Sustainable Agriculture with Liquid Organic Fertilizers

Agricultural practices are increasingly leaning towards committing to a sustainable environment. In light of this, organic farming has become acceptable to many farmers. Many are practicing environmental- friendly practices such as using organic liquid fertilizer instead of the synthetic alternative.

The misuse and abuse of synthetic fertilizers is responsible for many of the health problems that humans experience today. It has also contributed to a large extent to the deterioration of the environment.

Organic agriculture has experienced fast growth globally. Organic systems involve the natural management of soil through the following practices:

  • Composts
  • Animal manure
  • Mowed or tilled over crops
  • Application of soil-organic matter

These nourish the soil by steadily releasing nutrients to the crops as the organic matter that has been added to the soil breaks down. The chemical and physical properties of the soil are improved by the exogenous organic matter applied to the soil. This also improves the biological functions of the soil which results in a healthy and wholesome crop free of dangerous disease causing chemicals.

Why Organic Liquid Fertilizer is Sustainable

Organic fertilizer is derived from naturally existing products such as plants and animal manure. This makes it a sustainable product. Waste from animals such as cows, rabbits, fish and chicken is used to make organic fertilizer that provides much-needed nutrition to plants and soil as well.

Naturally occurring vegetation and waste will always be available as it renews itself. Besides, plants can be reused to make fertilizer for the next batch once harvesting is done. Since organic farming takes care of the environment, it is safe to say that vegetation is safe for the long run. Organic fertilizer is also made from human waste such as urine and that is definitely sustainable.

Organic gardeners love to have a bottle of organic fish fertilizer on hand for feed young seedlings. This fertilizer also works well on plants in containers and any crop that may be suffering from ‘malnutrition’.

Why and When to Use Liquid Fertilizers

Seeing as liquid manures act faster than solid organic ones, they are the best option in the following circumstance:

  • For seedlings that have exhausted the nutrients provided by newly sprouted seed. It is especially crucial if the fertilizer you are using is a soil-free seed starting mix. While it helps in damping off, it fails to provide adequate nutrients.
  • When seedlings show signs of not having had enough nutrients. If the color fails to darken after a fertilizer has been added, it is an indication that they have not had a fair share of nutrients.
  • If you have container-grown plants, liquid fertilizers are what your plants yearn for. Container-grown plants depend entirely on the grower for nutrients and moisture. They need to be fed frequently with an organic liquid fertilizer in order to thrive.
  • When you are growing cold-tolerant crops which begin their journey of growth in low soil temperatures. Liquid fertilizers are great for boosting nutrients for such plants since it is difficult to absorb nutrients such as nitrogen in wintry temperatures.

Organic liquid fertilizers are short-acting. Consequently, they are easier to regulate that dry organic ones which are longer-acting. The ease with which liquid fertilizers can be used makes them quite popular and therefore sustainable.

Important Tip

Do not mix too much nitrogen-rich fertilizer into the soil. This is not reversible. The release of nitrogen into the soil increases as the temperature rises. You may consequently end up with huge plants but no production. The best time to apply a short-acting fertilizer is just when it is needed by the crop. Then you have less chances of overdoing the application.

When your plants are well into the season, you can feed them an organic liquid fertilizer to rejuvenate crops such as tomatoes which live long in the ground. Tomatoes are known to awaken with gusto once you give them two feeds of a good organic liquid fertilizer.

Biomass Harvesting

Biomass harvesting and collection is an important step involving gathering and removal of the biomass from field which is dependent on the state of biomass, i.e. grass, woody, or crop residue. The moisture content and the end use of biomass also affect the way biomass is collected. For crop residues, the operations should be organized in sync with the grain harvest as it occupies the centrestage in farming process.

All of other operations such as residue management and collection take place after so-called grain is in the bin. On the other hand, the harvest and collection dedicated crops (grass and woody) can be staged for recovery of the biomass only. In agricultural processing, straw is the stems and leaves of small cereals while chaff is husks and glumes of seed removed during threshing.

Modern combine-harvesters generally deliver straw and chaff together; other threshing equipment separates them. Stover is the field residues of large cereals, such as maize and sorghum. Stubble is the stumps of the reaped crop, left in the field after harvest. Agro-industrial wastes are by-products of the primary processing of crops, including bran, milling offal, press-cakes and molasses. Bran from on-farm husking of cereals and pulses are fed to livestock or foraged directly by backyard fowls.

