases the prices for recyclable materials.

In many larger towns distances become too great for door-to-door collectors to dispose waste directly at the dump site. Arrangements are made to dispose of waste at secondary storage points (large skips) provided by the municipality. However, where these are not regularly emptied, the waste is likely to be spread beyond the bins, creating a further environmental hazard.

Ideally, and if suitable land can be found, a number of smaller waste disposal sites located around a town would eliminate this problem. With significant public awareness efforts on our part, and continual daily reminders to home-owners, we were able to raise the rate of household separation to about 60%, but once these reminders became less frequent, the rate dropped rapidly back to around 25%. The problem is compounded in larger cities by the unavailability of separated secondary storage bins, so everything is mixed up again at this point anyway, despite the best efforts of householders.

If rates are to be sustained, it requires continual and on-going promotion in the long term. The cost of this has to be weighed against the financial benefit of cleaner separated waste and reduced sorting costs. Our experience in Sri Lanka shows how important a role the Local Authority can play in continuing to promote good solid waste management practices at the household level.

Home Composting

Our experience with home composting shows that complete coverage, with every household using the system, is very unlikely to be achieved. Where we have promoted it heavily and in co-operation with the Local Authority we have found the sustained use of about 65% of the bins. Even this level of coverage, however, can have an important impact on waste volumes needing to be collected and disposed of. At the same time it can provide important, organic inputs to home gardening, providing a more varied and nutritious diet for poor householders.

Waste to Compost and Energy

The variety of technologies we have demonstrated have different advantages and disadvantages. For some, maintenance is more complicated and there can be issues of clogging. For the dry-fermentation chambers, there is a need for a regular supply of fresh waste that has not already decomposed. For other systems requiring water, quite large amounts may be needed. All of these technical challenges can be overcome with good operation and maintenance practices, but need to be factored in when choosing the appropriate technology for a given location.

The major challenge for compost production has been to secure regular sales. The market for compost is seasonal, and this creates an irregular cash flow that needs to be factored in to the business model. In Bangladesh, a significant barrier has been the need for the product to be officially licensed. The requirements for product quality are exacting in order to ensure farmers are buying a product they can trust. However, the need for on-site testing facilities may be too prescriptive, creating a barrier for smaller-scale operations of this sort. Possibly a second tier of license could be created for compost from waste which would allow sales more easily but with lower levels of guarantees for farmers.

Safe Food Production and Consumption

Community people highly welcomed the concept of safe food using organic waste generated compost. In Sri Lanka, women been practicing vertical gardening which meeting the daily consumption needs became source of extra income for the family. Female organic fertilizer entrepreneurs in Bangladesh are growing seasonal vegetables and fruits with compost and harvesting more quality products. They sell these products with higher price in local and regional markets as this is still a niche market in the country. The safe food producers require financial and regulatory support from the government and relevant agencies on certification and quality control to raise and sustain market demand.

The concept of safe food using organic waste generated compost is picking up in South Asia

The concept of safe food using organic waste generated compost is picking up in South Asia

Conclusion

Solid waste management is an area that has not received the attention it deserves from policy-makers in South Asia nations. There are signs this may change, with its inclusion in the SDGs and in many INDCs which are the basis of the Paris Climate Agreement. If we are to meet the challenge, we will need new approaches to partnerships, and the adoption of different kinds of systems and technologies. This will require greater awareness and capacity building at the Local Authority level. If national climate or SDG targets are to be met, they will need to be localised through municipalities. Greater knowledge sharing at national and regional levels through municipal associations, regional bodies such as SAARC and regional local authority associations such as Citynet, will be an important part of this.

