Biofuels from MSW – An Introduction

Nowadays, biofuels are in high demand for transportation, industrial heating and electricity generation. Different technologies are being tested for using MSW as feedstock for producing biofuels. This article will provide brief description of biochemical and thermochemical conversion routes for the production of biofuels from municipal solid wastes.

drop-in-biofuels

Biochemical conversion

The waste is collected and milled, particles are shredded to reduce the size of 0.2-1.22 mm. MSW is pretreated to improve the accessibility of enzymes and make use of the enzymes in the bacteria for biological degradation on solid waste. The mixture of biomass is mixed with sulfuric acid and sodium hydroxide and autoclaved. After steam treatment, the mixture is filtered and washed with deionized water. The pre-treated mixture is then dried and drained overnight. The pre-treatment process improves the formation of sugars by enzymatic hydrolysis, avoids the loss of carbohydrate and avoids the formation of by-products inhibitory.

After pre-treatment (pre-hydrolysis), the mixture undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. The common enzymes used for starch-based substrates are ?- and ?- amylase, pullulanase, isomylase and glucoamylase. Whereas for lignocellulose based substrates cellulases and ?- glucosidases.

Finally, the mixture is fermented; sugars are converted to ethanol by using microorganisms such as, bacteria, yeast or fungi. The cellulosic and starch hydrolysates ethanolic fermentation were fermented by M. indicus at 37 °C for 72 h. The fungus uses the hexoses and pentoses sugars with a high concentration of inhibitors (i.e. furfural, hydroxymethyl furfural, and acetic acid).

The composition of MSW feedstock effects the yield of the subsequent processes. A high composition of food and vegetable waste is more desirable, as these wastes are easily degradable and result in high yields compared to paper and cardboard.

Thermochemical conversion

Gasification process is carried out by treating carbon-based material with either oxygen or steam to produce a gaseous fuel which requires high temperature and pressure. It can be described as partial oxidation of the waste. At first waste is reduced in size and dried to reduce the amount of energy used in the gasifier.

Biomass_Gasification_Process

Layout of a Typical Biomass Gasification Plant

 

The carbonaceous material oxidizes (combines with oxygen) to produce syngas (carbon monoxide and hydrogen) along with carbon dioxide, methane, water vapor, char, slag, and trace gases (depending on the composition of the feedstock). The syngas is then cleaned to remove any sulfur or acid gases and trace metals (depending on the composition of the feedstock).

The main uses of syngas are direct burning on site to provide heat or energy (by using boilers, gas turbines or steam driven engines) and refined to liquid fuels such as gasoline or ethanol.

Syngas can then be converted into biofuels and chemicals via catalytic processes such as the Fischer-Tropsch process. The Fischer-Tropsch process is a series of catalytic chemical reactions that convert syngas into liquid hydrocarbons by applying heat and pressure. Hydrocracking, hydro-treating, and hydro-isomerization can also be part of the “upgrading” process to maximize quantities of different products.

Biomass Gasification Process

Biomass gasification involves burning of biomass in a limited supply of air to give a combustible gas consisting of carbon monoxide, carbon dioxide, hydrogen, methane, water, nitrogen, along with contaminants like small char particles, ash and tars. The gas is cleaned to make it suitable for use in boilers, engines and turbines to produce heat and power (CHP).

Biomass gasification provides a means of deriving more diverse forms of energy from the thermochemical conversion of biomass than conventional combustion. The basic gasification process involves devolatization, combustion and reduction.

During devolatization, methane and other hydrocarbons are produced from the biomass by the action of heat which leaves a reactive char.

During combustion, the volatiles and char are partially burned in air or oxygen to generate heat and carbon dioxide. In the reduction phase, carbon dioxide absorbs heat and reacts with the remaining char to produce carbon monoxide (producer gas). The presence of water vapour in a gasifier results in the production of hydrogen as a secondary fuel component.

There are two main types of gasifier that can be used to carry out this conversion, fixed bed gasifiers and fluidized bed gasifiers. The conversion of biomass into a combustible gas involves a two-stage process. The first, which is called pyrolysis, takes place below 600°C, when volatile components contained within the biomass are released. These may include organic compounds, hydrogen, carbon monoxide, tars and water vapour.

