Renewable Energy from Food Residuals

Food residuals are an untapped renewable energy source that mostly ends up rotting in landfills, thereby releasing greenhouse gases into the atmosphere. Food residuals are difficult to treat or recycle since it contains high levels of sodium salt and moisture, and is mixed with other waste during collection. Major generators of food wastes include hotels, restaurants, supermarkets, residential blocks, cafeterias, airline caterers, food processing industries, etc.

In United States, food scraps is the third largest waste stream after paper and yard waste. Around 12.7 percent of the total municipal solid waste (MSW) generated in the year 2008 was food scraps that amounted to about 32 million tons. According to EPA, about 31 million tons of food waste was thrown away into landfills or incinerators in 2008. As far as United Kingdom is concerned, households throw away 8.3 million tons of food each year. These statistics are an indication of tremendous amount of food waste generated all over the world.

The proportion of food residuals in municipal waste stream is gradually increasing and hence a proper food waste management strategy needs to be devised to ensure its eco-friendly and sustainable disposal. Currently, only about 3 percent of food waste is recycled throughout U.S., mainly through composting. Composting provides an alternative to landfill disposal of food waste, however it requires large areas of land, produces volatile organic compounds and consumes energy. Consequently, there is an urgent need to explore better recycling alternatives.

Anaerobic digestion has been successfully used in several European and Asian countries to stabilize food wastes, and to provide beneficial end-products. Sweden, Austria, Denmark, Germany and England have led the way in developing new advanced biogas technologies and setting up new projects for conversion of food waste into energy.

Anaerobic Digestion of Food Waste

Anaerobic digestion is the most important method for the treatment of organic waste, such as food residuals, because of its techno-economic viability and environmental sustainability. The use of anaerobic digestion technology generates biogas and preserves the nutrients which are recycled back to the agricultural land in the form of slurry or solid fertilizer.

The relevance of biogas technology lies in the fact that it makes the best possible use of various organic wastes as a renewable source of clean energy. A biogas plant is a decentralized energy system, which can lead to self-sufficiency in heat and power needs, and at the same time reduces environmental pollution. Thus, anaerobic digestion of food waste can lead to climate change mitigation, economic benefits and landfill diversion opportunities.

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be used as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, slaughterhouse wastes, etc.

A Typical Energy Conversion Plant

The feedstock for the food waste-to-energy plant includes leftover food, vegetable refuse, stale cooked and uncooked food, meat, teabags, napkins, extracted tea powder, milk products, etc. Raw waste is shredded to reduce to its particle size to less than 12 mm. The primary aim of shredding is to produce a uniform feed and reduce plant “down-time” due to pipe blockages by large food particles. It also improves mechanical action and digestibility and enables easy removal of any plastic bags or cling-film from waste.

Fresh waste and re-circulated digestate (or digested food waste) are mixed in a mixing tank. The digestate is added to adjust the solids content of the incoming waste stream from 20 to 25 percent (in the incoming waste) to the desired solids content of the waste stream entering the digestion system (10 to 12 percent total solids). The homogenized waste stream is pumped into the feeding tank, from which the anaerobic digestion system is continuously fed. Feeding tank also acts as a pre-digester and subjected to heat at 55º to 60º C to eliminate pathogens and to facilitate the growth of thermophilic microbes for faster degradation of waste.

From the predigestor tank, the slurry enters the main digester where it undergoes anaerobic degradation by a consortium of Archaebacteria belonging to Methanococcus group. The anaerobic digester is a CSTR reactor having average retention time of 15 to 20 days. The digester is operated in the mesophilic temperature range (33º to 38°C), with heating carried out within the digester. Food waste is highly biodegradable and has much higher volatile solids destruction rate (86 to 90 percent) than biosolids or livestock manure. As per conservative estimates, each ton of food waste produces 150 to 200 m3 of biogas, depending on reactor design, process conditions, waste composition, etc.

Biogas contains significant amount of hydrogen sulfide (H2S) gas that needs to be stripped off due to its corrosive nature. The removal of H2S takes place in a biological desulphurization unit in which a limited quantity of air is added to biogas in the presence of specialized aerobic bacteria that oxidizes H2S into elemental sulfur. The biogas produced as a result of anaerobic digestion of waste is sent to a gas holder for temporary storage. Biogas is eventually used in a combined heat and power (CHP) unit for its conversion into thermal and electrical energy in a co­generation power station of suitable capacity. The exhaust gases from the CHP unit are used for meeting process heat requirements.