Practical Action’s key messages for regional and national policy makers, based on our experience in the region in the last 5 years, are about the need for:

  • creating new partnerships for waste collection with NGOs and the informal sector,
  • considering more decentralised approaches to processing and treatment, and
  • recognising the exciting potential for viable technologies for generating more value from waste

Model for Change: Practical Action’s Experience in SWM in South Asia

Waste management systems can be divided into a number of steps from collection, storage, transportation, processing, treatment, recycling and final disposal. Integrated solid waste management refers to this entire process and aims to maximise resource use efficiency, with minimal amounts ending up in final disposal sites. During Practical Action’s recent work in the South Asia region, we have gained particular experiences in terms of firstly waste collection, storage and transportation; and secondly waste processing in particular of organic waste.

Waste-Management-Bangladesh

Collection and Transportation

In many cities, waste collection services fail to reach all areas of the town or city. People are left to manage their own waste, which they do by burning and burying it, or dumping on open spaces. Sometimes large bins or skips are provided but they may be irregularly emptied, and also overflow when the contents is picked over by waste pickers and animals.

In Bangladesh, in order to help increase the overall capacity for collecting household waste, Practical Action has promoted a door-to-door collection service run by local NGOs. Residents pay a service charge in addition to their municipal rates, but in return they receive a regular service, leading to a cleaner neighbourhood.

In Faridpur, the local NGO, WORD, with technical backstopping from Practical Action serves more than 5,000 customers with waste collection. There are three main types of customer, non-slum households, slum households and institutions. Slum-based households are charged the lowest tariffs (minimum BDT 10) while the institutional rate is highest (minimum BDT 150).

The numbers of slum households is small because the alternative option of localized composting (with a barrel system) was widely taken up. This is easier than collection through vans and is useful for slum people as they can use the compost later. Waste collectors use small rickshaw vans for the collection service. Recently we have also introduced small small rickshaw vans and small motorized versions for the collection service.

The waste is taken to a composting facility where it is sorted and the organic portion is separated for composting, and in some cases for generating biogas. In 2008, WORD started the waste collection business with only 525 customers. In the last 8 years, the number has increased more than tenfold (5,100 customer per month) making the solid waste management a viable business. It has not only contributed to a better living environment, but also generated green and dignified jobs for 21 waste workers.

The municipal conservancy department continues to play a regulatory and coordinating role through the Waste Management Steering Committee. This meets regularly to discuss any emerging issues and review the progress of door-to-door collection services. The conservancy department continues to manage the sweeping of streets and drains, and collection of waste from some areas of the town, from vegetable markets and slaughter houses. The only recycling and reuse of organic waste is done by WORD, as all municipal waste for now continues to be disposed at an open dumping site where no further treatment, sorting or reuse takes place.

In Nepal, Practical Action has facilitated organic waste management under a public-private partnership model. For example, in Butwal Municipality, a private firm, Marry Gold Concern, collects and manages wastes from 400 households with a monthly service fee of NPR 50 (GBP 0.33) in an area called Ramnagar. The company employs three operators for collecting and managing waste from low income communities. A compost plant has been set up which processes up to 10 metric tonnes of organic waste and generate 5 metric tonnes of compost per month. In addition, recyclable waste, mainly plastic, is sold to scrap dealers, creating another source of income.

Recycling and Disposal by Forming Associations and Enterprises

In Bangladesh, collection services have been organised through existing local NGOs. In Nepal, Practical Action has instead helped to form different groups of Informal Waste Workers (IWW) such as street waste pickers, waste segregators, pheriya (dry waste pickers), scrap owners and door to door collectors.

We have worked intensively  with IWW from five municipalities of Kathmandu Valley. We have facilitated the establishment of a IWWs association called Samyukta Safai Jagaran (SASAJA), and the first waste workers’ cooperative with the same name. These organisations have distributed identity cards to members to increase their recognition as an ‘official’ part of the waste management system. We provided basic safety equipment to 5,622 IWWs, including rain boots/shoes, gloves, masks, raincoats, windcheaters with trouser and wrapper, aprons, cap etc. to minimize health risks.

Basic safety equipment is essential to minimize health risks to informal recycling sector.

Basic safety equipment is essential to minimize health risks to informal recycling sector.

