Biogas Plants at Akshaya Patra Kitchens

Akshaya-Patra-Kitchen-BioGasThe Akshaya Patra Foundation, a not-for-profit organization, is focused on addressing two of the most important challenges in India – hunger and education. Established in year 2000, the Foundation began its work by providing quality mid-day meals to 1500 children in 5 schools in Bangalore with the understanding that the meal would attract children to schools, after which it would be easier to retain them and focus on their holistic development. 14 years later, the Foundation has expanded its footprint to cover over 1.4 million children in 10 states and 24 locations across India.

The Foundation has centralised, automated kitchens that can cook close to 6,000 kilos of rice, 4.5 to 5 tonnes of vegetables and 6,000 litres of sambar, in only 4 hours. In order to make sustainable use of organic waste generated in their kitchens, Akshaya Patra Foundation has set up anaerobic digestion plants to produce biogas which is then used as a cooking fuel. The primary equipment used in the biogas plant includes size reduction equipment, feed preparation tank for hydrolysis of waste stream, anaerobic digester, H2S scrubber and biogas holder.

Working Principle

Vegetable peels, rejects and cooked food waste are shredded and soaked with cooked rice water (also known as ganji) in a feed preparation tank for preparation of homogeneous slurry and fermentative intermediates. The hydrolyzed products are then utilized by the microbial culture, anaerobically in the next stage. This pre-digestion step enables faster and better digestion of organics, making our process highly efficient.

The hydrolyzed organic slurry is fed to the anaerobic digester, exclusively for the high rate biomethanation of organic substrates like food waste. The digester is equipped with slurry distribution mechanism for uniform distribution of slurry over the bacterial culture.

Optimum solids are retained in the digester to maintain the required food-to-microorganism ratio in the digester with the help of a unique baffle arrangement. Mechanical slurry mixing and gas mixing provisions are also included in the AD design to felicitate maximum degradation of organic material for efficient biogas production.

After trapping moisture and scrubbing off hydrogen sulphide from the biogas, it is collected in a gas-holder and a pressurized gas tank. This biogas is piped to the kitchen to be used as a cooking fuel, replacing LPG.

Basic Design Data and Performance Projections

Waste handling capacity 1 ton per day cooked and uncooked food waste with 1 ton per day ganji water

Input Parameters                      

Amount of solid organic waste 1000 Kg/day
Amount of organic wastewater ~ 1000 liters/day ganji (cooked rice water)

Biogas Production

Biogas production ~ 120 – 135 m3/day

Output Parameters

Equivalent LPG to replace 50 – 55 Kg/day (> 2.5 commercial LPG cylinders)
Fertilizer (digested leachate) ~ 1500 – 2000 liters/day

Major Benefits

Modern biogas installations are providing Akshaya Patra, an ideal platform for managing organic waste on a daily basis. The major benefits are:

  • Solid waste disposal at kitchen site avoiding waste management costs
  • Immediate waste processing overcomes problems of flies, mosquitos etc.
  • Avoiding instances when the municipality does not pick up waste, creating nuisance, smell, spillage etc.
  • Anaerobic digestion of Ganji water instead of directly treating it in ETP, therefore reducing organic load on the ETPs and also contributing to additional biogas production.

The decentralized model of biogas based waste-to-energy plants at Akshaya Patra kitchens ensure waste destruction at source and also reduce the cost incurred by municipalities on waste collection and disposal.


An on-site system, converting food and vegetable waste into green energy is improving our operations and profits by delivering the heat needed to replace cooking LPG while supplying a rich liquid fertilizer as a by-product.  Replacement of fossil fuel with LPG highlights our organization’s commitment towards sustainable development and environment protection.

The typical ROI of a plug and play system (without considering waste disposal costs, subsidies and tax benifts) is around three years.

Future Plans

Our future strategy for kitchen-based biogas plant revolves around two major points:

  • Utilization of surplus biogas – After consumption of biogas for cooking purposes, Akshaya Patra will consider utilizing surplus biogas for other thermal applications. Additional biogas may be used to heat water before boiler operations, thereby reducing our briquette consumption.
  • Digested slurry to be used as a fertilizer – the digested slurry from biogas plant is a good soil amendment for landscaping purposes and we plan to use it in order to reduce the consumption of water for irrigation as well as consumption of chemical fertilizers.