The proportion of straw, or stover, to grain varies from crop to crop and according to yield level (very low grain yields have a higher proportion of straw) but is usually slightly over half the harvestable biomass. The height of cutting will also affect how much stubble is left in the field: many combine-harvested crops are cut high; crops on small-scale farms where straw is scarce may be cut at ground level by sickle or uprooted by hand.

Modern combine-harvesters generally deliver straw and chaff together

Collection involves operations pertaining to gathering, packaging, and transporting biomass to a nearby site for temporary storage. The amount of a biomass resource that can be collected at a given time depends on a variety of factors. In case of agricultural residues, these considerations include the type and sequence of collection operations, the efficiency of collection equipment, tillage and crop management practices, and environmental restrictions, such as the need to control erosion, maintain soil productivity, and maintain soil carbon levels.

Biogas from Crop Wastes: European Perspectives

Most, if not all of Europe has a suitable climate for biogas production. The specific type of system depends on the regional climate. Regions with harsher winters may rely more on animal waste and other readily available materials compared to warmer climates, which may have access to more crop waste or organic material.

Regardless of suitability, European opinions vary on the most ethical and appropriate materials to use for biogas production. Multiple proponents argue biogas production should be limited to waste materials derived from crops and animals, while others claim crops should be grown with the intention of being used for biogas production.

Biogas Production From Crops

Europeans in favor of biogas production from crops argue the crops improve the quality of the soil. Additionally, they point to the fact that biogas is a renewable energy resource compared to fossil fuels. Crops can be rotated in fields and grown year after year as a sustainable source of fuel.

Extra crops can also improve air quality. Plants respire carbon dioxide and can help reduce harmful greenhouse gasses in the air which contribute to global climate change.

Biogas crops can also improve water quality because of plant absorption. Crops grown in otherwise open fields reduce the volume of water runoff which makes it to lakes, streams and rivers. The flow of water and harmful pollutants is impeded by the plants and eventually absorbed into the soil, where it is purified.

Urban residents can also contribute to biogas production by growing rooftop or vertical gardens in their homes. Waste from tomatoes, beans and other vegetables is an excellent source of biogas material. Residents will benefit from improved air quality and improved water quality as well by reducing runoff.

Proponents of biogas production from crops aren’t against using organic waste material for biogas production in addition to crop material. They believe crops offer another means of using more sustainable energy resources.

Biogas Production From Waste Materials Only

Opponents to growing crops for biogas argue the crops used for biogas production degrade soil quality, making it less efficient for growing crops for human consumption. They also argue the overall emissions from biogas production from crops will be higher compared to fossil fuels.

Growing crops can be a labor-intensive process. Land must be cleared, fertilized and then seeded. While crops are growing, pesticides and additional fertilizers may be used to promote crop growth and decrease losses from pests. Excess chemicals can run off of fields and degrade the water quality of streams, lakes and rivers and kill off marine life.

Once crops reach maturity, they must be harvested and processed to be used for biogas material. Biogas is less efficient compared to fossil fuels, which means it requires more material to yield the same amount of energy. Opponents argue that when the entire supply chain is evaluated, biogas from crops creates higher rates of emissions and is more harmful to the environment.

Agricultural residues, such as rice straw, are an important carbon source for anaerobic digestion

The supply chain for biogas from agricultural waste materials is more efficient compared to crop materials. Regardless of whether or not the organic waste is reused, it must be disposed of appropriately to prevent any detrimental environmental impacts. When the waste material is then used for biogas production, it creates an economical means of generating useful electricity from material which would otherwise be disposed of.

Rural farms which are further away from the electric grid can create their own sources of energy through biogas production from waste material as well. The cost of the energy will be less expensive and more eco-friendly as it doesn’t have the associated transportation costs.

Although perspectives differ on the type of materials which should be used for biogas production, both sides agree biogas offers an environmentally friendly and sustainable alternative to using fossil fuels.

Biomass Energy and Sustainability

biomass-sustainabilityBiomass energy systems offer significant possibilities for reducing greenhouse gas emissions due to their immense potential to replace fossil fuels in energy production. Biomass reduces emissions and enhances carbon sequestration since short-rotation crops or forests established on abandoned agricultural land accumulate carbon in the soil. Biomass energy usually provides an irreversible mitigation effect by reducing carbon dioxide at source, but it may emit more carbon per unit of energy than fossil fuels unless biomass fuels are produced in a sustainable manner.