The digested substrate leaving the reactor is rich in nutrients like nitrogen, potassium and phosphorus which are beneficial for plants as well as soil. The digested slurry is dewatered in a series of screw presses to remove the moisture from slurry. Solar drying and additives are used to enhance the market value and handling characteristics of the fertilizer.

Diverting Food from Landfills

Food residuals are one of the single largest constituents of municipal solid waste stream. Diversion of food waste from landfills can provide significant contribution towards climate change mitigation, apart from generating revenues and creating employment opportunities. Rising energy prices and increasing environmental pollution makes it more important to harness renewable energy from food scraps.

Anaerobic digestion technology is widely available worldwide and successful projects are already in place in several European as well as Asian countries that makes it imperative on waste generators and environmental agencies to root for a sustainable food waste management system.

Biogas from Crop Wastes: European Perspectives

Most, if not all of Europe has a suitable climate for biogas production. The specific type of system depends on the regional climate. Regions with harsher winters may rely more on animal waste and other readily available materials compared to warmer climates, which may have access to more crop waste or organic material.

Regardless of suitability, European opinions vary on the most ethical and appropriate materials to use for biogas production. Multiple proponents argue biogas production should be limited to waste materials derived from crops and animals, while others claim crops should be grown with the intention of being used for biogas production.

Biogas Production From Crops

Europeans in favor of biogas production from crops argue the crops improve the quality of the soil. Additionally, they point to the fact that biogas is a renewable energy resource compared to fossil fuels. Crops can be rotated in fields and grown year after year as a sustainable source of fuel.

Extra crops can also improve air quality. Plants respire carbon dioxide and can help reduce harmful greenhouse gasses in the air which contribute to global climate change.

Biogas crops can also improve water quality because of plant absorption. Crops grown in otherwise open fields reduce the volume of water runoff which makes it to lakes, streams and rivers. The flow of water and harmful pollutants is impeded by the plants and eventually absorbed into the soil, where it is purified.

Urban residents can also contribute to biogas production by growing rooftop or vertical gardens in their homes. Waste from tomatoes, beans and other vegetables is an excellent source of biogas material. Residents will benefit from improved air quality and improved water quality as well by reducing runoff.

Proponents of biogas production from crops aren’t against using organic waste material for biogas production in addition to crop material. They believe crops offer another means of using more sustainable energy resources.

Biogas Production From Waste Materials Only

Opponents to growing crops for biogas argue the crops used for biogas production degrade soil quality, making it less efficient for growing crops for human consumption. They also argue the overall emissions from biogas production from crops will be higher compared to fossil fuels.

Growing crops can be a labor-intensive process. Land must be cleared, fertilized and then seeded. While crops are growing, pesticides and additional fertilizers may be used to promote crop growth and decrease losses from pests. Excess chemicals can run off of fields and degrade the water quality of streams, lakes and rivers and kill off marine life.

Once crops reach maturity, they must be harvested and processed to be used for biogas material. Biogas is less efficient compared to fossil fuels, which means it requires more material to yield the same amount of energy. Opponents argue that when the entire supply chain is evaluated, biogas from crops creates higher rates of emissions and is more harmful to the environment.

Agricultural residues, such as rice straw, are an important carbon source for anaerobic digestion

The supply chain for biogas from agricultural waste materials is more efficient compared to crop materials. Regardless of whether or not the organic waste is reused, it must be disposed of appropriately to prevent any detrimental environmental impacts. When the waste material is then used for biogas production, it creates an economical means of generating useful electricity from material which would otherwise be disposed of.

Rural farms which are further away from the electric grid can create their own sources of energy through biogas production from waste material as well. The cost of the energy will be less expensive and more eco-friendly as it doesn’t have the associated transportation costs.

Although perspectives differ on the type of materials which should be used for biogas production, both sides agree biogas offers an environmentally friendly and sustainable alternative to using fossil fuels.

Unending Benefits of Biomass Energy

Biomass is material originating from plant and animal matter. Biomass energy uses biomass to create energy by burning organic materials. The heat energy released through burning these materials can heat homes or water. Heated water produces steam, which in turn can generate electricity. Using organic materials to create heat and power is an eco-friendlier alternative compared to using fossil fuels.