Trends in Utilization of Biogas

The valuable component of biogas is methane (CH4) which typically makes up 60%, with the balance being carbon dioxide (CO2) and small percentages of other gases. The proportion of methane depends on the feedstock and the efficiency of the process, with the range for methane content being 40% to 70%. Biogas is saturated and contains H2S, and the simplest use is in a boiler to produce hot water or steam.

The most common use is where the biogas fuels an internal combustion gas engine in a Combined Heat and Power (CHP) unit to produce electricity and heat. In Sweden the compressed gas is used as a vehicle fuel and there are a number of biogas filling stations for cars and buses. The gas can also be upgraded and used in gas supply networks. The use of biogas in solid oxide fuel cells is also being researched.

Biogas can be combusted directly to produce heat. In this case, there is no need to scrub the hydrogen sulphide in the biogas. Usually the process utilize dual-fuel burner and the conversion efficiency is 80 to 90%. The main components of the system are anaerobic digester, biogas holder, pressure switch, booster fan, solenoid valve, dual fuel burner and combustion air blower.

The most common method for utilization of biogas in developing countries is for cooking and lighting. Conventional gas burners and gas lamps can easily be adjusted to biogas by changing the air to gas ratio. In more industrialized countries boilers are present only in a small number of plants where biogas is used as fuel only without additional CHP. In a number of industrial applications biogas is used for steam production.

Burning biogas in a boiler is an established and reliable technology. Low demands are set on the biogas quality for this application. Pressure usually has to be around 8 to 25 mbar. Furthermore it is recommended to reduce the level of hydrogen sulphide to below 1 000 ppm, this allows to maintain the dew point around 150 °C.

CHP Applications

Biogas is the ideal fuel for generation of electric power or combined heat and power. A number of different technologies are available and applied. The most common technology for power generation is internal combustion. Engines are available in sizes from a few kilowatts up to several megawatts. Gas engines can either be SI-engines (spark ignition) or dual fuel engines. Dual fuel engines with injection of diesel (10% and up) or sometimes plant oil are very popular in smaller scales because they have good electric efficiencies up to guaranteed 43%.

The biogas pressure is turbo-charged and after-cooled and has a high compression ratio in the gas engines. The cooling tower provides cooling water for the gas engines. The main component of the system required for utilizing the technology are anaerobic digester, moisture remover, flame arrester, waste gas burner, scrubber, compressor, storage, receiver, regulator, pressure switch and switch board.

Gas turbines are an established technology in sizes above 500 kW. In recent years also small scale engines, so called micro-turbines in the range of 25 to 100kW have been successfully introduced in biogas applications. They have efficiencies comparable to small SI-engines with low emissions and allow recovery of low pressure steam which is interesting for industrial applications. Micro turbines are small, high-speed, integrated power plants that include a turbine, compressor, generator and power electronics to produce power.

New Trends

The benefit of the anaerobic treatment will depend on the improvement of the process regarding a higher biogas yield per m3 of biomass and an increase in the degree of degradation. Furthermore, the benefit of the process can be multiplied by the conversion of the effluent from the process into a valuable product. In order to improve the economical benefit of biogas production, the future trend will go to integrated concepts of different conversion processes, where biogas production will still be a significant part. In a so-called biorefinery concept, close to 100% of the biomass is converted into energy or valuable by-products, making the whole concept more economically profitable and increasing the value in terms of sustainability.

Typical layout of a modern biogas facility

One example of such biorefinery concept is the Danish Bioethanol Concept that combines the production of bioethanol from lignocellulosic biomass with biogas production of the residue stream. Another example is the combination of biogas production from manure with manure separation into a liquid and a solid fraction for separation of nutrients. One of the most promising concepts is the treatment of the liquid fraction on the farm-site in a UASB reactor while the solid fraction is transported to the centralized biogas plant where wet-oxidation can be implemented to increase the biogas yield of the fiber fraction. Integration of the wet oxidation pre-treatment of the solid fraction leads to a high degradation efficiency of the lignocellulosic solid fraction.