Biomass resources can play a major role in reducing the reliance on fossil fuels by making use of thermo-chemical conversion technologies. In addition, the increased utilization of biomass-based fuels will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas.

The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small and large-scale biomass-based power plants can play a major role in sustainable development of rural as well as urban areas. Biomass energy could also aid in modernizing the agricultural economy and creating significant job opportunities.

Harvesting practices remove only a small portion of branches and tops leaving sufficient biomass to conserve organic matter and nutrients. Moreover, the ash obtained after combustion of biomass compensates for nutrient losses by fertilizing the soil periodically in natural forests as well as fields.

The impact of forest biomass utilization on the ecology and biodiversity has been found to be insignificant. Infact, forest residues are environmentally beneficial because of their potential to replace fossil fuels as an energy source.

A quick glance at popular biomass resources

A quick glance at popular biomass resources

Plantation of energy crops on abandoned agricultural land will lead to an increase in species diversity. The creation of structurally and species diverse forests helps in reducing the impacts of insects, diseases and weeds. Similarly the artificial creation of diversity is essential when genetically modified or genetically identical species are being planted.

Short-rotation crops give higher yields than forests so smaller tracts are needed to produce biomass which results in the reduction of area under intensive forest management. An intelligent approach in forest management will go a long way in the realization of sustainability goals.

Improvements in agricultural practices promises to increased biomass yields, reductions in cultivation costs, and improved environmental quality. Extensive research in the fields of plant genetics, analytical techniques, remote sensing and geographic information systems (GIS) will immensely help in increasing the energy potential of biomass feedstock.

A large amount of energy is expended in the cultivation and processing of crops like sugarcane, coconut, and rice which can met by utilizing energy-rich residues for electricity production. The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs. The growth of the biomass energy industry can also be achieved by laying more stress on green power marketing.

Agricultural Biomass in Malaysia

Malaysia is located in a region where biomass productivity is high which means that the country can capitalize on this renewable energy resource to supplements limited petroleum and coal reserves. Malaysia, as a major player in the palm oil and sago starch industries, produces a substantial amount of agricultural biomass waste which present a great opportunity for harnessing biomass energy in an eco-friendly and commercially-viable manner.

Peninsular Malaysia generates large amounts of wood and’ agricultural residues, the bulk of which are not being currently utilised for any further downstream operations. The major agricultural crops grown in Malaysia are rubber (39.67%), oil palm (34.56%), cocoa (6.75%), rice (12.68%) and coconut (6.34%). Out of the total quantity of residues generated, only 27.0% is used either as fuel for the kiln drying of timber, for the manufacture of bricks, the curing of tobacco leaves, the drying rubber-sheets and for the manufacture of products such as particleboard and fibreboard. The rest has to be disposed of by burning.

Palm Oil Industry

Oil palm is one of the world’s most important fruit crops. Malaysia is one of the largest producers and exporter of palm oil in the world, accounting for 30% of the world’s traded edible oils and fats supply. Palm oil industries in Malaysia have good potential for high pressure modern power plants and the annual power generation potential is about 8,000 GWh. Malaysia produced more than 20 million tonnes of palm oil in 2012 over 5 million hectares of land.

The palm oil industry is a significant branch in Malaysian agriculture. Almost 70% of the volume from the processing of fresh fruit bunch is removed as waste in the form of empty fruit bunches (EFBs), fibers and shells, as well as liquid effluent. Fibres and shells are traditionally used as fuels to generate power and steam. Effluents are sometimes converted into biogas that can be used in gas-fired gensets.

Sugar Industry

The cultivation of sugarcane in Malaysia is surprisingly small. Production is concentrated in the Northwest extremity of peninsular Malaysia in the states of Perlis and Kedah. This area has a distinct dry season needed for cost-efficient sugarcane production. Plantings in the states of Perak and Negri Sembilan were unsuccessful due to high unit costs as producing conditions were less suitable.

The lack of growth in cane areas largely reflects the higher remuneration received by farmers for other crops, especially oil palm. Over the past 20 years while the sugarcane area has remained at around 20 000 hectares, that planted to oil palm has expanded from 600 000 hectares to 5 million hectares.

Other leading crops in terms of planted areas are rubber with 2.8 million hectares, rice with 670 000 hectares and cocoa with 380 000 hectares. Malaysia, the world’s third largest rubber producer, accounted for 1 million tons of natural rubber production in 2012. Like oil palm industry, the rubber industry produces a variety of biomass wastes whose energy potential is largely untapped until now.