Indefinitely Renewable

The majority of the world’s energy comes from burning fossil fuels. Fossil fuels are a finite resource. Once fossil fuel resources run out, new fuel sources will be needed to meet global energy demands. Biomass offers a solution to meet this need.

Organic waste material from agriculture and logging operations, animal manure, and sludge from wastewater treatment are all viable fuels for generating biomass energy. As long as the earth is inhabited, these materials will be readily available.

Reduce, Reuse, Recycle

Waste organic material that would typically be disposed of in landfills could be redirected for biomass energy use. This reduces the amount of material in landfills and slows the rate at which landfills are filled. Some of the most common waste products used for biomass energy are wood chips and agricultural waste products. Wood materials can easily be converted from already existing wood structures that will be destroyed, such as wooden furniture and log cabins, preferably both would also come from responsible logging and practices as well.

As more organic material is diverted from landfills, the number of new landfills needed would be reduced. Older landfills are at risk for leaking leachate. Leachate contains many environmental pollutants that can contaminate groundwater sources.

Burning fossil fuel releases carbon into the atmosphere which was previously trapped below ground. Trapped carbon isn’t at risk for contributing to global climate change since it can’t interact with air. Each time fossil fuels are burned, they allow previously trapped carbon to enter the atmosphere and contribute to global climate change. In comparison, biofuel is carbon-neutral.

The materials used to create biomass energy naturally release carbon into the environment as they decompose. Living plants and trees use carbon dioxide to grow and release oxygen into the atmosphere. Carbon dioxide released by burning organic material will be absorbed by existing plants and trees. The biomass cycle is carbon-neutral as no new carbon is introduced to the system.

Smaller Carbon Footprint

The amount of unused farmland is increasing as agriculture becomes more efficient. Maintaining open land is expensive. As a result, farmers are selling off their property for new developments. Unused open agricultural land could be used to grow organic material for biofuels.

Converting open tracts of land to developed areas increases the amount of storm-water runoff. Storm-water runoff from developed areas contains more pollutants than storm-water runoff from undeveloped areas. Using open areas to grow biomass sources instead of creating new developments would reduce water pollution.

Biomass-Resources

A quick glance at popular biomass resources

Forested areas also provide sources of biofuel material. Open land converted to sustainable forestry would create new animal habitats and offset carbon emissions from existing fossil fuel sources as more plants and trees would be available to absorb carbon dioxide.

Societal Benefits

Burning fossil fuels releases sulfur dioxide, mercury and particulate matter into the atmosphere which can cause asthma, cancer and respiratory problems. Biomass energy emits less harmful byproducts compared to fossil fuels, which means cleaner air and healthier people.

Biofuel can improve rural economies by providing more people with unused land the opportunity to grown biomass material for energy use. Workers would be needed to harvest and process the materials needed to generate biofuel.

Since biofuel is a renewable energy source, energy providers can receive tax credits and incentives. Countries with land resources will be less reliant on foreign fossil fuel providers and can improve their local economies.

Increasing biofuel energy usage can reduce forest fires. Selectively reducing brush can still reduce the risk of wildfires spreading. Exposing underbrush and groundcover to rainfall decreases the change of it drying out and creating optimal, fire spreading conditions.

Denmark and Biomass Energy

Denmark is an example of how effective biomass energy can be in developing energy efficiency. Approximately 70 percent of renewable-energy consumption in Denmark comes from biomass.

Woody biomass creates an increasing percentage of heating from combined heat and power (CHP) plants with a goal to for 100 percent of hearing to be derived from woody biomass by 2035. Another form of biomass is agricultural biomass. This form utilizes materials such as straw and corn to create end-products like electricity, heating and biofuels.

The Danish Energy Agency has developed a plan including four scenarios that will help Denmark become fossil fuel free by 2050. The biomass scenario involves CHP for electricity and district heating, indicating that biomass energy is important in Denmark’s energy sector today and will play an increasingly important role in the future.

Biomass offers an eco-friendly and renewable method of reducing pollution and the effects of global climate change. And, like other forms of renewable energy, the products needed to develop biomass energy are readily available.