Pyrolysis leaves a solid residue called char. In the second stage of the gasification process, this char is reacted with steam or burnt in a restricted quantity of air or oxygen to produce further combustible gas. Depending on the precise design of gasifier chosen, the product gas may have a heating value of 6 – 19 MJ/Nm3.

Layout of a Typical Biomass Gasification Plant

The products of gasification are a mixture of carbon monoxide, carbon dioxide, methane, hydrogen and various hydrocarbons, which can then be used directly in gas turbines, and boilers, or used as precursors for synthesising a wide range of other chemicals.

In addition there are a number of methods that can be used to produce higher quality product gases, including indirect heating, oxygen blowing, and pressurisation. After appropriate treatment, the resulting gases can be burned directly for cooking or heat supply, or used in secondary conversion devices, such as internal combustion engines or gas turbines, for producing electricity or shaft power (where it also has the potential for CHP applications).

 

See some of our favorite inspirational quotes

Insights into MSW-to-Energy

You know the saying: One person’s trash is another’s treasure. When it comes to recovering energy from municipal solid waste — commonly called garbage or trash— that treasure can be especially useful. Instead of taking up space in a landfill, we can process our trash to produce energy to power our homes, businesses and public buildings.

In 2015, the United States got about 14 billion kilowatt-hours of electricity from burning municipal solid waste, or MSW. Seventy-one waste-to-energy plants and four additional power plants burned around 29 million tons of MSW in the U.S. that year. However, just 13 percent of the country’s waste becomes energy. Around 35 percent is recycled or composted, and the rest ends up in landfills.

Recovering Energy Through Incineration

The predominant technology for MSW-to-energy plants is incineration, which involves burning the trash at high temperatures. Similarly to how some facilities use coal or natural gas as fuel sources, power plants can also burn MSW as fuel to heat water, which creates steam, turns a turbine and produces electricity.

Several methods and technologies can play a role in burning trash to create electricity. The most common type of incineration plant is what’s called a mass-burn facility. These units burn the trash in one large chamber. The facility might sort the MSW before sending it to the combustion chamber to remove non-combustible materials and recyclables.

These mass-burn systems use excess air to facilitate mixing, and ensure air gets to all the waste. Many of these units also burn the fuel on a sloped, moving grate to mix the waste even further. These steps are vital because solid waste is inconsistent, and its content varies. Some facilities also shred the MSW before moving it to the combustion chamber.

Gasification Plants

Another method for converting trash into electricity is gasification. This type of waste-to-energy plant doesn’t burn MSW directly, but instead uses it as feedstock for reactions that produce a fuel gas known as synthesis gas, or syngas. This gas typically contains carbon monoxide, carbon dioxide, methane, hydrogen and water vapor.

Approaches to gasification vary, but typically include high temperatures, high-pressure environments, very little oxygen and shredding MSW before the process begins. Common gasification methods include:

  • Pyrolysis, which involves little to no oxygen, partial pressure and temperatures between approximately 600 and 800 degrees Celsius.
  • Air-fed systems, which use air instead of pure oxygen and temperatures between 800 and 1,800 degrees Celsius.
  • Plasma or plasma arc gasification, which uses plasma torches to increase temperatures to 2,000 to 2,800 degrees Celsius.

Syngas can be burned to create electricity, but it can also be a component in the production of transportation fuels, fertilizers and chemicals. Proponents of gasification report that it is a more efficient waste-to-energy method than incineration, and can produce around 1,000 kilowatt-hours of electricity from one ton of MSW. Incineration, on average, produces 550 kilowatt-hours.

Challenges of MSW-to-Energy

Turning trash into energy seems like an ideal solution. We have a lot of trash to deal with, and we need to produce energy. MSW-to-energy plants solve both of those problems. However, a relatively small amount of waste becomes energy, especially in the U.S.