Following capacity building and skill enhancement training from Practical Action, many of the IWW group members have established waste-based enterprises. For example, plastic tearing (PET bottle and carton crushing or pressing) for recycling and reuse; paper recycling and mechanical composting of organic waste. This approach has been scaled up in other municipalities in Chitwan and Rupadehi districts reaching around 350 IWWs there.

Reducing Waste through Home Composting

In Nepal and Sri Lanka, and in some slum communities in Bangladesh, we have promoted barrel composting of organic waste. This has the dual benefit of producing compost locally which can be used for home gardening, and reducing the amount of waste that needs to be collected and disposed of elsewhere.

It can reduce the amount of organic waste coming in to the waste collection stream by about 20-30%. It requires community involvement in waste management system as well as frequent monitoring and troubleshooting. This process ensures source segregation of waste, a necessary condition for proper implementation of the 3R system (reuse, reduce and recycle).

Practical Action has distributed more than 2,000 compost bins in Sri Lanka. Especially in Galle, Kurunegala and Akkaraipattu cities where we have distributed about 1,500 home composting bins from 2006 to 2016. More than 65% of the bins are being regularly used.

Our experience shows that once a locality is provided with home composting, the volume of organic waste into the municipal collection system is reduced around 20-30%. However, this varies greatly by locations. If the local authority strictly monitors the compost bin usage and provides troubleshooting support, waste reduction can reach up to 30%.

Both Kurunegala and Galle municipal councils have upscaled the distribution of bins city-wide with the support of national government funding. This technology was taken up by the private sector and other municipal councils. It has been used widely in the country as a solution for reducing organic waste coming in to the waste collection system. For example, Kandy municipal council has adopted the technology with strict restriction on organic waste collection in the municipality collection system.

The Provincial Agriculture department in Kurunegala and the Coconut cultivation board in Akkaraipattu are both promoting organic agriculture with the usage of composting and are using Practical Action’s work as examples for expansion. The central government has provided seeds and fertilizer to city dwellers, including the urban poor, to promote home gardening.

This has been further expanded by Kurunegala municipal council which has distributed potted plants. Some of the vertical gardening structures promoted by Practical Action are now included in urban gardening models of the Western Province Urban Agriculture unit.

Waste-to-Energy in China: Perspectives

garbage-chinaChina is the world’s largest MSW generator, producing as much as 175 million tons of waste every year. With a current population surpassing 1.37 billion and exponential trends in waste output expected to continue, it is estimated that China’s cities will need to develop an additional hundreds of landfills and waste-to-energy plants to tackle the growing waste management crisis.

China’s three primary methods for municipal waste management are landfills, incineration, and composting. Nevertheless, the poor standards and conditions they operate in have made waste management facilities generally inefficient and unsustainable. For example, discharge of leachate into the soil and water bodies is a common feature of landfills in China. Although incineration is considered to be better than landfills and have grown in popularity over the years, high levels of toxic emissions have made MSW incineration plants a cause of concern for public health and environment protection.

Prevalent Issues

Salman Zafar, a renowned waste management, waste-to-energy and bioenergy expert was interviewed to discuss waste opportunities in China. As Mr. Zafar commented on the current problems with these three primary methods of waste management used by most developing countries, he said, “Landfills in developing countries, like China and India, are synonymous with huge waste dumps which are characterized by rotting waste, spontaneous fires, toxic emissions and presence of rag-pickers, birds, animals and insects etc.” Similarly, he commented that as cities are expanding rapidly worldwide, it is becoming increasingly difficult to find land for siting new landfills.

On incineration, Zafar asserted that this type of waste management method has also become a controversial issue due to emission concerns and high technology costs, especially in developing countries. Many developers try to cut down costs by going for less efficient air pollution control systems”. Mr. Zafar’s words are evident in the concerns reflected in much of the data ­that waste management practices in China are often poorly monitored and fraudulent, for which data on emission controls and environmental protection is often elusive.

