Composting in Qatar

compost-qatarQatar has one of the highest per capita waste generation rates worldwide. In 2012, Qatar generated 8,000 tons of solid waste daily (excluding construction and demolition waste which amounts to 20,000 tons additional waste per day).  This number is predicted to reach 19,000 tons/day in 2032, with an annual growth rate of roughly 4.2%.

Most of these wastes end up in landfills – in 2012, more than 90% of Qatar’s solid waste were sent to landfills although the government is intensifying its efforts to reduce this amount. This percentage is extremely high compared to many industrialized countries in Europe and Asia (e.g. Austria, Denmark, Netherlands and Japan) where less than 10% of solid waste are disposed of in landfills.  These countries have high recycling rates, have invested in technologies that convert waste into energy, and apply composting process to their organic waste, especially food wastes. In some of these nations, as much as 40% of their wastes are composted.

Composting in Qatar

Currently, composting in Qatar is mainly done at the Domestic Solid Waste Management Centre (DSWMC) in Mesaieed, which houses the largest composting facility in the country and one of the largest in the world.  The waste that enters the plant initially goes through anaerobic digestion, which produces biogas that can power the facility’s gas engine and generators, followed by aerobic treatment which yields the final product.

Two types of compost are generated: Grade A (compost that comes from green waste, such as yard/park trimmings, leftovers from kitchen or catering services, and wastes from markets) and Grade B (compost produced from MSW).  The plant started its operation in 2011 and when run at full capacity is able to process 750 tons of waste and produce 52 tons of Grade A compost, 377 tons of Grade B compost, liquid fertilizer which is composed of 51 tons of Grade A compost and 204 tons of Grade B compost, and 129 tons of biogas.

This is a significant and commendable development in Qatar’s implementation of its solid waste management plan, which is to reduce, reuse, recycle and recover from waste, and to avoid disposing in landfills as much as possible.  However, the large influx of workers to Qatar in the coming years as the country prepares to host the World Cup in 2022 is expected to substantially increase solid waste generation and apart from its investments in facilities like the composting plant and in DSWMC in general, the government may have to tap into the efforts of organizations and communities to implement its waste management strategy.

Future Outlook

Thankfully, several organizations recognize the importance of composting in waste management and are raising awareness on its benefits.  Qatar Green Building Council (QGBC) has been actively promoting composting through its Solid Waste Interest Group.  Last year, they were one of the implementers of the Baytna project, the first Passivhaus experiment in the country.

This project entails the construction of an energy-efficient villa and a comparative study will be performed as to how the carbon footprint of this structure would compare to a conventional villa.  The occupants of the Passivhaus villa will also be made to implement a sustainable waste management system which includes composting of food waste and garden waste, which is meant to lower greenhouse gas emissions compared to landfilling.

Qatar Foundation is also currently developing an integrated waste management system for the entire Education City and the Food Services group is pushing for composting to be included as a method to treat food and other organic waste.  And many may not know this but composting can be and has been done by individuals in their own backyard and can even be done indoors with the right equipment.

Katrin Scholz-Barth, previous president of SustainableQatar, a volunteer-based organization that fosters sustainable culture through awareness, skills and knowledge, is an advocate of composting and has some great resources on how to start and maintain your own composting bin as she has been doing it herself.  A simple internet search will also reveal that producing compost at home is a relatively simple process that can be achieved with minimal tools.  At present, very few families in Qatar are producing their own compost and Scholz-Barth believes there is much room for improvement.

As part of its solid waste management plan as stated in the National Development Strategy for 2011-2016, Qatar aims to maintain domestic waste generation at 1.6 kg per capita per day.  This will probably involve encouraging greater recycling and reuse efforts and the reduction of waste from its source.  It would also be worthwhile to include programs that will promote and boost composting efforts among institutions, organizations and individuals, encouraging them with the fact that apart from its capability of significant waste diversion from landfills, composting can also be an attractive source of income.

Note: The article is being republished with the permission of our collaborative partner EcoMENA. The original article can be viewed at this link.