Typical layout of MSW-to-Energy Plant

This lack may be due largely to the upfront costs of building a waste-to-energy plant. It is much cheaper in the short term to send trash straight to a landfill. Some people believe these energy production processes are just too complicated and expensive. Gasification, especially, has a reputation for being too complex.

Environmental concerns also play a role, since burning waste can release greenhouse gases. Although modern technologies can make burning waste a cleaner process, its proponents still complain it is too dirty.

Despite these challenges, as trash piles up and we continue to look for new sources of energy, waste-to-energy plants may begin to play a more integral role in our energy production and waste management processes. If we handle it responsibly and efficiently, it could become a very viable solution to several of the issues our society faces.

Waste-to-Energy in Saudi Arabia

waste-jeddahUrban waste management has emerged as a big challenge for the government and local bodies in Saudi Arabia. The country generates more than 15 million tons of municipal solid waste each year with per capita waste production estimated to be 2 kg per day, among the highest worldwide. Municipal waste production in three largest cities – Riyadh, Jeddah and Dammam – exceeds 6 million tons per annum which gives an indication of the enormity of the problem faced by civic bodies.

The Problem of Waste

Municipal waste generation in Saudi Arabia is increasing at an unprecedented rate. Due to high population growth rate, rapid urbanization and fast-paced economic development, MSW generation is expected to cross 30 million tons per year by 2033. More than 75 percent of Kingdom’s population is concentrated in urban areas, and collected garbage is thrown in landfills or dumpsites without any processing or treatment.

Most of the landfills in Saudi Arabia are non-sanitary and prone to problems like leachate, vermin, flies and spontaneous fires, apart from greenhouse gas emissions.  It has become necessary for the Saudi government to devise an integrated waste management strategy, using international best practices and modern technologies, to tackle heaps of garbage accumulating across the country.

Promise of Waste-to-Energy

Waste-to-energy provides a cost-effective and eco-friendly solution to both energy demand and MSW disposal problems in Saudi Arabia. Increasing waste generation, inability of existing solutions to tackle waste and expansion of cities into ex-dump sites are strong drivers for large-scale deployment of WTE systems in the Kingdom.

Saudi Arabia has tremendous waste-to-energy potential due to plentiful availability of good quality municipal waste. Modern waste-to-energy technologies, such as RDF-based incineration, gasification, pyrolysis and anaerobic digestion have the ability to transform power demand and waste management scenario in the country.

A typical 250 – 300 tons per day garbage-to-energy plant can produce around 3 – 4 MW of electricity and a network of such plants in cities around the country can make a real difference in waste management as well as energy sectors.  In fact, such plants also produce tremendous about of heat energy which can be utilized in process industries and district cooling systems, further maximizing their usefulness.

Key Challenges

Around the world, waste-to-energy finds wide acceptance as a tool to manage urban wastes, with more than 1,000 waste-to-energy plants in operation globally, especially in Europe, China and the Asia-Pacific. However, waste-to-energy is struggling to get off-the-ground in Saudi Arabia due to several issues, the main reason being the cheap and plentiful availability of oil which prevents decision-makers to set effective regulations for waste-to-energy development in the country.

Waste-to-Energy is widely accepted as a part of sustainable waste management strategy worldwide.

Waste-to-Energy is widely accepted as a part of sustainable waste management strategy worldwide.

Policy-makers in KSA should consider waste-to-energy as a sustainable waste management solution, rather than as a power-producing industry. Unlike Western countries, waste management services are practically free-of-cost for the waste generators which act as a deterrent for governmental investment in new waste management solutions and technologies, such as waste-to-energy. Infact, waste collection, transport and disposal methods in Saudi Arabia do not match the standards of a developed country.

Future Outlook

Vision 2030, touted as most comprehensive economic reform package in Saudi history, puts forward a strong regulatory and investment framework to develop Saudi waste-to-energy sector. An ambitious target of 3GW of energy from waste is to be achieved by 2025.  A methodical introduction of modern waste management techniques like material recovery facilities, waste-to-energy systems and recycling infrastructure can significantly improve waste management scenario and can also generate good business opportunities.