Miscanthus: Reducing the Establishment Costs

Miscanthus-Elephant-GrassMiscanthus has been lauded as a dynamic high potential biomass crop for some time now due to its high yields, low input requirements and perennial nature. Miscanthus is commonly used as a biomass fuel to produce heat and electricity through combustion, but studies have found that miscanthus can produce similar biogas yields to maize when harvested at certain times of the year.  Miscanthus is a C4 grass closely related to maize and sugarcane, it can grow to heights of three metres in a single growing season.

High Establishment Costs

However, high establishment costs have impeded the popularity of the crop. High establishment costs of miscanthus are as a result of the sterile nature of the crop, which means that miscanthus cannot be propagated from seed and instead must be propagated from vegetative material. The vegetative material commonly used is taken from the root structure known as rhizomes; rhizome harvesting is a laborious process and when combined with low multiplication rates, results in a high cost for miscanthus rhizomes. The current figure based on Irish figures is €1,900 ha for rhizomes.

Promising Breakthrough

Research conducted in Teagasc Oak Park Carlow Ireland, suggests that there may be a cost effective of method of propagating miscanthus by using the stem as the vegetative material rather than having to dig up expensive rhizomes. The system has been proven in a field setting over two growing seasons and plants have been shown to be perennial.

A prototype planter suitable for commercial up scaling has been developed to sow stem segments of miscanthus. Initial costs are predicted at €130 ha for plant material. The image below shows the initial stem that was planted in a field setting and the shoots, roots, and rhizome developed by the stem at the end of the first growing season.

miscanthus-stem

Feedstock for AD Plants

Switching from maize to miscanthus as a feedstock for anaerobic digestion plants would increase profitability and boost the GHG abatement credentials of the systems. Miscanthus is a perennial crop which would provide a harvest every year once established for 20 years in a row without having to be replanted compared to maize which is replanted every year. This would provide an obvious economic saving as well as allowing carbon sequestration in the undisturbed soil.

There would be further GHG savings from the reduced diesel consumption required for the single planting as opposed to carrying out heavy seedbed cultivation each year for maize. Miscanthus harvested as an AD feedstock would also alleviate soil compaction problems associated with maize production through an earlier harvest in more favourable conditions.

Future Perspectives

Miscanthus is a nutrient efficient crop due to nutrient cycling. With the onset of senescence nutrients in the stem are transferred back to the rhizome and over-wintered for the following year’s growth. However the optimum date to harvest biomass to produce biogas is before senescence. This would mean that a significant proportion of the plants nutrient stores would be removed which would need to be replaced. Fertiliser in the form of digestate generated from a biogas plant could be land spread to bridge nutrient deficiencies. However additional more readily available chemical N fertiliser may have to be applied.

Some work at Oak Park on September harvested miscanthus crops has seen significant responses from a range of N application rates. With dwindling subsidies to support anaerobic digestion finding a low cost perennial high yielding feedstock could be key to ensuring economic viability.

Energy Access to Refugees

refugee-camp-energyThere is a strong link between the serious humanitarian situation of refugees and lack of access to sustainable energy resources. According to a 2015 UNCHR report, there are more than 65.3 million displaced people around the world, the highest level of human displacement ever documented. Access to clean and affordable energy is a prerequisite for sustainable development of mankind, and refugees are no exception. Needless to say, almost all refugee camps are plagued by fuel poverty and urgent measure are required to make camps livable.

Usually the tragedy of displaced people doesn’t end at the refugee camp, rather it is a continuous exercise where securing clean, affordable and sustainable energy is a major concern. Although humanitarian agencies are providing food like grains, rice and wheat; yet food must be cooked before serving. Severe lack of modern cook stoves and access to clean fuel is a daily struggle for displaced people around the world. This article will shed some light on the current situation of energy access challenges being faced by displaced people in refugee camps.

Why Energy Access Matters?

Energy is the lifeline of our modern society and an enabler for economic development and advancement. Without safe and reliable access to energy, it is really difficult to meet basic human needs. Energy access is a challenge that touches every aspect of the lives of refugees and negatively impacts health, limits educational and economic opportunities, degrades the environment and promotes gender discrimination issues. Lack of energy access in refugee camps areas leads to energy poverty and worsen humanitarian conditions for vulnerable communities and groups.

