About Michael Tobias

Michael Tobias is the founder and principal of Nearby Engineers, an Inc 5000 Fastest Growing Company in America. He leads a team of 30+ mechanical, electrical, plumbing, and fire protection engineers from the company headquarters in New York City, and has led more than 1,000 projects in New York, New Jersey, Chicago, Pennsylvania, Connecticut, Florida, Maryland, and California, as well as Singapore and Malaysia. He is passionate about sustainability and is a LEED AP.

Initiatives to Reduce Plastic Waste Leads to Growth in Global Plastic Recycling Market

Wide-spread environmental concerns about plastic waste are leading to increased demand for the plastic recycling (PR) market that has various uses for plastic waste. At the same time, and in line with this growing need, an increased number of industries that produce plastic products have committed to reducing their use of virgin plastic and ensuring that the plastic they do produce is recyclable, reusable, or compostable.

Growth of the Plastic Recycling Market

Valued at around $43.73 billion in 2018, research indicates that the plastic recycling market will grow at a compound annual growth rate (CAGR) of 6.6% in revenue and 8.8% in volume by 2027. Findings are that rising environmental concerns will be the primary driving force along with the concerted global effort towards effective waste management and sustainability. Another is the growing awareness of the need for recycling plastic and the anticipated market growth of the PR market.

A new report released by Research and Markets in February 2020 gives a market snapshot in its executive summary and discusses the plastic recycling market by material type, source, application, and geography. Titled Global Plastic Recycling Market Size, Market Share, Application Analysis, Regional Outlook, Growth Trends, Key Players, Competitive Strategies and Forecasts, 2019 to 2027, it explores the roles of the many global and regional participants in the PR market and analyses anticipated acquisitions, partnerships, and collaborations. These, the report states, are likely to be the major strategies market players will follow in an endeavor to expand their geographic presence and market share.

An older report published mid-2018 gave a slightly lower CAGR for the period 2018 to 2023 of 4.3%. This report, Global Plastic Waste Management Market 2018 by Manufacturers, Regions, Type and Application, Forecast to 2023 stated that it would grow from an estimated $27,1000 in 2017 to $34,900 in 2023.

Global Focus

When research for the new report was carried out during 2018, the Asia-Pacific region including China, Indonesia, Malaysia, and India, had the highest market share in plastic recycling. This was attributed to the fact that the region has the largest share in the generation of plastic waste and is also the biggest plastic waste importer.

However, Europe was pinpointed as a region poised to become the fastest-growing in the PR market due to increasing government initiatives and the improvement of recycling facilities in this part of the world.

While the report covers at least 16 companies involved in plastic recycling globally, the Hungarian MOL Group has been highlighted as a result of its acquisition of Aurora, a German recycled plastic compounder company. MOL is a well-established supplier of virgin polymers and was motivated by its Enter Tomorrow 2030 strategy that aims to move its business from a traditional fuel-based model to a higher value-added petrochemical product portfolio. More specifically, MOL intends to strengthen its position as a supplier in the sustainable plastic compounding segment of the automotive industry.

The older report focused on plastic waste management not only in the Asia-Pacific region but also in North and South America, Europe, the Middle East, and Africa.

Use of Recycled Plastic

In terms of plastic materials, high-density polyethylene (HDPE) and polyethylene terephthalate (PET) had the biggest market share in 2018. The reason given for this was a rapid surge in demand for PET and HDPE for the manufacturing of packaging. Hopefully, this won’t increase the production of PET and HDPE, but will rather help to get rid of waste.

As the CEO of Unilever, Alan Jope, said in a press statement late 2019: “Plastic has its place, but that place is not in the environment.” He was announcing Unilever’s commitment to halve its use of virgin plastic, reduce its use of plastic packaging, and dramatically step up its use of recycled plastic by 2025. They would also help to collect and process more plastic packaging than it sells – which will amount to about 600,000 tonnes per year, he said.

plastic-wastes

 

Additionally, technological advances in the PR industry have led to other less expected uses including the manufacture of denim clothing.

Realizing the environmental impact production of denim clothing has, Levi Strauss & Co. has taken bold steps to reduce its use of water and chemicals in cotton and cotton-clothing production, and about a decade ago, the company launched its much more sustainable Water<Less range of jeans. In 2013, Levi’s used dumped plastic bottles and food trays to make 300,000 jeans and trucker jackets for its spring collection. Of course, not the entire product was made from plastic, but it was guaranteed that at least 20% came from recycled plastic content.

Many other items are also made from recycled plastic, some with more plastic content than others. They include bags, rugs and mats, blankets, bottles, planters, dog collars, shoes, decking, fencing, and outdoor furniture.

The Future of Plastic

While many people talk about plastic as a material that should be eradicated, it does have remarkable uses as Alan Jope implies. But there is a dire need to change our thinking. The irony is that when recycled plastic was invented it was used to try and solve environmental problems like reducing the hunting of elephants for ivory and to provide protective sheaths for electrical wiring.