Sustainable Agriculture with Liquid Organic Fertilizers

Agricultural practices are increasingly leaning towards committing to a sustainable environment. In light of this, organic farming has become acceptable to many farmers. Many are practicing environmental- friendly practices such as using organic liquid fertilizer instead of the synthetic alternative.

The misuse and abuse of synthetic fertilizers is responsible for many of the health problems that humans experience today. It has also contributed to a large extent to the deterioration of the environment.

Organic agriculture has experienced fast growth globally. Organic systems involve the natural management of soil through the following practices:

  • Composts
  • Animal manure
  • Mowed or tilled over crops
  • Application of soil-organic matter

These nourish the soil by steadily releasing nutrients to the crops as the organic matter that has been added to the soil breaks down. The chemical and physical properties of the soil are improved by the exogenous organic matter applied to the soil. This also improves the biological functions of the soil which results in a healthy and wholesome crop free of dangerous disease causing chemicals.

Why Organic Liquid Fertilizer is Sustainable

Organic fertilizer is derived from naturally existing products such as plants and animal manure. This makes it a sustainable product. Waste from animals such as cows, rabbits, fish and chicken is used to make organic fertilizer that provides much-needed nutrition to plants and soil as well.

Naturally occurring vegetation and waste will always be available as it renews itself. Besides, plants can be reused to make fertilizer for the next batch once harvesting is done. Since organic farming takes care of the environment, it is safe to say that vegetation is safe for the long run. Organic fertilizer is also made from human waste such as urine and that is definitely sustainable.

Organic gardeners love to have a bottle of organic fish fertilizer on hand for feed young seedlings. This fertilizer also works well on plants in containers and any crop that may be suffering from ‘malnutrition’.

Why and When to Use Liquid Fertilizers

Seeing as liquid manures act faster than solid organic ones, they are the best option in the following circumstance:

  • For seedlings that have exhausted the nutrients provided by newly sprouted seed. It is especially crucial if the fertilizer you are using is a soil-free seed starting mix. While it helps in damping off, it fails to provide adequate nutrients.
  • When seedlings show signs of not having had enough nutrients. If the color fails to darken after a fertilizer has been added, it is an indication that they have not had a fair share of nutrients.
  • If you have container-grown plants, liquid fertilizers are what your plants yearn for. Container-grown plants depend entirely on the grower for nutrients and moisture. They need to be fed frequently with an organic liquid fertilizer in order to thrive.
  • When you are growing cold-tolerant crops which begin their journey of growth in low soil temperatures. Liquid fertilizers are great for boosting nutrients for such plants since it is difficult to absorb nutrients such as nitrogen in wintry temperatures.

Organic liquid fertilizers are short-acting. Consequently, they are easier to regulate that dry organic ones which are longer-acting. The ease with which liquid fertilizers can be used makes them quite popular and therefore sustainable.

Important Tip

Do not mix too much nitrogen-rich fertilizer into the soil. This is not reversible. The release of nitrogen into the soil increases as the temperature rises. You may consequently end up with huge plants but no production. The best time to apply a short-acting fertilizer is just when it is needed by the crop. Then you have less chances of overdoing the application.

When your plants are well into the season, you can feed them an organic liquid fertilizer to rejuvenate crops such as tomatoes which live long in the ground. Tomatoes are known to awaken with gusto once you give them two feeds of a good organic liquid fertilizer.

Composting with Worms

Vermicomposting is a type of composting in which certain species of earthworms are used to enhance the process of organic waste conversion and produce a better end-product. It is a mesophilic process utilizing microorganisms and worms. Earthworms feeds the organic waste materials and passes it through their digestive system and gives out in a granular form (cocoons) which is known as vermicompost.

Simply speaking, vermicompost is earthworm excrement, called castings, which can improve biological, chemical, and physical properties of the soil. The chemical secretions in the earthworm’s digestive tract help break down soil and organic matter, so the castings contain more nutrients that are immediately available to plants.