Biomass Energy in Vietnam

Vietnam is one of the few countries having a low level of energy consumption in the developing world with an estimated amount of 210 kg of oil equivalent per capita/year. Over half of the Vietnamese population does not have access to electricity. Vietnam is facing the difficult challenge of maintaining this growth in a sustainable manner, with no or minimal adverse impacts on society and the environment.

Being an agricultural country, Vietnam has very good biomass energy potential. Agricultural wastes are most abundant in the Mekong Delta region with approximately 50% of the amount of the whole country and Red River Delta with 15%. Major biomass resources includes rice husk from paddy milling stations, bagasse from sugar factories, coffee husk from coffee processing plants in the Central Highlands and wood chip from wood processing industries. Vietnam has set a target of having a combined capacity of 500 MW of biomass power by 2020, which is raised to 2,000 MW in 2030.

Rice husk and bagasse are the biomass resources with the greatest economic potential, estimated at 50 MW and 150 MW respectively. Biomass fuels sources that can also be developed include forest wood, rubber wood, logging residues, saw mill residues, sugar cane residues, bagasse, coffee husk and coconut residues. Currently biomass is generally treated as a non-commercial energy source, and collected and used locally. Nearly 40 bagasse-based biomass power plants have been developed with a total designed capacity of 150 MW but they are still unable to connect with the national grid due to current low power prices. Five cogeneration systems selling extra electricity to national grid at average price of 4UScents/kWh.

Biogas energy potential is approximately 10 billion m3/year, which can be collected from landfills, animal excrements, agricultural residues, industrial wastewater etc. The biogas potential in the country is large due to livestock population of more than 30 million, mostly pigs, cattle, and water buffalo. Although most livestock dung already is used in feeding fish and fertilizing fields and gardens, there is potential for higher-value utilization through biogas production. It is estimated that more than 25,000 household biogas digesters with 1 to 50 m3, have been installed in rural areas. The Dutch-funded Biogas Program operated by SNV Vietnam constructed some 18,000 biogas facilities in 12 provinces between 2003 and 2005, with a second phase (2007-2010) target of 150,000 biogas tanks in both rural and semi-urban settings.

Municipal solid waste is also a good biomass resource as the amount of solid waste generated in Vietnam has been increasing steadily over the last few decades. In 1996, the average amount of waste produced per year was 5.9 million tons per annum which rose to 28 million tons per in 2008 and expected to reach 44 million tons per year by 2015.

Biological Cleanup of Biogas

The most valuable component of biogas is methane (CH4) which typically makes up 60%, with the balance being carbon dioxide (CO2) and small percentages of other gases. However, biogas also contain significant amount of hydrogen sulfide (H2S) gas which needs to be stripped off due to its highly corrosive nature. Hydrogen sulfide is oxidized into sulfur dioxide which dissolves as sulfuric acid. Sulphuric acid, even in trace amounts, can make a solution extremely acidic. Extremely acidic electrolytes dissolve metals rapidly and speed up the corrosion process.

The corrosive nature of H2S has the potential to destroy expensive biogas processing equipment. Even if there is no oxygen present, biogas can corrode metal. Hydrogen sulphide can become its own electrolyte and absorb directly onto the metal to form corrosion. If the hydrogen sulphide concentration is very low, the corrosion will be slow but will still occur due to the presence of carbon dioxide.

The obvious solution is the use of a biogas cleanup process whereby contaminants in the raw biogas stream are absorbed or scrubbed. Desulphurization of biogas can be performed by biological as well as chemical methods. Biological treatment of hydrogen sulphide typically involves passing the biogas through biologically active media. These treatments may include open bed soil filters, biofilters, fixed film bioscrubbers, suspended growth bioscrubbers and fluidized bed bioreactors.