To sum up, environmental issues associated with non-sanitary landfills, ineffectiveness of prevalent waste management model and rising energy demand are key drivers for development of waste-to-energy sector in Saudi Arabia.

Waste to Energy Conversion Routes

Teesside-WTE-plantWaste-to-energy is the use of modern combustion and biological technologies to recover energy from urban wastes. There are three major waste to energy conversion routes – thermochemical, biochemical and physico-chemical. Thermochemical conversion, characterized by higher temperature and conversion rates, is best suited for lower moisture feedstock and is generally less selective for products. On the other hand, biochemical technologies are more suitable for wet wastes which are rich in organic matter.

Thermochemical Conversion

The three principal methods of thermochemical conversion are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air. The most common technique for producing both heat and electrical energy from household wastes is direct combustion.

Combined heat and power (CHP) or cogeneration systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity.

WTE_Pathways

Combustion technology is the controlled combustion of waste with the recovery of heat to produce steam which in turn produces power through steam turbines. Pyrolysis and gasification represent refined thermal treatment methods as alternatives to incineration and are characterized by the transformation of the waste into product gas as energy carrier for later combustion in, for example, a boiler or a gas engine. Plasma gasification, which takes place at extremely high temperature, is also hogging limelight nowadays.

Biochemical Conversion

Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas.

Anaerobic digestion is a reliable technology for the treatment of wet, organic waste.  Organic waste from various sources is biochemically degraded in highly controlled, oxygen-free conditions circumstances resulting in the production of biogas which can be used to produce both electricity and heat.

In addition, a variety of fuels can be produced from waste resources including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues. Globally, biofuels are most commonly used to power vehicles, heat homes, and for cooking.

Physico-chemical Conversion

The physico-chemical technology involves various processes to improve physical and chemical properties of solid waste. The combustible fraction of the waste is converted into high-energy fuel pellets which may be used in steam generation. The waste is first dried to bring down the high moisture levels. Sand, grit, and other incombustible matter are then mechanically separated before the waste is compacted and converted into fuel pellets or RDF.

Fuel pellets have several distinct advantages over coal and wood because it is cleaner, free from incombustibles, has lower ash and moisture contents, is of uniform size, cost-effective, and eco-friendly.

Energy Potential of Coconut Biomass

coconut-shell-biomassCoconuts are produced in 92 countries worldwide on about more than 10 million hectares. Indonesia, Philippines and India account for almost 75% of world coconut production with Indonesia being the world’s largest coconut producer. A coconut plantation is analogous to energy crop plantations, however coconut plantations are a source of wide variety of products, in addition to energy. The current world production of coconuts has the potential to produce electricity, heat, fiberboards, organic fertilizer, animal feeds, fuel additives for cleaner emissions, health drinks, etc.

The coconut fruit yields 40 % coconut husks containing 30 % fiber, with dust making up the rest. The chemical composition of coconut husks consists of cellulose, lignin, pyroligneous acid, gas, charcoal, tar, tannin, and potassium. Coconut dust has high lignin and cellulose content. The materials contained in the casing of coco dusts and coconut fibers are resistant to bacteria and fungi.

Coconut husk and shells are an attractive biomass fuel and are also a good source of charcoal. The major advantage of using coconut biomass as a fuel is that coconut is a permanent crop and available round the year so there is constant whole year supply. Activated carbon manufactured from coconut shell is considered extremely effective for the removal of impurities in wastewater treatment processes.

Coconut Shell

Coconut shell is an agricultural waste and is available in plentiful quantities throughout tropical countries worldwide. In many countries, coconut shell is subjected to open burning which contributes significantly to CO2 and methane emissions.  Coconut shell is widely used for making charcoal. The traditional pit method of production has a charcoal yield of 25–30% of the dry weight of shells used. The charcoal produced by this method is of variable quality, and often contaminated with extraneous matter and soil. The smoke evolved from pit method is not only a nuisance but also a health hazard.