Production of Vermicompost

A wide range of agricultural residues, such as straw, husk, leaves, stalks, weeds etc can be converted into vermicompost. Other potential feedstock for vermicompost production are livestock wastes, poultry litter, dairy wastes, food processing wastes, organic fraction of MSW, bagasse, digestate from biogas plants etc.

Earthworms consume organic wastes and reduce the volume by 40–60 percent. Each earthworm weighs about 0.5 to 0.6 gram, eats waste equivalent to its body weight and produces cast equivalent to about 50 percent of the waste it consumes in a day. The moisture content of castings ranges between 32 and 66 percent and the pH is around 7. The level of nutrients in compost depends upon the source of the raw material and the species of earthworm.

Types of Earthworms

There are nearly 3600 types of earthworms which are divided into burrowing and non-burrowing types. Red earthworm species, like Eisenia foetida, and are most efficient in compost making. The non-burrowing earthworms eat 10 percent soil and 90 percent organic waste materials; these convert the organic waste into vermicompost faster than the burrowing earthworms.

They can tolerate temperatures ranging from 0 to 40°C but the regeneration capacity is more at 25 to 30°C and 40–45 percent moisture level in the pile. The burrowing types of earthworms come onto the soil surface only at night. These make holes in the soil up to a depth of 3.5 m and produce 5.6 kg casts by ingesting 90 percent soil and 10 percent organic waste.

Types of Vermicomposting

The types of vermicomposting depend upon the amount of production and composting structures. Small-scale vermicomposting is done to meet personal requirements and farmers/gardeners can harvest 5-10 tons of vermicompost annually.

On the other hand, large-scale vermicomposting is done at commercial scale by recycling large quantities of organic waste in modern facilities with the production of more than hundreds of tons annually.

Benefits of Vermicompost

The worm castings contain higher percentage of both macro and micronutrients than the garden compost. Apart from other nutrients, a fine worm cast is rich in NPK which are in readily available form and are released within a month of application. Vermicompost enhances plant growth, suppresses disease in plants, increases porosity and microbial activity in soil, and improves water retention and aeration.

Vermicompost also benefits the environment by reducing the need for chemical fertilizers and decreasing the amount of waste going to landfills. Vermicompost production is trending up worldwide and it is finding increasing use especially in Western countries, Asia-Pacific and Southeast Asia.

Vermicompost Tea

A relatively new product from vermicomposting is vermicompost tea which is a liquid produced by extracting organic matter, microorganisms, and nutrients from vermicompost. Unlike vermicompost and compost, this tea may be applied directly to plant foliage, reportedly to enhance disease suppression. Vermicompost tea also may be applied to the soil as a supplement between compost applications to increase biological activity.

Potential Market

Vermicompost may be sold in bulk or bagged with a variety of compost and soil blends. Markets include home improvement centers, nurseries, landscape contractors, greenhouses, garden supply stores, grocery chains, flower shops, discount houses, indoor gardens, and the general public.

Waste Disposal Methods: Perspectives for Africa

Waste disposal methods vary from city to city, state to state and region to region. It equally depends on the kind and type of waste generated. In determining the disposal method that a city or nation should adopt, some factors like type, kind, quantity, frequency, and forms of waste need to be considered.

For the purpose of this article, we will look at the three common waste disposal methods and the kind of waste they accept.

Open Dumping/Burning

This is the crudest means of disposing of waste and it is mostly practiced in rural areas, semi-urban settlements, and undeveloped urban areas. For open dumping or open burning, every type and form of waste (including household waste, hazardous wastes, tires, batteries, chemicals) is dumped in an open area within a community or outside different homes in a community and same being set on fire after a number of days or when the waste generator or community feels it should be burnt.

There is no gainsaying that the negative health and environmental impact of such practice are huge only if the propagators know better.

Controlled Dumping

This is apparent in most States in Nigeria, if not all and some cities in Africa like Mozambique, Ghana, Kenya, Cameroon, to mention but a few. It is a method of disposing of all kinds of waste in a designated area of land by waste collectors and it is usually controlled by the State or City Government.