Biological Desulphurization

The simplest method of desulphurization is the addition of oxygen or air directly into the digester or in a storage tank serving at the same time as gas holder. Thiobacilli are ubiquitous and thus systems do not require inoculation. They grow on the surface of the digestate, which offers the necessary micro-aerophilic surface and at the same time the necessary nutrients. They form yellow clusters of sulphur. Depending on the temperature, the reaction time, the amount and place of the air added the hydrogen sulphide concentration can be reduced by 95 % to less than 50 ppm.

Most of the sulphide oxidising micro-organisms belong to the family of Thiobacillus. For the microbiological oxidation of sulphide it is essential to add stoichiometric amounts of oxygen to the biogas. Depending on the concentration of hydrogen sulphide this corresponds to 2 to 6 % air in biogas. Measures of safety have to be taken to avoid overdosing of air in case of pump failures.


Biofiltration is one of the most promising clean technologies for reducing emissions of malodorous gases and other pollutants into the atmosphere. In a biofiltration system, the gas stream is passed through a packed bed on which pollutant-degrading microbes are immobilized as biofilm. A biological filter combines water scrubbing and biological desulfurization. Biogas and the separated digestate meet in a counter-current flow in a filter bed. The biogas is mixed with 4% to 6% air before entry into the filter bed. The filter media offer the required surface area for scrubbing, as well as for the attachment of the desulphurizing microorganisms. Microorganisms in the biofilm convert the absorbed H2S into elemental sulphur by metabolic activity. Oxygen is the key parameter that controls the level of oxidation.

The capital costs for biological treatment of biogas are moderate and operational costs are low. This technology is widely available worldwide. However, it may be noted that the biological system is capable to remove even very high amounts of hydrogen sulphide from the biogas but its adaptability to fluctuating hydrogen sulphide contents is not yet proven.

Biomethane from Food Waste: A Window of Opportunity

food-waste-behaviorFor most of the world, reusing our food waste is limited to a compost pile and a home garden. While this isn’t a bad thing – it can be a great way to provide natural fertilizer for our home-grown produce and flower beds – it is fairly limited in its execution. Biomethane from food waste is an interesting idea which can be implemented in communities notorious for generating food wastes on a massive scale. Infact, the European Union is looking for a new way to reuse the millions of tons of food waste that are produced ever year in its member countries – and biomethane could be the way to go.


The Bin2Grid project is designed to make use of the 88 million tons of food waste that are produced in the European Union every year. For the past two years, the program has focused on collecting the food waste and unwanted or unsold produce, and converting it, first to biogas and then later to biomethane. This biomethane was used to supply fueling stations in the program’s pilot cities – Paris, Malaga, Zagreb and Skopje.

Biomethane could potentially replace fossil fuels, but how viable is it when so many people still have cars that run on gasoline?

The Benefits of Biomethane

Harvesting fossil fuels is naturally detrimental to the environment. The crude oil needs to be pulled from the earth, transported and processed before it can be used.  It is a finite resource and experts estimate that we will exhaust all of our oil, gas and coal deposits by 2088.

Biomethane, on the other hand, is a sustainable and renewable resource – there is a nearly endless supply of food waste across the globe and by converting it to biomethane, we could potentially eliminate our dependence on our ever-shrinking supply of fossil fuels. Some companies, like ABP Food Group, even have anaerobic digestion facilities to convert waste into heat, power and biomethane.

Neutral Waste

While it is true that biomethane still releases CO2 into the atmosphere while burned, it is a neutral kind of waste. Just hear us out. The biggest difference between burning fossil fuels and burning biomethane is that the CO2 that was trapped in fossil fuels was trapped there millions of years ago.  The CO2 in biomethane is just the CO2 that was trapped while the plants that make up the fuel were alive.

Biofuel in all its forms has a bit of a negative reputation – namely, farmers deforesting areas and removing trees that store and convert CO2 in favor of planting crops specifically for conversion into biofuel or biomethane. This is one way that anti-biofuel and pro-fossil fuel lobbyists argue against the implementation of these sort of biomethane projects – but they couldn’t be more wrong, especially with the use of food waste for conversion into useful and clean energy.