Similarly, given that management of MSW involves the collection, transportation, treatment and disposal of waste, Zafar explains why composting has also such a small number relative to landfills for countries like China. He says, “Composting is a difficult proposition for developing countries due to absence of source-segregation. Organic fraction of MSW is usually mixed with all sorts of waste including plastics, metals, healthcare wastes and industrial waste which results in poor quality of compost and a real risk of introduction of heavy metals into agricultural soils.” Given that China’s recycling sector has not yet developed to match market opportunities, even current treatment of MSW calls for the need of professionalization and institutionalization of the secondary materials industry.

While MSW availability is not an issue associated with the potential of the resource given its dispersion throughout the country and its exponential increase throughout, around 50 percent of the studies analyzed stated concerns for the high moisture content and low caloric value of waste in China, making it unattractive for WTE processes.

Talking about how this issue can be dealt with, Mr. Zafar commented that a plausible option to increase the calorific value of MSW is to mix it with agricultural residues or wood wastes. Thus, the biomass resources identified in most of the studies as having the greatest potential are not only valuable individually but can also be processed together for further benefits.

Top Challenges

Among the major challenges on the other hand, were insufficient or elusive data, poor infrastructure, informal waste collection systems and the lack of laws and regulations in China for the industry. Other challenges included market risk, the lack of economic incentives and the high costs associated with biomass technologies. Nevertheless, given that the most recurring challenges cited across the data were related to infrastructure and laws and regulations, it is evident that China’s biomass policy is in extreme need of reform.

China’s unsustainable management of waste and its underutilized potential of MSW feedstock for energy and fuel production need urgent policy reform for the industry to develop. Like Mr. Zafar says, “Sustainable waste management demands an integration of waste reduction, waste reuse, waste recycling, and energy recovery from waste and landfilling. It is essential that China implements an integrated solid waste management strategy to tackle the growing waste crisis”.

Future Perspectives

China’s government will play a key role in this integrated solid waste management strategy. Besides increased cooperation efforts between the national government and local governments to encourage investments in solid waste management from the private sector and foster domestic recycling practices, first, there is a clear need to establish specialized regulatory agencies (beyond the responsibilities of the State Environmental Protection Administration and the Ministry of Commerce) that can provide clearer operating standards for current WTE facilities (like sanitary landfills and incinerators) as well as improve the supervision of them.

It is essential that China implements an integrated solid waste management strategy to tackle the growing waste crisis

It is essential that China implements an integrated solid waste management strategy to tackle the growing waste crisis

Without clear legal responsibility assigned to specialized agencies, pollutant emissions and regulations related to waste volumes and operating conditions may continue to be disregarded. Similarly, better regulation in MSW management for efficient waste collection and separation is needed to incentivize recycling at the individual level by local residents in every city. Recycling after all is complementary to waste-to-energy, and like Salman Zafar explains, countries with the highest recycling rates also have the best MSW to energy systems (like Germany and Sweden).

Nevertheless, without a market for reused materials, recycling will take longer to become a common practice in China. As Chinese authorities will not be able to stop the waste stream from growing but can reduce the rate of growth, the government’s role in promoting waste management for energy production and recovery is of extreme importance.

Waste Management Perspectives for Military

waste-management-militaryWaste management has a profound impact on all sections of the society, and military is no exception. With increasing militarization, more wars and frequent armed conflicts, protection of the environment has assumed greater significance for military in armed conflicts as well as peacetime operations. Tremendous amount of waste is generated by military bases and deployed forces in the form of food waste, papers, plastics, metals, tires, batteries, chemicals, e-waste, packaging etc.

War on Waste

Sustainable management of waste is a good opportunity for armed forces to promote environmental stewardship, foster sustainable development and generate goodwill among the local population and beyond. Infact, top military bases in the Western world, like Fort Hood and Fort Meade, have an effective strategy to counter the huge amount of solid waste, hazardous waste and other wastes generated at these facilities.