The coconut shell has a high calorific value of 20.8MJ/kg and can be used to produce steam, energy-rich gases, bio-oil, biochar etc. It is to be noted that coconut shell and coconut husk are solid fuels and have the peculiarities and problems inherent in this kind of fuel.  Coconut shell is more suitable for pyrolysis process as it contain lower ash content, high volatile matter content and available at a cheap cost. The higher fixed carbon content leads to the production to a high-quality solid residue which can be used as activated carbon in wastewater treatment. Coconut shell can be easily collected in places where coconut meat is traditionally used in food processing.

Coconut Husk

Coconut husk has high amount of lignin and cellulose, and that is why it has a high calorific value of 18.62MJ/kg. The chemical composition of coconut husks consists of cellulose, lignin, pyroligneous acid, gas, charcoal, tar, tannin, and potassium. The predominant use of coconut husks is in direct combustion in order to make charcoal, otherwise husks are simply thrown away. Coconut husk can be transformed into a value-added fuel source which can replace wood and other traditional fuel sources. In terms of the availability and costs of coconut husks, they have good potential for use in power plants.

Gasification of Municipal Wastes

utishinai-gasification-plantGasification of municipal wastes involves the reaction of carbonaceous feedstock with an oxygen-containing reagent, usually oxygen, air, steam or carbon dioxide, generally at temperatures above 800°C. The process is largely exothermic but some heat may be required to initialise and sustain the gasification process. The main product of the gasification process is syngas, which contains carbon monoxide, hydrogen and methane. Typically, the gas generated from gasification has a low heating value (LHV) of 3 – 6 MJ/Nm3.The other main product produced by gasification is a solid residue of non-combustible materials (ash) which contains a relatively low level of carbon. Syngas can be used in a number of ways, including:

  • Syngas can be burned in a boiler to generate steam for power generation or industrial heating.
  • Syngas can be used as a fuel in a dedicated gas engine.
  • Syngas, after reforming, can be used in a gas turbine
  • Syngas can also be used as a chemical feedstock.

Gasification has been used worldwide on a commercial scale for several decades by the chemical, refining, fertilizer and electric power industries. MSW gasification plants are relatively small-scale, flexible to different inputs and modular development. The quantity of power produced per tonne of waste by gasification process is larger than when applying the incineration method. The most important reason for the growing popularity of gasification of municipal wastes has been the increasing technical, environmental and public dissatisfaction with the performance of conventional incinerators.

Plasma Gasification

Plasma gasification uses extremely high temperatures in an oxygen-starved environment to completely decompose input waste material into very simple molecules in a process similar to pyrolysis. The heat source is a plasma discharge torch, a device that produces a very high temperature plasma gas. It is carried out under oxygen-starved conditions and the main products are vitrified slag, syngas and molten metal.

plasma-gasification

Vitrified slag may be used as an aggregate in construction; the syngas may be used in energy recovery systems or as a chemical feedstock; and the molten metal may have a commercial value depending on quality and market availability. The technology has been in use for steel-making and is used to melt ash to meet limits on dioxin/furan content. There are several commercial-scale plants already in operation in Japan for treating MSW and auto shredder residue.

Advantages of Gasification

There are numerous solid waste gasification facilities operating or under construction around the world. Gasification of solid wastes has several advantages over traditional combustion processes for MSW treatment. It takes place in a low oxygen environment that limits the formation of dioxins and of large quantities of SOx and NOx. Furthermore, it requires just a fraction of the stoichiometric amount of oxygen necessary for combustion. As a result, the volume of process gas is low, requiring smaller and less expensive gas cleaning equipment.

The lower gas volume also means a higher partial pressure of contaminants in the off-gas, which favours more complete adsorption and particulate capture. Finally, gasification generates a fuel gas that can be integrated with combined cycle turbines, reciprocating engines and, potentially, with fuel cells that convert fuel energy to electricity more efficiently than conventional steam boilers.

Disadvantages of Gasification

The gas resulting from gasification of municipal wastes contains various tars, particulates, halogens, heavy metals and alkaline compounds depending on the fuel composition and the particular gasification process. This can result in agglomeration in the gasification vessel, which can lead to clogging of fluidised beds and increased tar formation. In general, no slagging occurs with fuels having ash content below 5%. MSW has a relatively high ash content of 10-12%.