Opening burning of trash is a common practice across Africa

Controlled dumps are commonly found in urban areas and because they are managed by the government, some dumps do have certain features of a landfill like tenure of usage, basic record keeping, waste covering, etc. Many cities in Nigeria confuse the practice of controlled dumping as landfilling but this not so because a landfill involves engineering design, planning, and operation.

Sanitary Landfill

A sanitary landfill is arguably the most desired waste management option in reducing or eliminating public health hazards and environmental pollution. The landfill is the final disposal site for all forms and types of waste after the recyclable materials must have been separated for other usages and other biodegradables have been extracted from the waste for use as compost, heat, or energy; or after incineration. These extractions can be done at household level or Material Recovery Facilities (MRFs) operated by the government or private individuals.

As desirable as a landfill is, so many factors need to be put into consideration in its siting and operation plus it requires a huge investment in construction and operation. Some of these factors include but not limited to distance from the residential area, proximity to water bodies, water-table level of the area the landfill is to be sited, earth material availability, and access road.

Note: The original version of the article was published on Waste Watch Africa website at this link.

How to Improve the Quality of Your Soil

Soil is important, whether you’re growing prize winning roses, landscape shrubs or your own fruit trees. All need to be in the right type of soil to get the nutrient they need. Even beginners can improve the quality of the soil in the garden. All you need to do is follow these simple steps:

  1. Add Compost

Compost is not just for preparing the beds in the spring. Compost can be placed into your raised beds in the fall and improve their conditions over the winter. Because they will be sitting over the beds all winter, this doesn’t even have to be completely broken down compost either. A lot of the process will happen right there on the bed.

compost-organic-waste-farming

The concept of safe food using organic waste generated compost is picking up in South Asia

You can even use this method as a practical way of getting rid of all the waste you pick up from your garden in the fall. Just spread this over the bed and cover with mulch. The mulch protects the soil and the nutrients in the compost.

  1. Use Soil Amendments

Different soil amendments can be added to your soil to make it more suitable to your purposes. Choosing which soil amendment to use with your sol will be a matter of matching the proper solution to the problem you are facing. For example, there are amendment for increasing the nutritional content of your soil and others for improving the soil’s texture also known as tilth. For example, if your notice that the water is draining away too fast, you can add an amendment that allows you to soak up the moisture and the reverse is also true.

You can adjust the conditions of the soil to your exact needs with the right soil amendment. This could be compost or other rich matter that absorbs moisture or an amendment like greensand that allows water to drain away more easily.

Here are some common soil amendments that you can consider using for your garden as needed:

  • vermiculite (worm castings)
  • compost
  • greensand (or green sand)
  • grass clippings
  • cornmeal
  • alfalfa meal
  • straw
  • kelp meal
  1. Plant a Cover Crop

When you are thinking about improving soil quality, don’t forget the power of cover crops. This is not just an idea for large scale agricultural weed suppression. They are also a major benefit for backyard gardeners as well.

Cover crops are especially good for treating the soil as they provide oxygenation and improved nutrient availability. Alfalfa with its very deep root system pulls nutrients upwards from the lower levels of soil and make these more available in planting season. Then a couple weeks before you begin planting, this cover crop will be tilled back into the soil, increasing its organic composition and nutrient content.

This can also be used to improve the levels of nitrogen in the soil when using legumes as a cover crop. Fava beans, crimson clover and alfalfa are all good examples of nitrogen high crop covers. If you will not be growing anything particular over the growing season, you may consider a cover crop that protect and aerate your beds. (Pro tip: cherry trees are a great choice for the beginner backyard orchardist and benefit greatly from good soil).

  1. Try Lasagna Gardening

Also called sheet composting or “No-Till” gardening is another good way to improve your gardens soil quality and a perfect way to begin your raised beds and continue them. As you notice the quality levels of soil in your bed begin dropping down, you will keep adding new layers like lasagna which begins improving the quality of your soil from the top to the bottom. After the end of each growing season new layers are added.