Using biogas is a great way to reduce your fuel costs as well as reuse materials that would otherwise be wasted or introduced into the environment. Upgrading biogas into biomethane isn’t possible at home at this point, but it could be in the future.

If the test cities in the European Union prove successful, biomethane made from food wastes could potentially change the way we think of fuel sources.  It could also provide alternative fuel sources for areas where fossil fuels are too expensive or unavailable. We’ve got our fingers crossed that it works out well – if for no other reason that it could help us get away from our dependence on finite fossil fuel resources.

Resource Base for Biogas Plants

Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas. Almost any organic material can be processed with anaerobic digestion.

Anaerobic digestion is particularly suited to wet organic material and is commonly used for effluent and sewage treatment.  This includes biodegradable waste materials such as waste paper, grass clippings, leftover food, sewage and animal waste. Large quantity of waste, in both solid and liquid forms, is generated by the industrial sector like breweries, sugar mills, distilleries, food-processing industries, tanneries, and paper and pulp industries. Poultry waste has the highest per ton energy potential of electricity per ton but livestock have the greatest potential for energy generation in the agricultural sector.

Agricultural Feedstock

  • Animal manure
  • Energy crops
  • Algal biomass
  • Crop residues

Community-Based Feedstock

  • Organic fraction of MSW (OFMSW)
  • MSW
  • Sewage sludge
  • Grass clippings/garden waste
  • Food remains
  • Institutional wastes etc.

 Industrial Feedstock

  • Food/beverage processing
  • Dairy
  • Starch industry
  • Sugar industry
  • Pharmaceutical industry
  • Cosmetic industry
  • Biochemical industry
  • Pulp and paper
  • Slaughterhouse/rendering plant etc.

Anaerobic digestion is particularly suited to wet organic material and is commonly used for effluent and sewage treatment. Almost any organic material can be processed with anaerobic digestion process. This includes biodegradable waste materials such as waste paper, grass clippings, leftover food, sewage and animal waste. The exception to this is woody wastes that are largely unaffected by digestion as most anaerobic microorganisms are unable to degrade lignin.

Anaerobic digesters can also be fed with specially grown energy crops such as silage for dedicated biogas production. A wide range of crops, especially C-4 plants, demonstrate good biogas potentials. Corn is one of the most popular co-substrate in Germany while Sudan grass is grown as an energy crop for co-digestion in Austria. Crops like maize, sunflower, grass, beets etc., are finding increasing use in agricultural digesters as co-substrates as well as single substrate.

A wide range of organic substances are anaerobically easily degradable without major pretreatment. Among these are leachates, slops, sludges, oils, fats or whey. Some wastes can form inhibiting metabolites (e.g.NH3) during anaerobic digestion which require higher dilutions with substrates like manure or sewage sludge. A number of other waste materials often require pre-treatment steps (e.g. source separated municipal organic waste, food residuals, expired food, market wastes and crop residues).

Food Waste Management in USA

food_wasteFood waste is an untapped energy source that mostly ends up rotting in landfills, thereby releasing greenhouse gases into the atmosphere. Food waste is difficult to treat or recycle since it contains high levels of sodium salt and moisture, and is mixed with other waste during collection. Major generators of food wastes include hotels, restaurants, supermarkets, residential blocks, cafeterias, airline caterers, food processing industries, etc.

In United States, food waste is the third largest waste stream after paper and yard waste. Around 13 percent of the total municipal solid waste generated in the country is contributed by food scraps. According to USEPA, more than 35 million tons of food waste are thrown away into landfills or incinerators each year, which is around 40 percent of all food consumed in the country. As far as United Kingdom is concerned, households throw away around 8 million tons of food each year. These statistics are an indication of tremendous amount of food waste generated all over the world.

Food Waste Management Strategy

The proportion of food waste in municipal waste stream is gradually increasing and hence a proper food waste management strategy needs to be devised to ensure its eco-friendly and sustainable disposal. The two most common methods for food waste recycling are:

  • Composting: A treatment that breaks down biodegradable waste by naturally occurring micro-organisms with oxygen, in an enclosed vessel or tunnel;
  • Anaerobic digestion (AD): A treatment that breaks down biodegradable waste in the absence of oxygen, producing a renewable energy (biogas) that can be used to generate electricity and heat.