Waste management at military bases demands an integrated framework based on the conventional waste management hierarchy of 4Rs – reduction, reuse, recycling and recovery (of energy). Waste reduction (or waste minimization) is the top-most solution to reduce waste generation at military bases which demands close cooperation among different departments, including procurement, technical services, housing, food service, personnel. Typical waste reduction strategies for armed forces includes

  • making training manuals and personnel information available electronically
  • reducing all forms of packaging waste
  • purchasing products, such as food items, in bulk
  • purchasing repairable, long-lasting and reusable items

Due to large fraction of recyclables in the waste stream, recycling is an attractive proposition for the armed forces. However, environmental awareness, waste collection infrastructure, and modern equipment are essential for the success of any waste management strategy in a military installation.

Food waste and yard waste (or green waste) can be subjected to anaerobic digestion or composting to increase landfill diversion rates and obtain energy-rich biogas (for cooking/heating) and nutrient-rich fertilizer (for landscaping and gardening). For deployed forces, small-scale waste-to-energy systems, based on thermal technologies, can be an effective solution for disposal of combustible wastes, and for harnessing energy potential of wastes. In case of electronic wastes, it can be sent to a Certified Electronics Recycling and Disposal firm.

Key Aspect

Management options for military installations is dependent on size of the population, location, local regulations, budgetary constraints and many other factors. It is imperative on base commanders to evaluate all possible options and develop a cost-effective and efficient waste management plan. The key factors in the success of waste management plan in military bases are development of new technologies/practices, infrastructure building, participation of all departments, basic environmental education for personnel and development of a quality recycling program.

Military installations are unique due to more than one factor including strict discipline, high degree of motivation, good financial resources and skilled personnel. Usually military installations are one of the largest employers in and around the region where they are based and have a very good influence of the surrounding community, which is bound to have a positive impact on overall waste management strategies in the concerned region.

Solid Waste Management in Pakistan

Karachi-Garbage-DumpSolid waste management situation in Pakistan is a matter of grave concern as more than 5 million people to die each year due to waste-related diseases. In Pakistan roughly 20 million tons of solid waste is generated annually, with annual growth rate of about 2.4 percent. Karachi, largest city in the country, generates more than 9,000 tons of municipal waste daily. All major cities, be it Islamabad, Lahore or Peshawar, are facing enormous challenges in tackling the problem of urban waste. The root factors for the worsening garbage problem in Pakistan are lack of urban planning, outdated infrastructure, lack of public awareness and endemic corruption.

Contributing Factors

Being the 6th most populated country in the world; there is a lot of consumerism and with it a great deal of waste being produced. Like other developing countries, waste management sector in Pakistan is plagued by a wide variety of social, cultural, legislative and economic issues.  In the country, more waste is being produced than the number of facilities available to manage it. Some of the major problems are:

  • There is no proper waste collection system
  • Waste is dumped on the streets
  • Different types of waste are not collected separately
  • There are no controlled sanitary landfill sites. Opening burning is common.
  • Citizens are not aware of the relationship between reckless waste disposal and resulting environmental and public health problems

As a result of these problems, waste is accumulating and building up on roadsides, canals, and other common areas and burning trash is common, causing hazardous toxins to be exposed thereby threatening human and environmental health. Among the already few landfill sites that are present, even fewer are in operation. Even within Pakistan’s capital, Islamabad, there are no permanent landfills to be found.

The waste on the roads allows for an ideal environment for various flies to thrive which effects both human health and the health of the environment for other species. The poor solid waste management in Pakistan has caused numerous diseases and environmental problems to rise.

Waste Management Situation in Lahore

In Lahore, the capital of Punjab and the second largest city in Pakistan, there are currently no controlled waste disposal facilities are formal recycling systems, though roughly 27% of waste (by weight) is recycled through the informal sector, Lahore does not have very high performing governmental management in the waste management situation. Instead, the City District Government Lahore established the Lahore Waste Management Company and left the responsibility of the Solid Waste Management in Lahore to them. Beginning in 2011, Lahore Waste Management Company strives to develop a system of SWM that ensures productive collection, recovery, transportation, treatment and disposal of the waste in Lahore.