For more information about your garden and the process of sheet composting, check out this article on the lasagna gardening method beginner’s guide. But there is one thing you will need to consider when using the lasagna method of composting. If you will be renovating your raised beds with the sheet composting method, you will need to wait a full 6-months before planting as you will need them to fully break down.

So this method will be best suited to those garden working with rotating beds or those gardeners who only plant one season. The following link included here will give some pointers on how this can be changed about and planting can be done sooner. Basically, if you would like to begin planting sooner, you will need to spread out a layer of compost and or healthy topsoil –– roughly 2 or 3 inches thick. You can then begin planting directly through this top layer.

  1. Prepare Raised Beds for the Winter

Never forget the importance of using the end of the year garden season is your opportunity to improve the quality of your soil in a number of ways. This end of the year ritual is like “closing down the shop” till spring. But, if you live in a warmer area of the country this might not even be necessary.

Here are some things to do. First, cut the plants as opposed to pulling them from the soil. Cutting the plant will allow the roots to rot away and this will make your soil lighter and airy. Then you can spread some compost out on the soil and cover this with a layer of mulch, the compost will be feeding nutrients back to the soil while the mulch will protect the soil and keep the nutrients bound in.

You can also just plant a cover crop and call it a year. Be sure to check out our article on winter gardening for some more things to do in the cold months.

Applications of Biochar

Biochar is a carbon-rich, fine-grained residue which can be produced either by ancient techniques (such as covering burning biomass with soil and allowing it to smoulder) or state-of-the-art modern biomass pyrolysis processes. Combustion and decomposition of woody biomass and agricultural residues results in the emission of a large amount of carbon dioxide. Biochar can store this CO2 in the soil leading to reduction in GHGs emission and enhancement of soil fertility. Biochar holds the promise to tackle chronic human development issues like hunger and food insecurity, low agricultural productivity and soil depletion, deforestation and biodiversity loss, energy poverty, water pollution, air pollution and climate change. Let us have a close look at some of the most promising applications of biochar.

 

Use of biochar in animal farming

At present approx. 90% of the biochar used in Europe goes into animal farming. Different to its application to fields, a farmer will notice its effects within a few days. Whether used in feeding, litter or in slurry treatment, a farmer will quickly notice less smell. Used as a feed supplement, the incidence of diarrhoea rapidly decreases, feed intake is improved, allergies disappear, and the animals become calmer.

In Germany, researchers conducted a controlled experiment in a dairy that was experiencing a number of common health problems: reduced performance, movement disorder, fertility disorders, inflammation of the urinary bladder, viscous salivas, and diarrhoea. Animals were fed different combinations of charcoal, sauerkraut juice or humic acids over periods of 4 to 6 weeks.

Experimenters found that oral application of charcoal (from 200 to 400 g/day), sauerkraut juice and humic acids influenced the antibody levels to C. botulinum, indicating reduced gastrointestinal neurotoxin burden. They found that when the feed supplements were ended, antibody levels increased, indicating that regular feeding of charcoal and other supplements had a tonic effect on cow health.

Biochar as soil conditioner

In certain poor soils (mainly in the tropics), positive effects on soil fertility were seen when applying untreated biochar. These include the higher capacity of the soil to store water, aeration of the soil and the release of nutrients through raising the soil’s pH-value. In temperate climates, soils tend to have humus content of over 1.5%, meaning that such effects only play a secondary role.

Indeed, fresh biochar may adsorb nutrients in the soil, causing at least in the short and medium term – a negative effect on plant growth. These are the reasons why in temperate climates biochar should only be used when first loaded with nutrients and when the char surfaces have been activated through microbial oxidation.

The best method of loading nutrients is to co-compost the char. This involves adding 10–30% biochar (by volume) to the biomass to be composted. Co-composting improves both the biochar and the compost. The resulting compost can be used as a highly efficient substitute for peat in potting soil, greenhouses, nurseries and other special cultures.

