What Are The Common Food Emulsifiers?

In the food industry, the process of making new products involves combining all the necessary ingredients more than anything else. Big restaurants like Dominos, Pizza Hut, Subway etc. make their sauces with the process of emulsification. Due to the need for concoction, other operations such as grinding, particle size reduction, emulsification, etc. would take place.

Successful food manufacturing requires equipment like Ginhong mixers that will help mill, grind, reduce particle size, homogenize, disperse, and emulsify. Once done, manufacturers need to make sure that fused molecules of ingredients will no longer depart from one another. In order to do this, emulsifying agents must be added to the overall compound to stabilize it.

Source: The Spruce

What is an emulsifier?

First, let’s define what an emulsifier is. As soon as stirring halts, the emulsion starts to separate again. To maintain the even mixture, an emulsifier is essential. A food emulsifier acts as a bond that holds the particles of the ingredients altogether. It makes the finished product soft and smooth in texture, improves the quality of the mixture, and keeps it firm and stabilized.

Water spattering in food preparation or cooking is also reduced by an emulsifier. It leads to better dispersion, solubilization, crystal modification, foaming, creaming ability, etc. Emulsions have many functions in food processing, even in other industries as well.

The Common Food Emulsifiers

Now that we have understood the definition and functions of an emulsifier in processed foods, it’s time to jump into the enumerated and expounded common food emulsifiers. Let’s begin!

  1. Lecithin

Lecithin is widely used in the commercial baking industry. This emulsifier, composed of fatty compounds, is present in eggs. Emulsifying properties are stored in the phospholipids existing in lecithin. It actually prevents the split of water and oil particles.

Good HDL cholesterol content is increased when lecithin is added to the food mixture, as stated by scientists. The droplets of oil in water are kept safe by this emulsifier, increasing the stability and shelf life of the food.

Lecithin is overflowing with health benefits too. It prevents high cholesterol and cirrhosis caused by drinking alcohol. Also, it improves nerve, brain and muscle functions.

  1. Fatty Acid Derivatives

There are different emulsifiers that can be derived from fatty acids. To name a few, polyglycerol esters (PGE), polysorbates, stearoyl lactylates, propylene glycol esters (PGMS), and sucrose esters are commonly known. In desserts like cakes and their icings, PGE is famously used. For toppings that are whippable, PGMS is mainly applied. Other products like gums, coffee, sauces, etc need sucrose esters in holding their particles.

  1. Polyglycerol Polyricinoleate (PGPR)

Baking is an appealing activity, especially for moms. We all can’t deny that cookies are tasty that’s why our sweet tooths would always go for it anytime. In manufacturing chocolates for applications such as baking, polyglycerol polyricinoleate (PGPR) works in enhancing the thickness and volume of the product. Chocolate coatings flow satisfactorily when PGPR is added unto its mixture. It also complements lecithin when combined.

Factories find PGPR as a helpful agent in maintaining the good quality of the chocolate or other products that require certain smoothness and viscosity. With that, baking will be much fun for everybody who loves doing it.

  1. Ammonium Phosphatide (AMP)

Ammonium phosphatide (AMP) is sunflower-based. The use of AMP has been most triumphant in chocolate and confectionery manufacturing. It is chiefly efficacious in achieving uniformity and steadiness of the mixture, leading to high-quality food products. It does pretty well in keeping the right attributes of the food. The size, texture, smell, texture, thickness, etc.

AMP can be used as a good alternative of lecithin but it can also be applied with it plus the PGPR.

  1. Mono and Diglycerides

Monoglycerides stay firm in the so-called ‘apha crystalline formation’. As it is very versatile, it works well in foams that are whippable while managing the agglomeration of fats. When water molecules need to be dispersed in a fat phase, monoglycerides serve as an instrument that fairly distributes water into the oil.

For products like chocolates, it gives the sensation that feels like the food product is melting inside your mouth – adding the tastiness of the food. It prompts the smoothness and consistency of the processed bulk. The crystalline structure of the food becomes balanced through its help.

These are the most used food emulsifiers from the early times until today. They are produced when palatable oils are blended with glycerin. Aside from chocolates, baked and dairy products are the ones to consume them most as well.


Aside from holding the ingredients altogether, emulsifiers make the food you eat much more appealing in taste and in appearance. Preservation is also important in prolonging the shelf lives of different products. An emulsifier helps in maintaining the freshness as well as good quality of goods for varying times of consumption. Low fat spreads are prone to mold growth. Hence, an emulsifier as an accessible solution.

There is an appropriate emulsifier for every application. Make sure you’re using the right one!

Things You Should Know About the Uses of Hydrogen

Hydrogen will be one of the critical assets in the energy stream in the coming decades for the sustainable development of society. The abundant availability of hydrogen and its application in electricity production using fuel cells without any harmful emissions makes it distinct. It can be produced from renewable and sustainable resources, thus promising an eco-friendly solution for the energy transition in the coming years.

Currently, hydrogen production using the electrolysis of water is most preferred. However, hydrogen production can vary in the range of sectors. Hydrogen can be used in electricity production, biomass, solar and wind power application.

applications of hydrogen gas

Despite its advantages, two significant issues hinder its commercialisation and generalisation as an efficient fuel, and energy transition toward zero-emission and fossil-free energy solutions. The first is hydrogen is an energy vector, which means hydrogen needs to be produced before its use and eventually lead to energy consumption in hydrogen synthesis. The second is the low volumetric energy density of hydrogen, which leads to hydrogen storage and transportation issues because of its lowest volumetric energy density (0.01079 MJ/L)

Researchers have suggested several solutions to attempt to increase this value:

  • compression in gas cylinders;
  • liquefaction in cryogenic tanks;
  • storage in metal-hydride alloys;
  • adsorption onto large specific surface area-materials
  • chemical storage in covalent and ionic compounds (viz. formic acid, borohydride, ammonia)

Applications of Hydrogen

The hydrogen applications are in the food industry to turn unsaturated fats and oils present in vegetable oils, butter into a saturated state. In the metal forming industry, atomic hydrogen welding is used as an environmentally sustainable welding process. In the manufacturing industry, hydrogen and nitrogen are used to create a boundary and prevent the oxidation of metals.

The recent advancements in hydrogen applications in the steel manufacturing industry are one of the most significant hydrogen applications for low or zero-emission iron ore conversion.


The potential use of hydrogen can play a vital role in reducing greenhouse emissions and the global target of achieving a minimal no emission target by 2050. However, the automotive industry is still the largest consumer and most attractive sector in the current scenario. But with the future forecast of reducing hydrogen fuel cost can do wonders with the goal set during Paris Climate Summit.

Hydrogen use in stationary and automotive applications, such as fuel cell vehicles and hydrogen refuelling stations above all, has shown to be hindered by its volumetric energy density – the lowest among all the standard fuels nowadays used. Compression seems to be the most efficient solution to reach high storage levels, thus making hydrogen more common as a renewable and sustainable fuel.

uses of hydrogen

The availability of several hydrogen compression technologies makes the development of new innovative and environmentally-friendly solutions for the use of energy possible, leading to a transition towards a fossil fuel divestment and making a critical contribution to sustainable development