Energy Access for Cooking

Refugee camps receive food aid from humanitarian agencies yet this food needs to be cooked before consumption. Thus, displaced people especially women and children take the responsibility of collecting firewood, biomass from areas around the camp. However, this expose women and minors to threats like sexual harassments, danger, death and children miss their opportunity for education. Moreover, depleting woods resources cause environmental degradation and spread deforestation which contributes to climate change. Moreover, cooking with wood affects the health of displaced people.

Access to efficient and modern cook stove is a primary solution to prevent health risks, save time and money, reduce human labour and combat climate change. However, humanitarian agencies and host countries can aid camp refugees in providing clean fuel for cooking because displaced people usually live below poverty level and often host countries can’t afford connecting the camp to the main grid. So, the issue of energy access is a challenge that requires immediate and practical solutions. A transition to sustainable energy is an advantage that will help displaced people, host countries and the environment.

Energy Access for Lighting

Lighting is considered as a major concern among refugees in their temporary homes or camps. In the camps life almost stops completely after sunset which delays activities, work and studying only during day time hours. Talking about two vulnerable groups in the refugees’ camps “women and children” for example, children’s right of education is reduced as they have fewer time to study and do homework. For women and girls, not having light means that they are subject to sexual violence and kidnapped especially when they go to public restrooms or collect fire woods away from their accommodations.

Rationale For Sustainable Solutions

Temporary solutions won’t yield results for displaced people as their reallocation, often described as “temporary”, often exceeds 20 years. Sustainable energy access for refugees is the answer to alleviate their dire humanitarian situation. It will have huge positive impacts on displaced people’s lives and well-being, preserve the environment and support host communities in saving fuel costs.  Also, humanitarian agencies should work away a way from business as usual approach in providing aid, to be more innovative and work for practical sustainable solutions when tackling energy access challenge for refugee camps.

UN SDG 7 – Energy Access

The new UN SDG7 aims to “ensure access to affordable, reliable, sustainable and modern energy for all”. SDG 7 is a powerful tool to ensure that displaced people are not left behind when it comes to energy access rights. SDG7 implies on four dimensions: affordability, reliability, sustainability and modernity. They support and complete the aim of SDG7 to bring energy and lightening to empower all human around the world. All the four dimensions of the SDG7 are the day to day challenges facing displaced people. The lack of modern fuels and heavy reliance on primitive sources, such as wood and animal dung leads to indoor air pollution.

Energy access touches every aspect of life in refugee camps

Energy access touches every aspect of life in refugee camps

For millions of people worldwide, life in refugee camps is a stark reality. Affordability is of concern for displaced people as most people flee their home countries with minimum possessions and belongings so they rely on host countries and international humanitarian agencies on providing subsidized fuel for cooking and lightening. In some places, host countries are itself on a natural resources stress to provide electricity for people and refugees are left behind with no energy access resources. However, affordability is of no use if the energy provision is not reliable (means energy supply is intermittent).

Parting Shot

Displaced people need a steady supply of energy for their sustenance and economic development. As for the sustainability provision, energy should produce a consistent stream of power to satisfy basic needs of the displaced people. The sustained power stream should be greater than the resulted waste and pollution which means that upgrading the primitive fuel sources used inside the camp area to the one of modern energy sources like solar energy, wind power, biogas and other off-grid technologies.

For more insights please read this article Renewable Energy in Refugee Camps 

Renewable Energy in Refugee Camps

dabaab-refugee-campAccess to clean and affordable energy is a prerequisite for sustainable development of mankind, and refugees are no exception. Refugee camps across the world house more than 65 million people, and almost all refugee camps are plagued by fuel poverty. Needless to say, urgent measure are required to make camps livable and sustainable.

Rapid advancements in renewable energy technologies have made it possible to deploy such systems on various scales.  The scalability potential of renewable energy systems makes them well-suited for refugee camps, especially in conflict-afflicted areas of the Middle East, Asia and Africa.

Renewable energy in refugee camps can be made available in the form of solar energy, biomass energy and wind energy. Solar panels, solar cooking units, solar lanterns, biomass cookstoves and biogas plants are some of the popular renewable energy technologies that can improve living standards in refugee camps. It is important to focus on specific needs of refugees and customization of technology towards local conditions. For example, solar technologies are better understood than biogas systems in Jordan.