Currently, only about 3 percent of food waste is recycled throughout U.S., mainly through composting. Composting provides an alternative to landfill disposal of food waste, however it requires large areas of land, produces volatile organic compounds and consumes energy. Consequently, there is an urgent need to explore better recycling alternatives. Anaerobic digestion has been successfully used in several European and Asian countries to stabilize food wastes, and to provide beneficial end-products. Sweden, Austria, Denmark, Germany and England have led the way in developing new advanced biogas technologies and setting up new projects for conversion of food waste into energy.

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be used as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, abattoir wastes, etc.

Food waste is one of the single largest constituent of municipal solid waste stream.  Diversion of food waste from landfills can provide significant contribution towards climate change mitigation, apart from generating revenues and creating employment opportunities. Rising energy prices and increasing environmental pollution makes it more important to harness renewable energy from food wastes. Anaerobic digestion technology is widely available worldwide and successful projects are already in place in several European as well as Asian countries which makes it imperative on waste generators and environmental agencies in USA to strive for a sustainable food waste management system.

Ultrasonic Pretreatment in Anaerobic Digestion

Anaerobic digestion process comprises of four major steps – hydrolysis, acidogenesis, acetogenesis and methanogenesis. The biological hydrolysis is the rate limiting step and pretreatment of sludge by chemical, mechanical or thermal disintegration can improve the anaerobic digestion process. Ultrasonic disintegration is a method for breakup of microbial cells to extract intracellular material.

Ultrasound activated sludge disintegration could positively affect sludge anaerobic digestion. Due to sludge disintegration, organic compounds are transferred from the sludge solids into the aqueous phase resulting in an enhanced biodegradability. Therefore disintegration of sewage sludge is a promising method to enhance anaerobic digestion rates and lead to reduce the volume of sludge digesters.

The addition of disintegrated surplus activated sludge and/or foam to the process of sludge anaerobic digestion can lead to markedly better effects of sludge handling at wastewater treatment plants. In the case of disintegrated activated sludge and/or foam addition to the process of anaerobic digestion it is possible to achieve an even twice a higher production of biogas. Here are few examples:

STP Bad Bramstedt, Germany (4.49 MGD)

  • First fundamental study on pilot scale by Technical University of Hamburg-Harburg, 3 years, 1997 – 1999
  • reduction in digestion time from 20 to 4 days without losses in degradation efficiency
  • increase in biogas production by a factor of 4
  • reduction of digested sludge mass of 25%

STP Ahrensburg, Germany (2.64 MGD)

  • Preliminary test on pilot-scale by Technical University of Hamburg-Harburg, 6 months, 1999
  • increase in VS destruction of 20%
  • increase in biogas production of 20%

STP Bamberg, Germany (12.15 MGD)

  • Preliminary full-scale test, 4 months, 2002 2) Full-scale installation since June 2004
  • increase in VS destruction of 30%
  • increase in biogas production of 30%
  • avoided the construction of a new anaerobic digester

STP Freising, Germany (6.87 MGD)

  • Fundamental full-scale study by University of Armed Forces, Munich, 4 months, 2003
  • increase in biogas production of 15%
  • improved sludge dewatering of 10%

STP Meldorf, Germany (1.06 MGD)

  • Preliminary full-scale test, 3 months, 2004 2) Full-scale installation since December 2004
  • increase in VS destruction of 25%
  • increase in biogas production of 25%
  • no foam or filamentous organisms present in the anaerobic sludge digester

STP Ergolz 2, Switzerland (3.43 MGD)

  • Full-scale test, 3 months, 2004
  • increase in VS destruction of 15%
  • increase in biogas production of 25%

STP Beverungen, Germany (2.64 MGD)

  • Full-scale test, 3 months, 2004/2005
  • increase in VS destruction of 25%
  • increase in biogas production of 25%

To sum up, ultrasonication has a positive effect on sludge solubilisation, sludge volume, biogas production, flock size reduction and cells lyses. Ultrasonic pretreatment enhances the subsequent anaerobic digestion resulting in a better degradation of volatile solids and an increased production of biogas.

