Sustainable Agriculture with Liquid Organic Fertilizers

Agricultural practices are increasingly leaning towards committing to a sustainable environment. In light of this, organic farming has become acceptable to many farmers. Many are practicing environmental- friendly practices such as using organic liquid fertilizer instead of the synthetic alternative.

The misuse and abuse of synthetic fertilizers is responsible for many of the health problems that humans experience today. It has also contributed to a large extent to the deterioration of the environment.

Organic agriculture has experienced fast growth globally. Organic systems involve the natural management of soil through the following practices:

  • Composts
  • Animal manure
  • Mowed or tilled over crops
  • Application of soil-organic matter

These nourish the soil by steadily releasing nutrients to the crops as the organic matter that has been added to the soil breaks down. The chemical and physical properties of the soil are improved by the exogenous organic matter applied to the soil. This also improves the biological functions of the soil which results in a healthy and wholesome crop free of dangerous disease causing chemicals.

Why Organic Liquid Fertilizer is Sustainable

Organic fertilizer is derived from naturally existing products such as plants and animal manure. This makes it a sustainable product. Waste from animals such as cows, rabbits, fish and chicken is used to make organic fertilizer that provides much-needed nutrition to plants and soil as well.

Naturally occurring vegetation and waste will always be available as it renews itself. Besides, plants can be reused to make fertilizer for the next batch once harvesting is done. Since organic farming takes care of the environment, it is safe to say that vegetation is safe for the long run. Organic fertilizer is also made from human waste such as urine and that is definitely sustainable.

Organic gardeners love to have a bottle of organic fish fertilizer on hand for feed young seedlings. This fertilizer also works well on plants in containers and any crop that may be suffering from ‘malnutrition’.

Why and When to Use Liquid Fertilizers

Seeing as liquid manures act faster than solid organic ones, they are the best option in the following circumstance:

  • For seedlings that have exhausted the nutrients provided by newly sprouted seed. It is especially crucial if the fertilizer you are using is a soil-free seed starting mix. While it helps in damping off, it fails to provide adequate nutrients.
  • When seedlings show signs of not having had enough nutrients. If the color fails to darken after a fertilizer has been added, it is an indication that they have not had a fair share of nutrients.
  • If you have container-grown plants, liquid fertilizers are what your plants yearn for. Container-grown plants depend entirely on the grower for nutrients and moisture. They need to be fed frequently with an organic liquid fertilizer in order to thrive.
  • When you are growing cold-tolerant crops which begin their journey of growth in low soil temperatures. Liquid fertilizers are great for boosting nutrients for such plants since it is difficult to absorb nutrients such as nitrogen in wintry temperatures.

Organic liquid fertilizers are short-acting. Consequently, they are easier to regulate that dry organic ones which are longer-acting. The ease with which liquid fertilizers can be used makes them quite popular and therefore sustainable.

Important Tip

Do not mix too much nitrogen-rich fertilizer into the soil. This is not reversible. The release of nitrogen into the soil increases as the temperature rises. You may consequently end up with huge plants but no production. The best time to apply a short-acting fertilizer is just when it is needed by the crop. Then you have less chances of overdoing the application.

When your plants are well into the season, you can feed them an organic liquid fertilizer to rejuvenate crops such as tomatoes which live long in the ground. Tomatoes are known to awaken with gusto once you give them two feeds of a good organic liquid fertilizer.

Composting with Worms

Vermicomposting is a type of composting in which certain species of earthworms are used to enhance the process of organic waste conversion and produce a better end-product. It is a mesophilic process utilizing microorganisms and worms. Earthworms feeds the organic waste materials and passes it through their digestive system and gives out in a granular form (cocoons) which is known as vermicompost.

Simply speaking, vermicompost is earthworm excrement, called castings, which can improve biological, chemical, and physical properties of the soil. The chemical secretions in the earthworm’s digestive tract help break down soil and organic matter, so the castings contain more nutrients that are immediately available to plants.

Production of Vermicompost

A wide range of agricultural residues, such as straw, husk, leaves, stalks, weeds etc can be converted into vermicompost. Other potential feedstock for vermicompost production are livestock wastes, poultry litter, dairy wastes, food processing wastes, organic fraction of MSW, bagasse, digestate from biogas plants etc.