Solar Energy

Solar energy can provide long-term resilience to people living in refugee camps. With many camps effectively transformed into full-fledged towns and cities, it is essential to harness the power of sun to run these camps smoothly. Solar cookers, solar lanterns and solar water heaters are already being used in several refugee camps, and focus has now shifted to grid-connected solar power projects.

The 5MW Azraq solar project is the world’s first grid-connected renewable energy project to be established in a refugee camp. The project is being funded entirely by Ikea through the Brighter Lives for Refugees campaign. The program, now in its third year, seeks to improve the lives of refugees around the world by providing access to sustainable energy supplies.

Biomass Energy

Due to lack of land and resources, refugee camps puts tremendous pressure on natural vegetation, especially supply of fuel wood to camp-dwellers. Replacement of traditional stoves with efficient biomass-fired cook stoves can save as much as 80% of cooking fuel.

Instead of wood, it would be also be a good option to use agricultural wastes, like husk and straw. Another interesting proposition for refugee camps is to set up small-scale DIY biogas plants, based on human wastes and food residuals. The biogas produced can be used as a cooking medium as well as for power/heat generation.

Wind Energy

Small wind turbines can also play a key role in providing energy to dwellers of refugee camps. Such turbines are used for micro-generation and can provide power from 1kW to 300kW. Majority of small wind turbines are traditional horizontal axis wind turbines but vertical axis wind turbines are a growing type of wind turbine in the small wind market. Small wind turbines are usually mounted on a tower to raise them above any nearby obstacles, and can sited in refugee camps experiencing wind speeds of 4m/s or more.

Solar lights in Azraq Refugee Camp (Jordan)

Solar lights in Azraq Refugee Camp (Jordan)

Conclusions

Renewable energy systems have the potential to improve living standards in refugee camps and ease the sufferings of displaced and impoverished communities. Solar panels, biogas system, biomass stoves and micro wind turbines are some of the renewable energy systems that can be customized for refugee camps and transform them into a less harsh place for displaced people.

Zero Waste Trends to Watch

Most people have heard about concepts such as single-stream recycling, but there’s another approach known as zero waste. People who support the concept of zero waste agree that, in a broader sense, it means reducing dependence on landfills and increasing reliance on material recovery facilities. But, after that, the definition varies primarily based on industries, manufacturers and even entire countries.

Even so, there are inspiring trends that show how people and companies are working hard to reduce the amount of waste produced, thereby getting ever closer to that desirable zero benchmark. Below are some of the major trends taking place across the world in the field of zero waste:

More Reusable Packaging

We live in a world where it’s possible to order almost anything online and have it quickly arrive on a doorstep — sometimes the same day a person placed the order. And, society loves the convenience, but the dependence on delivered products causes an increase in packaging materials.

It is often astounding how many packing peanuts, layers of bubble wrap and cardboard cartons come with the things we buy. And, the manufacturers and shipping companies consistently bring up how boxes get dropped or otherwise mishandled during transit, making the extraordinary amounts of protective packaging products necessary.

On a positive note, a company called Limeloop makes a shipping envelope designed from recycled billboard wrapping people can reuse thousands of times. Another company called Returnity communicates with distributors to urge them to use the establishment’s boxes and envelopes, both of which people can rely on dozens of times instead of throwing them away after single uses.

If you are a business looking to adopt eco-friendly practices, you should read this article on green packaging methods.

Ceramic Mugs in British Coffee Shops

In some regions of the world, customers who visit coffee shops don’t get asked whether they’ll be drinking their coffee on site or taking it with them to go. However, many leading coffee shops in the United Kingdom find out that detail from customers who order drinks, then serve the beverages in non-disposable mugs to people who’ll enjoy their purchases on the spot.

Also, all 950 Starbucks locations in Great Britain recently began charging customers five cents for getting their drinks in disposable cups. Conversely, it rewards them by taking 25 cents off the costs of their orders when they bring reusable cups into the stores.

Creative Ways to Cut Down on Farm Waste

Manure (or fertilizer) is a reality on farms around the world. And, the commercially bought versions of it contribute to excessive waste and inflated costs. Some even harm future growth when farmers apply manure too heavily and negatively affect the soil’s balance.