The use of low power ultrasound in bioreactors may present a significant improvement in cost reduction. Therefore, ultrasonic pretreatment enhances the subsequent anaerobic digestion resulting in a better sludge digestion and efficient recovery of valuables.

Composting in Qatar

compost-qatarQatar has one of the highest per capita waste generation rates worldwide. In 2012, Qatar generated 8,000 tons of solid waste daily (excluding construction and demolition waste which amounts to 20,000 tons additional waste per day).  This number is predicted to reach 19,000 tons/day in 2032, with an annual growth rate of roughly 4.2%.

Most of these wastes end up in landfills – in 2012, more than 90% of Qatar’s solid waste were sent to landfills although the government is intensifying its efforts to reduce this amount. This percentage is extremely high compared to many industrialized countries in Europe and Asia (e.g. Austria, Denmark, Netherlands and Japan) where less than 10% of solid waste are disposed of in landfills.  These countries have high recycling rates, have invested in technologies that convert waste into energy, and apply composting process to their organic waste, especially food wastes. In some of these nations, as much as 40% of their wastes are composted.

Composting in Qatar

Currently, composting in Qatar is mainly done at the Domestic Solid Waste Management Centre (DSWMC) in Mesaieed, which houses the largest composting facility in the country and one of the largest in the world.  The waste that enters the plant initially goes through anaerobic digestion, which produces biogas that can power the facility’s gas engine and generators, followed by aerobic treatment which yields the final product.

Two types of compost are generated: Grade A (compost that comes from green waste, such as yard/park trimmings, leftovers from kitchen or catering services, and wastes from markets) and Grade B (compost produced from MSW).  The plant started its operation in 2011 and when run at full capacity is able to process 750 tons of waste and produce 52 tons of Grade A compost, 377 tons of Grade B compost, liquid fertilizer which is composed of 51 tons of Grade A compost and 204 tons of Grade B compost, and 129 tons of biogas.

This is a significant and commendable development in Qatar’s implementation of its solid waste management plan, which is to reduce, reuse, recycle and recover from waste, and to avoid disposing in landfills as much as possible.  However, the large influx of workers to Qatar in the coming years as the country prepares to host the World Cup in 2022 is expected to substantially increase solid waste generation and apart from its investments in facilities like the composting plant and in DSWMC in general, the government may have to tap into the efforts of organizations and communities to implement its waste management strategy.

Future Outlook

Thankfully, several organizations recognize the importance of composting in waste management and are raising awareness on its benefits.  Qatar Green Building Council (QGBC) has been actively promoting composting through its Solid Waste Interest Group.  Last year, they were one of the implementers of the Baytna project, the first Passivhaus experiment in the country.

This project entails the construction of an energy-efficient villa and a comparative study will be performed as to how the carbon footprint of this structure would compare to a conventional villa.  The occupants of the Passivhaus villa will also be made to implement a sustainable waste management system which includes composting of food waste and garden waste, which is meant to lower greenhouse gas emissions compared to landfilling.

Qatar Foundation is also currently developing an integrated waste management system for the entire Education City and the Food Services group is pushing for composting to be included as a method to treat food and other organic waste.  And many may not know this but composting can be and has been done by individuals in their own backyard and can even be done indoors with the right equipment.

Katrin Scholz-Barth, previous president of SustainableQatar, a volunteer-based organization that fosters sustainable culture through awareness, skills and knowledge, is an advocate of composting and has some great resources on how to start and maintain your own composting bin as she has been doing it herself.  A simple internet search will also reveal that producing compost at home is a relatively simple process that can be achieved with minimal tools.  At present, very few families in Qatar are producing their own compost and Scholz-Barth believes there is much room for improvement.

