Agricultural Wastes in the Middle East

Agriculture plays an important role in the economies of most of the countries in the Middle East.  The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging, for example, from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt.  Large scale irrigation is expanding, enabling intensive production of high value cash and export crops, including fruits, vegetables, cereals, and sugar.

The term ‘crop residues’ covers the whole range of biomass produced as by-products from growing and processing crops. Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. Wheat and barley are the major staple crops grown in the Middle East region. In addition, significant quantities of rice, maize, lentils, chickpeas, vegetables and fruits are produced throughout the region, mainly in Egypt, Syria, Saudi Arabia and Jordan.

Agricultural Wastes in the Middle East

Large quantities of agricultural wastes are produced annually in the Middle East, and are vastly underutilised. Current farming practice in the Middle East is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemical processed to produce electricity and heat in rural areas.

Date palm is one of the principal agricultural products in the arid and semi-arid region of the world, especially Middle East and North Africa (MENA) region. The Arab world has more than 84 million date palm trees with the majority in Egypt, Iraq, Saudi Arabia, Iran, Algeria, Morocco, Tunisia and United Arab Emirates. Date palm trees produce huge amount of agricultural wastes in the form of dry leaves, stems, pits, seeds etc. A typical date tree can generate as much as 20 kilograms of dry leaves per annum while date pits account for almost 10 percent of date fruits. Some studies have reported that Saudi Arabia alone generates more than 200,000 tons of date palm biomass each year.

In Egypt, crop residues are considered to be the most important and traditional source of domestic fuel in rural areas. These crop residues are by-products of common crops such as cotton, wheat, maize and rice. The total amount of residues reaches about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. These are materials comprising mainly cotton stalks, which present a disposal problem. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt.

A cotton field in Egypt

Energy crops, such as Jatropha, can be successfully grown in arid regions for biodiesel production. Infact, Jatropha is already grown at limited scale in some Middle East countries and tremendous potential exists for its commercial exploitation.

Technology Options

A wide range of thermal and biochemical technologies exists to convert the energy stored in agricultural wastes into useful forms of energy. Thermochemical conversion technologies like combustion, gasification and pyrolysis can yield steam, syngas, bio oil etc. On the other hand, the high volatile solids content in agro wastes can be transformed into biogas in anaerobic digestion plants, possibly by codigestion with MSW, sewage sludge, animal wastes and/and food wastes.

The cellulosic content in agricultural residues can be transformed into biofuel (bioethanol) by making use of the fermentation process. In addition, the highly organic nature of agricultural wastes makes it highly suitable for compost production which can be used to replace chemical fertilizers in agricultural farms. Thus, abundance of agro residues in the Middle East can catalyze the development of biomass energy sector in the region.

Date Palm as Biomass Resource

Date palm is one of the principal agricultural products in the arid and semi-arid region of the world, especially Middle East and North Africa (MENA) region. There are more than 120 million date palm trees worldwide yielding several million tons of dates per year, apart from secondary products including palm midribs, leaves, stems, fronds and coir. The Arab world has more than 84 million date palm trees with the majority in Egypt, Iraq, Saudi Arabia, Iran, Algeria, Morocco, Tunisia and United Arab Emirates.

date-wastes

Date palm biomass is found in large quantities across the Middle East

Egypt is the world’s largest date producer with annual production of 1.47 million tons of dates in 2012 which accounted for almost one-fifth of global production. Saudi Arabia has more than 23 millions date palm trees, which produce about 1 million tons of dates per year.

Biomass Potential of Date Palm

Date palm trees produce huge amount of agricultural wastes in the form of dry leaves, stems, pits, seeds etc. A typical date tree can generate as much as 20 kilograms of dry leaves per annum while date pits account for almost 10 percent of date fruits. Some studies have reported that Saudi Arabia alone generates more than 200,000 tons of date palm biomass each year.

Date palm is considered a renewable natural resource because it can be replaced in a relatively short period of time. It takes 4 to 8 years for date palms to bear fruit after planting, and 7 to 10 years to produce viable yields for commercial harvest. Usually date palm wastes are burned in farms or disposed in landfills which cause environmental pollution in dates-producing nations. In countries like Iraq and Egypt, a small portion of palm biomass in used in making animal feed.

The major constituents of date palm biomass are cellulose, hemicelluloses and lignin. In addition, date palm has high volatile solids content and low moisture content. These factors make date biomass an excellent waste-to-energy resource in the MENA region.

Technology Options for Date Palm Biomass Utilization

A wide range of thermal and biochemical technologies exists to convert the energy stored in date palm biomass to useful forms of energy. The low moisture content in date palm wastes makes it well-suited to thermochemical conversion technologies like combustion, gasification and pyrolysis which may yield steam, syngas, bio oil etc.

On the other hand, the high volatile solids content in date palm biomass indicates its potential towards biogas production in anaerobic digestion plants, possibly by codigestion with sewage sludge, animal wastes and/and food wastes. The cellulosic content in date palm wastes can be transformed into biofuel (bioethanol) by making use of the fermentation process.

The highly organic nature of date palm biomass makes it highly suitable for compost production which can be used to replace chemical fertilizers in date palm plantations. Thus, abundance of date palm trees in the MENA and the Mediterranean region, can catalyze the development of biomass and biofuels sector in the region.