Earthworms consume organic wastes and reduce the volume by 40–60 percent. Each earthworm weighs about 0.5 to 0.6 gram, eats waste equivalent to its body weight and produces cast equivalent to about 50 percent of the waste it consumes in a day. The moisture content of castings ranges between 32 and 66 percent and the pH is around 7. The level of nutrients in compost depends upon the source of the raw material and the species of earthworm.

Types of Earthworms

There are nearly 3600 types of earthworms which are divided into burrowing and non-burrowing types. Red earthworm species, like Eisenia foetida, and are most efficient in compost making. The non-burrowing earthworms eat 10 percent soil and 90 percent organic waste materials; these convert the organic waste into vermicompost faster than the burrowing earthworms.

They can tolerate temperatures ranging from 0 to 40°C but the regeneration capacity is more at 25 to 30°C and 40–45 percent moisture level in the pile. The burrowing types of earthworms come onto the soil surface only at night. These make holes in the soil up to a depth of 3.5 m and produce 5.6 kg casts by ingesting 90 percent soil and 10 percent organic waste.

Types of Vermicomposting

The types of vermicomposting depend upon the amount of production and composting structures. Small-scale vermicomposting is done to meet personal requirements and farmers/gardeners can harvest 5-10 tons of vermicompost annually.

On the other hand, large-scale vermicomposting is done at commercial scale by recycling large quantities of organic waste in modern facilities with the production of more than hundreds of tons annually.

Benefits of Vermicompost

The worm castings contain higher percentage of both macro and micronutrients than the garden compost. Apart from other nutrients, a fine worm cast is rich in NPK which are in readily available form and are released within a month of application. Vermicompost enhances plant growth, suppresses disease in plants, increases porosity and microbial activity in soil, and improves water retention and aeration.

Vermicompost also benefits the environment by reducing the need for chemical fertilizers and decreasing the amount of waste going to landfills. Vermicompost production is trending up worldwide and it is finding increasing use especially in Western countries, Asia-Pacific and Southeast Asia.

Vermicompost Tea

A relatively new product from vermicomposting is vermicompost tea which is a liquid produced by extracting organic matter, microorganisms, and nutrients from vermicompost. Unlike vermicompost and compost, this tea may be applied directly to plant foliage, reportedly to enhance disease suppression. Vermicompost tea also may be applied to the soil as a supplement between compost applications to increase biological activity.

Potential Market

Vermicompost may be sold in bulk or bagged with a variety of compost and soil blends. Markets include home improvement centers, nurseries, landscape contractors, greenhouses, garden supply stores, grocery chains, flower shops, discount houses, indoor gardens, and the general public.

Analysis of Agro Biomass Projects

The current use of agro biomass for energy generation is low and more efficient use would release significant amounts of agro biomass resources for other energy use. Usually, efficiency improvements are neglected because of the non-existence of grid connections with agro-industries.

Electricity generated from biomass is more costly to produce than fossil fuel and hydroelectric power for two reasons. First, biomass fuels are expensive. The cost of producing biomass fuel is dependent on the type of biomass, the amount of processing necessary to convert it to an efficient fuel, distance to the energy conversion plant, and supply and demand for fuels in the market place. Biomass fuel is low-density and non-homogeneous and has a small unit size.

Consequently, biomass fuel is costly to collect, process, and transport to facilities.  Second, biomass-to-energy facilities are much smaller than conventional fossil fuel-based power plants and therefore cannot produce electricity as cost-effectively as the fossil fuel-based plants.

Agro biomass is costly to collect, process, and transport to facilities.

The biomass-to-energy facilities are smaller because of the limited amount of fuel that can be stored at a single facility. With higher fuel costs and lower economic efficiencies, solid-fuel energy is not economically competitive in a deregulated energy market that gives zero value or compensation for the non-electric benefits generated by the biomass-to-energy industry.

Biomass availability for fuel usage is estimated as the total amount of plant residue remaining after harvest, minus the amount of plant material that must be left on the field for maintaining sufficient levels of organic matter in the soil and for preventing soil erosion. While there are no generally agreed-upon standards for maximum removal rates, a portion of the biomass material may be removed without severely reducing soil productivity.

Technically, biomass removal rates of up to 60 to 70 percent are achievable, but in practice, current residue collection techniques generally result in relatively low recovery rates in developing countries. The low biomass recovery rate is the result of a combination of factors, including collection equipment limitations, economics, and conservation requirements. Modern agricultural equipment can allow for the joint collection of grain and residues, increased collection rates to up to 60 percent, and may help reduce concerns about soil compaction.