Utilization of Date Palm Biomass

Date palm trees produce huge amount of agricultural wastes in the form of dry leaves, stems, pits, seeds etc. A typical date tree can generate as much as 20 kilograms of dry leaves per annum while date pits account for almost 10 percent of date fruits.

date-wastes

Date palm biomass is found in large quantities across the Middle East

Date palm is considered a renewable natural resource because it can be replaced in a relatively short period of time. It takes 4 to 8 years for date palms to bear fruit after planting, and 7 to 10 years to produce viable yields for commercial harvest. Usually date palm wastes are burned in farms or disposed in landfills which cause environmental pollution in dates-producing nations.

The major constituents of date palm biomass are cellulose, hemicelluloses and lignin. In addition, date palm has high volatile solids content and low moisture content. These factors make date palm residues an excellent biomass resource in date-palm producing nations.

Date palm biomass is an excellent resource for charcoal production in Middle East

A wide range of physico-chemical, thermal and biochemical technologies exists for sustainable utilization of date palm biomass. Apart from charcoal production and energy conversion (using technologies like combustion and gasification), below are few ways for utilization of date palm wastes:

Conversion into fuel pellets or briquettes

Biomass pellets are a popular type of alternative fuel (analogous to coal), generally made from wood wastes and agricultural biomass. The biomass pelletization process consists of multiple steps including pre-treatment, pelletization and post-treatment of biomass wastes. Biomass pellets can be used as a coal replacement in power plant, industries and other application.

Conversion into energy-rich products

Biomass pyrolysis is the thermal decomposition of date palm biomass occurring in the absence of oxygen. The products of biomass pyrolysis include biochar, bio-oil and gases including methane, hydrogen, carbon monoxide, and carbon dioxide.

Depending on the thermal environment and the final temperature, pyrolysis will yield mainly biochar at low temperatures, less than 450 0C, when the heating rate is quite slow, and mainly gases at high temperatures, greater than 800 0C, with rapid heating rates. At an intermediate temperature and under relatively high heating rates, the main product is bio-oil.

Bio-oil can be upgraded to either a special engine fuel or through gasification processes to a syngas which can then be processed into biofuels. Bio-oil is particularly attractive for co-firing because it can be more readily handled and burned than solid fuel and is cheaper to transport and store.

Conversion into biofertilizer

Composting is the most popular method for biological decomposition of organic wastes. Date palm waste has around 80% organic content which makes it very well-suited for the composting process. Commercial-scale composting of date palm wastes can be carried out by using the traditional windrow method or a more advanced method like vermicomposting.

Energy Value of Agricultural Wastes

Large quantities of agricultural wastes, resulting from crop cultivation activities, are a promising source of energy supply for production, processing and domestic activities in rural areas of the concerned region. The available agricultural residues are either being used inefficiently or burnt in the open to clear the fields for subsequent crop cultivation.

On an average 1.5 tons of crop residue are generated for processing 1 ton of the main product. In addition, substantial quantities of secondary residues are produced in agro-industries processing farm produce such as paddy, sugarcane, coconut, fruits and vegetables.

Agricultural crop residues often have a disposal cost associated with them. Therefore, the “waste-to-energy” conversion processes for heat and power generation, and even in some cases for transport fuel production, can have good economic and market potential. They have value particularly in rural community applications, and are used widely in countries such as Sweden, Denmark, Netherlands, USA, Canada, Austria and Finland.

The energy density and physical properties of agricultural biomass wastes are critical factors for feedstock considerations and need to be understood in order to match a feedstock and processing technology.

There are six generic biomass processing technologies based on direct combustion (for power), anaerobic digestion (for methane-rich biogas), fermentation (of sugars for alcohols), oil exaction (for biodiesel), pyrolysis (for biochar, gas and oils) and gasification (for carbon monoxide and hydrogen-rich syngas). These technologies can then be followed by an array of secondary treatments (stabilization, dewatering, upgrading, refining) depending on specific final products.