Because biochar serves as a carrier for plant nutrients, it can produce organic carbon-based fertilizers by mixing biochar with such organic waste as wool, molasses, ash, slurry and pomace. These are at least as efficient as conventional fertilizers, and have the advantage of not having the well-known adverse effects on the ecosystem. Such fertilizers prevent the leaching of nutrients, a negative aspect of conventional fertilizers. The nutrients are available as and when the plants need them. Through the stimulation of microbial symbiosis, the plant takes up the nutrients stored in the porous carbon structure and on its surfaces.
A range of organic chemicals are produced during pyrolysis. Some of these remain stuck to the pores and surfaces of the biochar and may have a role in stimulating a plant’s internal immune system, thereby increasing its resistance to pathogens. The effect on plant defence mechanisms was mainly observed when using low temperature biochars (pyrolysed at 350° to 450°C). This potential use is, however, only just now being developed and still requires a lot of research effort.

Biochar as construction material

The two interesting properties of biochar are its extremely low thermal conductivity and its ability to absorb water up to 6 times its weight. These properties mean that biochar is just the right material for insulating buildings and regulating humidity. In combination with clay, but also with lime and cement mortar, biochar can be added to clay at a ratio of up to 50% and replace sand in lime and cement mortars. This creates indoor plasters with excellent insulation and breathing properties, able to maintain humidity levels in a room at 45–70% in both summer and winter. This in turn prevents not just dry air, which can lead to respiratory disorders and allergies, but also dampness and air condensing on the walls, which can lead to mould developing.

As per study by the Ithaka Institute’s biochar-plaster wine cellar and seminar rooms in the Ithaka Journal. Such biochar-mud plaster adsorbs smells and toxins, a property not just benefiting smokers. Biochar-mud plasters can improve working conditions in libraries, schools, warehouses, factories and agricultural buildings.

Biochar is an efficient adsorber of electromagnetic radiation, meaning that biochar-mud plaster can prevent “electrosmog”. Biochar can also be applied to the outside walls of a building by jet-spray technique mixing it with lime. Applied at thicknesses of up to 20 cm, it is a substitute for Styrofoam insulation. Houses insulated this way become carbon sinks, while at the same time having a more healthy indoor climate. Should such a house be demolished at a later date, the biochar-mud or biochar-lime plaster can be recycled as a valuable compost additive.

Biochar as decontaminant

As a soil additive for soil remediation – for use in particular on former mine-works, military bases and landfill sites.

Soil substrates – Highly adsorbing and effective for plantation soil substrates for use in cleaning wastewater; in particular urban wastewater contaminated by heavy metals.

A barrier preventing pesticides getting into surface water – berms around fields and ponds can be equipped with 30-50 cm deep barriers made of bio-char for filtering out pesticides.

Treating pond and lake water – bio-char is good for adsorbing pesticides and fertilizers, as well as for improving water aeration.

Use of biochar in wastewater treatment – Our Project

The biochar grounded to a particle size of less than 1.5 mm and surface area of 600 – 1000 m2/g. The figure below is the basic representation of production of bio-char for wastewater treatment.

We conducted a study for municipal wastewater which was obtained from a local municipal treatment plant. The municipal wastewater was tested for its physicochemical parameters including pH, chemical oxygen demand (COD), total suspended solids (TSS), total phosphates (TP) and total Kjeldahl nitrogen (TKN) using the APHA (2005) standard methods.

Bio filtration of the municipal wastewater with biochar acting as the bio adsorbent was allowed to take place over a 5 day period noting the changes in the wastewater parameters. The municipal wastewater and the treated effluent physicochemical.

The COD concentration in the municipal wastewater decreased by 90% upon treatment with bio-char. The decrease in the COD was attributed to the enhanced removal of bio contaminants as they were passed through the bio char due to the bio char’s adsorption properties as well as the high surface area of the bio char. An 89% reduction in the TSS was observed as the bio filtration process with bio char increased from one day to five days

The TKN concentration in the wastewater decreased by 64% upon treatment with bio char as a bio filter. The TP in the wastewater decreased by 78% as the bio filtration time with bio char increase. The wastewater pH changed from being alkaline to neutral during the treatment with bio char over the 5 day period

Use in Textiles

In Japan and China bamboo-based bio-chars are already being woven into textiles to gain better thermal and breathing properties and to reduce the development of odours through sweat. The same aim is pursued through the inclusion of bio-char in shoe soles and socks.