As part of its solid waste management plan as stated in the National Development Strategy for 2011-2016, Qatar aims to maintain domestic waste generation at 1.6 kg per capita per day.  This will probably involve encouraging greater recycling and reuse efforts and the reduction of waste from its source.  It would also be worthwhile to include programs that will promote and boost composting efforts among institutions, organizations and individuals, encouraging them with the fact that apart from its capability of significant waste diversion from landfills, composting can also be an attractive source of income.

Note: The article is being republished with the permission of our collaborative partner EcoMENA. The original article can be viewed at this link.

Anaerobic Digestion of Tannery Wastes

The conventional leather tanning technology is highly polluting as it produces large amounts of organic and chemical pollutants. Wastes generated by tanneries pose a major challenge to the environment. Anaerobic digestion of tannery wastes is an attractive method to recover energy from tannery wastes.

According to conservative estimates, more than 600,000 tons per year of solid waste are generated worldwide by leather industry and approximately 40–50% of the hides are lost to shavings and trimmings. Everyday a huge quantity of solid waste, including trimmings of finished leather, shaving dusts, hair, fleshing, trimming of raw hides and skins, are being produced from the industries. Chromium, sulphur, oils and noxious gas (methane, ammonia, and hydrogen sulphide) are the elements of liquid, gas and solid waste of tannery industries.

Biogas from Tannery Wastes

Anaerobic digestion (or biomethanation) systems are mature and proven processes that have the potential to convert tannery wastes into energy efficiently, and achieve the goals of pollution prevention/reduction, elimination of uncontrolled methane emissions and odour, recovery of biomass energy potential as biogas, production of stabilized residue for use as low grade fertilizer.

Anaerobic digestion of tannery wastes is an attractive method to recover energy from tannery wastes. This method degrades a substantial part of the organic matter contained in the sludge and tannery solid wastes, generating valuable biogas, contributing to alleviate the environmental problem, giving time to set-up more sustainable treatment and disposal routes. Digested solid waste is biologically stabilized and can be reused in agriculture.

Until now, biogas generation from tannery wastewater was considered that the complexity of the waste water stream originating from tanneries in combination with the presence of chroming would result in the poisoning of the process in a high loaded anaerobic reactor.

When the locally available industrial wastewater treatment plant is not provided by anaerobic digester, a large scale digestion can be planned in regions accommodating a big cluster of tanneries, if there is enough waste to make the facility economically attractive.

In this circumstance, an anaerobic co-digestion plant based on sludge and tanneries may be a recommendable option, which reduces the quantity of landfilled waste and recovers its energy potential. It can also incorporate any other domestic, industrial or agricultural wastes. Chrome-free digested tannery sludge also has a definite value as a fertilizer based on its nutrient content.

Potential Applications of Biogas

Biogas produced in anaerobic digesters consists of methane (50%–80%), carbon dioxide (20%–50%), and trace levels of other gases such as hydrogen, carbon monoxide, nitrogen, oxygen, and hydrogen sulfide.  Biogas can be used for producing electricity and heat, as a natural gas substitute and also a transportation fuel. A combined heat and power plant (CHP) not only generates power but also produces heat for in-house requirements to maintain desired temperature level in the digester during cold season.

CHP systems cover a range of technologies but indicative energy outputs per m3 of biogas are approximately 1.7 kWh electricity and 2.5kWh heat. The combined production of electricity and heat is highly desirable because it displaces non-renewable energy demand elsewhere and therefore reduces the amount of carbon dioxide released into the atmosphere.

AD Plant at ECCO’s Tannery (Netherlands)

A highly advanced wastewater treatment plant and biogas system became fully operational in 2012 at ECCO’s tannery in the Netherlands. A large percentage of the waste is piped directly into the wastewater plant to be converted into biogas. This biogas digester provides a source of renewable fuel and also helps to dispose of waste materials by converting waste from both the leather-making processes, and the wastewater treatment plant, into biogas. All excess organic material from the hides is also converted into biogas.

This project enables ECCO Tannery to reduce waste and to substitute virtually all of its consumption of non-renewable natural gas with renewable biogas. The aim is to use more than 40% of the total tannery waste and replace up to 60% of the total natural gas consumption with biogas.