Lahore Waste Management Company (LWMC) has over 10,000 field workers involved in waste collection and disposal. Though the LWMC is working in phases, 100% collection rates are not seen yet. Lahore currently only has three disposal sites which are no more than dumps, where illegal dumping and trash burning is common. However, there is some resource recovery taking place. It is estimated that 27% of dry recyclables are informally recycled within the city. Additionally a composting plant converts 8% of waste into compost.

In general, the governance over the Waste Management in Lahore is hardly present. Though there are current projects and plans taking place, by the Lahore Waste Management Company for example, in order to achieve a productive and sustainable system in the city it is necessary for all service providers (formal, private, and informal) to take part in decisions and actions.

Current Activities and Projects

According to the United Nations Environment Program, there are six current activities and plans taking place towards an efficient Waste Management System. These current activities are as follows:

  • Solid Waste Management Guidelines (draft) prepared with the support of Japan International Cooperation Agency (JICA), Japan.
  • Converting waste agricultural biomass into energy/ material source – project by UNEP, IETC Japan.
  • North Sindh Urban Services Corporation Limited (NSUSC) – Assisting the district government in design and treatment of water supply, sanitation and solid waste management
  • The URBAN UNIT, Urban Sector Policy & Management Unit P & D Department, Punjab. Conducting different seminars on awareness of waste water, sanitation & solid waste management etc.
  • Lahore Compost (Pvt.) Ltd. only dealing with the organic waste with the cooperation of city district government Lahore, Pakistan. The company is registered as a CDM project with UNFCCC.
  • Different NGOs are involved at small scale for solid waste collection, and recycling.

Additionally, in November 2013 a German company, agreed to invest in the installation of a 100 megawatt power plant which generates energy from waste from Lahore. Progress is being made on the country’s first scientific waste disposal site in Lakhodair. With this in mind, the Lahore Waste Management Company considered other possible technologies for their Waste-to-Energy project. They opened up applications for international companies to hire as the official consultant for LWMC and their project. The results of the feasibility study results showed that the power plant has the potential to process 1035 tons of municipal waste daily, and generate 5.50 megawatt electricity daily.

The Way Forward

Although SWM policies do exist, the levels at which they are implemented and enforced lack as a result of the governmental institutions lacking resources and equipment. These institutions are primarily led by public sector workers and politicians who are not necessarily the most informed on waste management. For improvements in municipal solid waste management, it is necessary for experts to become involved and assist in the environmental governance.

Due to the multiple factors contributing to the solid waste accumulation, the problem has become so large it is beyond the capacity of municipalities. The former director of the Pakistan Council of Scientific and Industrial Research, Dr. Mirza Arshad Ali Beg, stated, “The highly mismanaged municipal solid waste disposal system in Pakistan cannot be attributed to the absence of an appropriate technology for disposal but to the fact that the system has a lot of responsibility but no authority.” Laws and enforcement need to be revised and implemented. The responsibility for future change is in the hands of both the government, and the citizens.

Waste practices in the Pakistan need to be improved. This can start with awareness to the public of the health and environment impacts that dumped and exposed waste causes. It is imperative for the greater public to become environmentally educated, have a change in attitude and take action.

References

http://www.aljazeera.com/indepth/features/2014/08/solid-waste-pakistan-karachi-2014867512833362.html

http://www.iamcivilengineer.com/2014/04/solid-waste-disposal-and-collection.html

http://www.aljazeera.com/indepth/features/2014/08/solid-waste-pakistan-karachi-2014867512833362.html

http://www.iamcivilengineer.com/2014/04/solid-waste-disposal-and-collection.html

http://www.lwmc.com.pk/about-us.php

http://www.unep.org/ietc/Portals/136/Events/ISWM%20GPWM%20Asia%20Pacific%20Workshop/Pakistan_Presentation.pdf

http://www.dawn.com/news/1081689

http://www.lwmc.com.pk/waste-to-energy.php