Benefits of Biodegradable Packaging for Businesses

Consumers want companies to reflect their values. They’re far more likely to purchase from a business with an identity, whether it manifests in charitable efforts or eco-friendly practices. As a greater number of people show interest in green living, biodegradable packaging presents an opportunity for growth.

That said, the virtues of biodegradable packaging extend beyond an improved public image. While business owners enjoy the superficial advantages of this transition, they often find it’s only a fraction of what the shift entails. Through switching to biodegradable plastics, they see considerable changes elsewhere.

bioplastics

In this article, we’ll detail five of those changes, exploring the subject to lend business owners a better understanding of biodegradable packaging within their operation. As we touch on the benefits, it’ll become clear that eco-friendly materials aren’t only better for the environment, but better for a company’s bottom line.

Free of Toxins & Allergens

Biodegradable packaging options are still somewhat limited, but most of the available materials are non-toxic and allergy-free. This is an essential consideration to consumers who care about the products they’re purchasing and the composition of their packaging. If either is potentially harmful, it hurts a business.

An informed consumer will almost invariably choose products packaged with bioplastic over traditional alternatives, aware of the implications of their purchase. Considering the negative health effects of phthalates — a common chemical in plastic packaging — business owners should be aware of the implications as well.

Require Fewer Resources

Biodegradable packaging has the potential to reduce water usage, solid waste, electricity and emissions. This is beneficial for the environment, of course, but it also lowers expenses associated with the packaging process. Over time, the accumulated savings prove well worth the cost of the transition.

If a company were to replace their standard packaging materials with bioplastic, they would enjoy weight savings on par with regular plastic. Research shows plastic packaging enables weight savings of over 78 percent compared to alternative materials, a notable statistic for business owners looking to convert.

Lower Production Costs

Most biodegradable materials follow the three basic R’s of sustainability.

  1. A business can reduce them, using fewer resources to create thinner and tougher materials which do the same job.
  2. A business can reuse them, taking advantage of materials with special coating which improves their durability.
  3. A business can recycle them, diverting refuse from landfills as they minimize the costs of new materials.

A business owner who invests in biodegradable packaging can cut costs by a significant margin, using fewer resources, reusing their inventory and purchasing inexpensive recycled materials. In doing so, they’ll see reduced packaging expenses over time, and more freely allocate their money elsewhere.

Reduced Footprint

A business owner has financial goals they have to meet, but they have environmental goals as well. Every professional in an upper-management position has a responsibility to ensure their company meets high standards of environmental compliance, and biodegradable packaging can help — outside a legal context.

To reinforce an earlier point, 70 percent of consumers between the ages of 15 and 20 want to buy goods from companies committed to sustainability, and biodegradable plastics affect the appeal of businesses which would otherwise see less attention. To reduce emissions and increase interest, change is necessary.

Convenient Disposal

Recyclable, compostable and biodegradable packaging simplifies disposal for the consumer. It affords them more options in discarding these materials, and companies should always seek to make their products convenient, from start to finish. Biodegradable materials exemplify this mindset.

For example, consumers who prefer to compost their refuse won’t have to make exceptions for packaging. They can add biodegradable packaging to their compost in much the same way they would with any other compost-friendly material, contributing to the product’s value beyond its primary utility.

Looking Toward the Future

When reviewing the benefits listed above, business owners should feel confident in their decision to adopt biodegradable packaging. More than superficial benefits, they’ll enjoy reduced costs and carbon emissions while increasing consumer convenience and reducing plastic pollution. The advantages are clear.

Looking toward the future, it’s safe to speculate more companies will transition toward eco-friendly practices. With this in mind, taking action now is the best option, and though biodegradable packaging is a small step, it’s an important one.