But, besides avoiding commercially-sold manure and not applying it excessively if used, what else can people in the agriculture sector do to make farm waste more manageable? They can look for unique outlets that may want to buy it.

One startup uses a detailed manure-refining process to extract the cellulose from cow dung. Business representatives then use the cellulose — a byproduct from the grass and corn cows eat — for a new kind of fabric.

What about using animal waste for energy? A forward-thinking farmer did that with his manure lagoons, making them produce biogas that powers homes.

These unusual solutions highlight unconventional use cases for animal droppings, such as poultry litter, that support zero-waste goals, provided farmers want to explore them.

An Uptick in Reusable Food Containers

People often pack their lunches in plastic containers before heading off to work, but when they get food delivered or pick it up from a provider to eat at home later, the associated containers usually fill up garbage cans after people chow down.

Some facilities are trying to change that. At The University of California Merced campus, a pilot program occurred where students who stopped by dining halls for meals to take away brought reusable containers with them. After people ate the food from them, they could return them to get washed and ready for future meals.

Moreover, a pizza restaurant in Wales provides an aluminum box for people to use again and again when taking their pies home. One of the problems with cardboard pizza containers is they can’t be recycled when contaminated with grease. However, people can buy the metal ones for a small, one-time fee.

Opt for reusable containers for food and beverages

Then, by using them, they get 50-cent discounts on their pizza. The restaurant also backs the boxes with a lifetime guarantee and will replace them for no charge if necessary due to breakage or damage. Also, because metal conducts heat, the material helps pizza stay hotter for longer than it would in cardboard boxes.

Innovations to Complement Commitment

Adhering to a zero waste lifestyle undoubtedly requires dedication and a willingness to look beyond old habits. However, for people who show those characteristics, numerous inventions and improvements make it easier to do away with the throw-away culture.

Role of Biomass Energy in Rural Development

biomass-balesBiomass energy systems not only offer significant possibilities for clean energy production and agricultural waste management but also foster sustainable development in rural areas. The increased utilization of biomass wastes will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas.

Biomass energy has the potential to modernize the agricultural economy and catalyze rural development. The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small, medium and large-scale biomass-based power plants can play a major role in rural development.

Sustainable harvesting practices remove only a small portion of branches and tops leaving sufficient biomass to conserve organic matter and nutrients. Moreover, the ash obtained after combustion of biomass compensates for nutrient losses by fertilizing the soil periodically in natural forests as well as fields.

Planting of energy crops on abandoned agricultural lands will lead to an increase in species diversity. The creation of structurally and species diverse forests helps in reducing the impacts of insects, diseases and weeds. Similarly the artificial creation of diversity is essential when genetically modified or genetically identical species are being planted.

Improvements in agricultural practices promises to increased biomass yields, reductions in cultivation costs, and improved environmental quality. Extensive research in the fields of plant genetics, analytical techniques, remote sensing and geographic information systems (GIS) will immensely help in increasing the energy potential of biomass feedstock.

Rural areas are the preferred hunting ground for the development of biomass sector worldwide. By making use of various biological and thermal processes (anaerobic digestion, combustion, gasification, pyrolysis), agricultural wastes can be converted into biofuels, heat or electricity, and thus catalyzing sustainable development of rural areas economically, socially and environmentally.

Biomass energy can reduce 'fuel poverty' in remote and isolated communities

Biomass energy can reduce ‘fuel poverty’ in remote and isolated communities

A large amount of energy is utilized in the cultivation and processing of crops like sugarcane, wheat and rice which can met by utilizing energy-rich residues for electricity production. The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs.

There are many areas in India where people still lack access to electricity and thus face enormous hardship in day-to-day lives. Biomass energy promises to reduce ‘fuel poverty’ commonly prevalent among remote and isolated communities.  Obviously, when a remote area is able to access reliable and cheap energy, it will lead to economic development and youth empowerment.

Waste Management Perspectives for Military

waste-management-militaryWaste management has a profound impact on all sections of the society, and military is no exception. With increasing militarization, more wars and frequent armed conflicts, protection of the environment has assumed greater significance for military in armed conflicts as well as peacetime operations. Tremendous amount of waste is generated by military bases and deployed forces in the form of food waste, papers, plastics, metals, tires, batteries, chemicals, e-waste, packaging etc.