There is undoubtedly too much virgin plastic being produced worldwide and during the process, there are too many other natural resources being depleted. Added to this, too many consumers have no knowledge or concern about the use and disposal of plastic products. They simply don’t care!

We, as a global nation, need to focus more on the reuse, recycling, and remanufacture of plastic, which is exactly what plastic recycling companies can do so successfully.

Ultimately, we need to eradicate plastic waste by making it useful, and there is no doubt that the mechanical engineering sector is well positioned to find solutions.

Generating Electricity from Municipal Solid Waste

We live in a throwaway society that accumulates vast quantities of waste every day. While this comes with pressing challenges, there are also opportunities for professionals including electrical engineers to process at least some of the waste to produce much-needed renewable energy.

According to the U.S. Energy Information Administration (EIA), in 2018 a total of 68 U.S. power plants generated around 14 billion kilowatt-hours of electricity from 29.5 million tons of combustible municipal solid waste (MSW). Biomass, which comes from plants and animals and is a source of renewable energy, was responsible for more than half (about 51%) of the electricity generated from waste. It also accounted for about 64% of the weight of the MSW used. The rest of the waste used was from other combustible materials including synthetic materials made from petroleum and plastics. Glass and metal are generally not noncombustible.

WTE_Plant_Belgium

Waste-to-Energy is now widely accepted as a part of sustainable waste management strategy.

Municipal Solid Waste in the U.S.

Burning MSW is not only a sustainable way to produce electricity, it also reduces the volume of waste that would inevitably end up in landfills. Instead, the EIA estimates that burning MSW effectively reduces waste volumes by about 87%.

But, while more than 268 million tons of MSW are generated in the United States every year, in 2017, only 12.7% of it was burned to recover energy. More than half (52.1%) went to landfill, about a quarter (25.1%) was recycled, and the rest (10.1%) was used to generate compost.

According to a U.S. Environmental Protection Agency (EPA) fact sheet on sustainable materials management published in November 2019, the total MSW generated in 2017 by material, comprised:

  • Paper and paperboard, primarily containers and packaging 25%
  • Food 15.2% (see below)
  • Plastics 13.2% (19.2% of the total materials that ended up in landfill were plastics)
  • Yard trimmings 13.1% (most of this type of waste is composted)
  • Rubber, leather and textiles 9.7%
  • Metals 9.4%
  • Wood 6.7%
  • Glass 4.2%
  • Other 3.5%

Indicating tremendous human waste in its worst form, 22% of the material that ended up in landfill was classified as food. Trashed food was also the product category with the highest landfill rate, at an alarming 75.3%. Nearly a quarter (22%) of materials that were combusted with energy recovery were food, and overall, food was also the highest product category to recover energy, with a rate of 18.4%.

The total MSW combusted to generate energy was made up of the following materials:

  • Food 22%
  • Plastics 16.4%
  • Rubber, leather, and textiles 16.1%
  • Paper and paperboard 13.2%
  • Wood 8.4%
  • Metals 8.6%
  • Yard trimmings 6.2%
  • Glass 4.3%
  • Other 4.3%

Generating Electricity from MSW

There are a variety of MSW-to-energy technologies, but in the U.S. the most common system involves mass burning of unprocessed MSW in a large incinerator that has a boiler that produces steam, and a generator that produces electricity. Another entails processing MSW into fuel pellets for use in smaller power plants.

Waste materials destined to be processed to generate electricity

Generating electricity in mass-burn WTE plants is remarkably straightforward and follows seven basic steps:

  1. The MSW is dumped out of garbage trucks into a large pit.
  2. A crane with a giant claw attachment is used to grab the waste and dump it into a combustion chamber.
  3. The waste, which now becomes the fuel, starts to burn, releasing heat.
  4. The heat that is released turns water in the boiler into high-pressure steam.
  5. The steam turns the turbine generator’s blades and produces electricity.
  6. The mass-burn plant incorporates an control system to prevent air pollution by removing pollutants from the combustion gas before it is released through a smoke-stack.
  7. Ash is inevitably produced in the boiler and the air pollution control system, and this has to be removed before another load of waste can be burned.

While the volumes burned as fuel in different plants vary, for every 100 pounds of MSW produced in the U.S., potentially, more than 85 pounds could be burned to generate electricity.

Of course, the U.S. isn’t the only country that uses waste-to-energy plants to generate electricity from MSW. And in fact, when compared to a lot of other countries, the percentage of MSW burned with energy recovery in the U.S. is minimal. At least nine countries are named by the EIA as bigger producers of electricity from municipal waste. In Japan and some European countries, for instance, there are fewer energy resources and not much open space available for landfills. So generating electricity from MSW is an obvious opportunity.

The four leading nations identified by the EIA as burning the most MSW with energy recovery are:

  • Japan 68%
  • Norway 54%
  • Switzerland 48%
  • France 35%
  • The United Kingdom 34%

One thing’s for certain, the percentages are all set to continue increases globally as the move towards sustainability gains momentum. And U.S. percentages are going to increase too.