Torrefaction of Biomass: An Overview

To improve the quality of biomass, especially for cofiring purposes, biomass waste can be processed with torrefaction (also known as mild pyrolysis). With the torrefaction process, it becomes easier to make powder (high grindability) so that the desired particle size for cofiring of biomass is easier to obtain. Another advantage of the torrefaction process is that the caloric value of biomass increases by about 20%. Torrified biomass is essentially hydropobic which means ease in storage including outdoor storage. This condition also makes it easier to handle and use, in addition to reduction in transportation costs.

torrefaction-of-biomass

What is Torrefaction

Torrefaction, which is currently being considered for effective biomass utilization, is also a form of pyrolysis. In this process (named for the French word for roasting), the biomass is heated to 230 to 300 °C without contact with oxygen. For comparison, pyrolysis of biomass is typically carried out in a relatively low temperature range of 300 to 650 °C compared to 800 to 1000 °C for gasification. Torrefaction is a relatively new process that heats the biomass in the absence of air to improve its usefulness as a fuel.

Torrefaction, a process different from carbonization, is a mild pyrolysis process carried out in a temperature range of 230 to 300 °C in the absence of oxygen. During this process the biomass dries and partially devolatilizes, decreasing its mass while largely preserving its energy content. The torrefaction process removes H2O and CO2 from the biomass. As a result, both the O/C and the H/C ratios of the biomass decrease.

steps-in-biomass-torrefaction

Advantages of Biomass Torrefaction

Torrefaction of biomass improves its energy density, reduces its oxygen-to-carbon (O/C) ratio, and reduces its hygroscopic nature. Torrefaction also increases the relative carbon content of the biomass. The properties of a torrefied biomass depends on torrefaction temperature, time, and on the type of biomass feed.

Torrefaction also modifies the structure of the biomass, making it more friable or brittle. This is caused by the depolymerization of hemicellulose. As a result, the process of size reduction becomes easier, lowering its energy consumption and the cost of handling. This makes it easier to cofire biomass in a pulverized coal-fired boiler or gasify it in an entrained-flow reactor.

Another special feature of torrefaction is that it reduces the hygroscopic property of biomass; therefore, when torrefied biomass is stored, it absorbs less moisture than that absorbed by fresh biomass. For example, while raw bagasse absorbed 186% moisture when immersed in water for two hours, it absorbed only 7.6% moisture under this condition after torrefying the bagasse for 60 minutes at 250 °C (Pimchua et al., 2009). The reduced hygroscopic (or enhanced hydrophobic) nature of torrefied biomass mitigates one of the major shortcomings for energy use of biomass.

In biomass, hemicellulose is like the cement in reinforced concrete, and cellulose is like the steel rods. The strands of microfibrils (cellulose) are supported by the hemicellulose. Decomposition of hemicellulose during torrefaction is like the melting away of the cement from the reinforced concrete. Thus, the size reduction of biomass consumes less energy after torrefaction. During torrefaction the weight loss of biomass comes primarily from the decomposition of its hemicellulose constituents. Hemicellulose decomposes mostly within the temperature range 150 to 280 °C, which is the temperature window of torrefaction.

torrified-biomass

As we can see from figure above, the hemicellulose component undergoes the greatest amount of degradation within the 200 to 300 °C temperature window. Thus, hemicellulose decomposition is the primary mechanism of torrefaction. At lower temperatures (< 160 °C), as biomass dries it releases H2O and CO2. Water and carbon dioxide, which make no contribution to the energy in the product gas, constitute a dominant portion of the weight loss during torrefaction.

Above 180 °C, the reaction becomes exothermic, releasing gas with small heating values. The initial stage (< 250 °C) involves hemicellulose depolymerization, leading to an altered and rearranged polysugar structures. At higher temperatures (250–300 °C) these form chars, CO, CO2, and H2O. The hygroscopic property of biomass is partly lost in torrefaction because of the destruction of OH groups through dehydration, which prevents the formation of hydrogen bonds.

Thermal Conversion of Biomass

A wide range of thermal technologies exists to harness the energy stored in biomass. These technologies can be classified according to the principal energy carrier produced in the conversion process. Carriers are in the form of heat, gas, liquid and/or solid products, depending on the extent to which oxygen is admitted to the conversion process (usually as air). The major methods for thermal conversion of biomass are combustion, gasification and pyrolysis.

biomass-gasification

Combustion

Conventional combustion technologies raise steam through the combustion of biomass. This steam may then be expanded through a conventional turbo-alternator to produce electricity. A number of combustion technology variants have been developed. Underfeed stokers are suitable for small scale boilers up to 6 MWth.

Grate type boilers are widely deployed. They have relatively low investment costs, low operating costs and good operation at partial loads. However, they can have higher NOx emissions and decreased efficiencies due to the requirement of excess air, and they have lower efficiencies.

Fluidized bed combustors (FBC), which use a bed of hot inert material such as sand, are a more recent development. Bubbling FBCs are generally used at 10-30 MWth capacity, while Circulating FBCs are more applicable at larger scales. Advantages of FBCs are that they can tolerate a wider range of poor quality fuel, while emitting lower NOx levels.

Co-Firing

Co-firing or co-combustion of biomass wastes with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels. Co-firing involves utilizing existing power generating plants that are fired with fossil fuel (generally coal), and displacing a small proportion of the fossil fuel with renewable biomass fuels.

types-of-biomass-cofiring

Co-firing has the major advantage of avoiding the construction of new, dedicated, waste-to-energy power plant. Co-firing may be implemented using different types and percentages of wastes in a range of combustion and gasification technologies. Most forms of biomass wastes are suitable for co-firing. These include dedicated municipal solid wastes, wood waste and agricultural residues such as straw and husk.

Gasification

Gasification of biomass takes place in a restricted supply of oxygen and occurs through initial devolatilization of the biomass, combustion of the volatile material and char, and further reduction to produce a fuel gas rich in carbon monoxide and hydrogen. This combustible gas has a lower calorific value than natural gas but can still be used as fuel for boilers, for engines, and potentially for combustion turbines after cleaning the gas stream of tars and particulates.

Biomass_Gasification_Process

Layout of a Typical Biomass Gasification Plant

If gasifiers are ‘air blown’, atmospheric nitrogen dilutes the fuel gas to a level of 10-14 percent that of the calorific value of natural gas. Oxygen and steam blown gasifiers produce a gas with a somewhat higher calorific value. Pressurized gasifiers are under development to reduce the physical size of major equipment items.

A variety of gasification reactors have been developed over several decades. These include the smaller scale fixed bed updraft, downdraft and cross flow gasifiers, as well as fluidized bed gasifiers for larger applications. At the small scale, downdraft gasifiers are noted for their relatively low tar production, but are not suitable for fuels with low ash melting point (such as straw). They also require fuel moisture levels to be controlled within narrow levels.

Pyrolysis

Pyrolysis is the term given to the thermal degradation of wood in the absence of oxygen. It enables biomass to be converted to a combination of solid char, gas and a liquid bio-oil. Pyrolysis technologies are generally categorized as “fast” or “slow” according to the time taken for processing the feed into pyrolysis products. These products are generated in roughly equal proportions with slow pyrolysis. Using fast pyrolysis, bio-oil yield can be as high as 80 percent of the product on a dry fuel basis.

Biomass-Pyrolysis

Bio-oil can act as a liquid fuel or as a feedstock for chemical production. A range of bio-oil production processes are under development, including fluid bed reactors, ablative pyrolysis, entrained flow reactors, rotating cone reactors, and vacuum pyrolysis.