War on Waste

Sustainable management of waste is a good opportunity for armed forces to promote environmental stewardship, foster sustainable development and generate goodwill among the local population and beyond. Infact, top military bases in the Western world, like Fort Hood and Fort Meade, have an effective strategy to counter the huge amount of solid waste, hazardous waste and other wastes generated at these facilities.

Waste management at military bases demands an integrated framework based on the conventional waste management hierarchy of 4Rs – reduction, reuse, recycling and recovery (of energy). Waste reduction (or waste minimization) is the top-most solution to reduce waste generation at military bases which demands close cooperation among different departments, including procurement, technical services, housing, food service, personnel. Typical waste reduction strategies for armed forces includes

  • making training manuals and personnel information available electronically
  • reducing all forms of packaging waste
  • purchasing products, such as food items, in bulk
  • purchasing repairable, long-lasting and reusable items

Due to large fraction of recyclables in the waste stream, recycling is an attractive proposition for the armed forces. However, environmental awareness, waste collection infrastructure, and modern equipment are essential for the success of any waste management strategy in a military installation. Food waste and yard waste (or green waste) can be subjected to anaerobic digestion or composting to increase landfill diversion rates and obtain energy-rich biogas (for cooking/heating) and nutrient-rich fertilizer (for landscaping and gardening). For deployed forces, small-scale waste-to-energy systems, based on thermal technologies, can be an effective solution for disposal of combustible wastes, and for harnessing energy potential of wastes.

Key Aspect

Management options for military installations is dependent on size of the population, location, local regulations, budgetary constraints and many other factors. It is imperative on base commanders to evaluate all possible options and develop a cost-effective and efficient waste management plan. The key factors in the success of waste management plan in military bases are development of new technologies/practices, infrastructure building, participation of all departments, basic environmental education for personnel and development of a quality recycling program.

Military installations are unique due to more than one factor including strict discipline, high degree of motivation, good financial resources and skilled personnel. Usually military installations are one of the largest employers in and around the region where they are based and have a very good influence of the surrounding community, which is bound to have a positive impact on overall waste management strategies in the concerned region.

Description of a Biogas Power Plant

A biogas plant is a decentralized energy system, which can lead to self-sufficiency in heat and power needs, and at the same time reduces environmental pollution. The components of a modern biogas (or anaerobic digestion) plant include: manure collection, anaerobic digester, effluent treatment, biogas storage, and biogas use/electricity generating equipment.

Working of a Biogas Plant

The fresh animal manure is stored in a collection tank before its processing to the homogenization tank which is equipped with a mixer to facilitate homogenization of the waste stream. The uniformly mixed waste is passed through a macerator to obtain uniform particle size of 5-10 mm and pumped into suitable-capacity anaerobic digesters where stabilization of organic waste takes place.

In anaerobic digestion, organic material is converted to biogas by a series of bacteria groups into methane and carbon dioxide. The majority of commercially operating digesters are plug flow and complete-mix reactors operating at mesophilic temperatures. The type of digester used varies with the consistency and solids content of the feedstock, with capital investment factors and with the primary purpose of digestion.

Biogas Cleanup

Biogas contain significant amount of hydrogen sulfide (H2S) gas which needs to be stripped off due to its highly corrosive nature. The removal of H2S takes place in a biological desulphurization unit in which a limited quantity of air is added to biogas in the presence of specialized aerobic bacteria which oxidizes H2S into elemental sulfur.

Utilization of Biogas

Biogas is dried and vented into a CHP unit to a generator to produce electricity and heat. The size of the CHP system depends on the amount of biogas produced daily.

Treatment of Digestate

The digested substrate is passed through screw presses for dewatering and then subjected to solar drying and conditioning to give high-quality organic fertilizer.  The press water is treated in an effluent treatment plant based on activated sludge process which consists of an aeration tank and a secondary clarifier. The treated wastewater is recycled to meet in-house plant requirements.

Monitoring of Environmental Parameters

A chemical laboratory is necessary to continuously monitor important environmental parameters such as BOD, COD, VFA, pH, ammonia, C:N ratio at different locations for efficient and proper functioning of the process.

Control System

The continuous monitoring of the biogas plant is achieved by using a remote control system such as Supervisory Control and Data Acquisition (SCADA) system. This remote system facilitates immediate feedback and adjustment, which can result in energy savings.