It is well-known that power plants based on baled agricultural residues are efficient and cost-effective energy generators. Residues such as Rice Husks, Wheat Straw and Maize Cobs are already concentrated at a point where it is an easily exploitable source of energy, particularly if it can be utilized on-site to provide combined heat and power.

The selection of processing technologies needs to be aligned to the nature and structure of the biomass feedstock and the desired project outputs. It can be seen that direct combustion or gasification of biomass are appropriate when heat and power are required.

Anaerobic digestion, fermentation and oil extraction are suitable when specific biomass wastes are available that have easily extractable oils and sugars or high water contents. On the other hand, only thermal processing of biomass by pyrolysis can provide the platform for all of the above forms of product.

Many thermal processing technologies for agricultural wastes require the water content of biomass to be low (<15 per cent) for proper operation. For these technologies the energy cost of drying can represent a significant reduction in process efficiency.

Moisture content is of important interest since it corresponds to one of the main criteria for the selection of energy conversion process technology. Thermal conversion technology requires biomass fuels with low moisture content, while those with high moisture content are more appropriate for biological-based process such as fermentation or anaerobic digestion.

The ash content of biomass influences the expenses related to handling and processing to be included in the overall conversion cost. On the other hand, the chemical composition of ash is a determinant parameter in the consideration of a thermal conversion unit, since it gives rise to problems of slagging, fouling, sintering and corrosion.

Biomass Cogeneration Systems

Biomass fuels are typically used most efficiently and beneficially when generating both power and heat through biomass cogeneration systems (also known as combined heat and power or CHP system). Biomass conversion technologies transform a variety of wastes into heat, electricity and biofuels by employing a host of strategies. Conversion routes are generally thermochemical or biochemical, but may also include chemical and physical.

The simplest way is to burn the biomass in a furnace, exploiting the heat generated to produce steam in a boiler, which is then used to drive a steam turbine. Advanced biomass conversion technologies include biomass integrated gasification combined cycle (BIGCC) systems, cofiring (with coal or gas), pyrolysis and second generation biofuels.

Biomass Cogeneration Systems

A typical biomass cogeneration (or biomass cogen) system provides:

  • Distributed generation of electrical and/or mechanical power.
  • Waste-heat recovery for heating, cooling, or process applications.
  • Seamless system integration for a variety of technologies, thermal applications, and fuel types into existing building infrastructure.

Biomass cogeneration systems consist of a number of individual components—prime mover (heat engine), generator, heat recovery, and electrical interconnection—configured into an integrated whole. The type of equipment that drives the overall system (i.e., the prime mover) typically identifies the CHP unit.

Prime Movers

Prime movers for biomass cogeneration units include reciprocating engines, combustion or gas turbines, steam turbines, microturbines, and fuel cells. These prime movers are capable of burning a variety of fuels, including natural gas, coal, oil, and alternative fuels to produce shaft power or mechanical energy.

Key Components

A biomass-fueled cogeneration facility is an integrated power system comprised of three major components:

  • Biomass receiving and feedstock preparation.
  • Energy conversion – Conversion of the biomass into steam for direct combustion systems or into biogas for the gasification systems.
  • Power and heat production – Conversion of the steam or syngas or biogas into electric power and process steam or hot water

Feedstock for Biomass Cogeneration Plants

The lowest cost forms of biomass for cogeneration plants are residues. Residues are the organic byproducts of food, fiber, and forest production, such as sawdust, rice husks, wheat straw, corn stalks, and sugarcane bagasse. Forest residues and wood wastes represent a large potential resource for energy production and include forest residues, forest thinnings, and primary mill residues.

combined-heat-and-power

Energy crops are perennial grasses and trees grown through traditional agricultural practices that are produced primarily to be used as feedstocks for energy generation, e.g. hybrid poplars, hybrid willows, and switchgrass. Animal manure can be digested anaerobically to produce biogas in large agricultural farms and dairies.

To turn a biomass resource into productive heat and/or electricity requires a number of steps and considerations, most notably evaluating the availability of suitable biomass resources; determining the economics of collection, storage, and transportation; and evaluating available technology options for converting biomass into useful heat or electricity.