Things You Should Know About the Uses of Hydrogen

Hydrogen will be one of the critical assets in the energy stream in the coming decades for the sustainable development of society. The abundant availability of hydrogen and its application in electricity production using fuel cells without any harmful emissions makes it distinct. It can be produced from renewable and sustainable resources, thus promising an eco-friendly solution for the energy transition in the coming years.

Currently, hydrogen production using the electrolysis of water is most preferred. However, hydrogen production can vary in the range of sectors. Hydrogen can be used in electricity production, biomass, solar and wind power application.

applications of hydrogen gas

Despite its advantages, two significant issues hinder its commercialisation and generalisation as an efficient fuel, and energy transition toward zero-emission and fossil-free energy solutions. The first is hydrogen is an energy vector, which means hydrogen needs to be produced before its use and eventually lead to energy consumption in hydrogen synthesis. The second is the low volumetric energy density of hydrogen, which leads to hydrogen storage and transportation issues because of its lowest volumetric energy density (0.01079 MJ/L)

Researchers have suggested several solutions to attempt to increase this value:

  • compression in gas cylinders;
  • liquefaction in cryogenic tanks;
  • storage in metal-hydride alloys;
  • adsorption onto large specific surface area-materials
  • chemical storage in covalent and ionic compounds (viz. formic acid, borohydride, ammonia)

Applications of Hydrogen

The hydrogen applications are in the food industry to turn unsaturated fats and oils present in vegetable oils, butter into a saturated state. In the metal forming industry, atomic hydrogen welding is used as an environmentally sustainable welding process. In the manufacturing industry, hydrogen and nitrogen are used to create a boundary and prevent the oxidation of metals.

The recent advancements in hydrogen applications in the steel manufacturing industry are one of the most significant hydrogen applications for low or zero-emission iron ore conversion.


The potential use of hydrogen can play a vital role in reducing greenhouse emissions and the global target of achieving a minimal no emission target by 2050. However, the automotive industry is still the largest consumer and most attractive sector in the current scenario. But with the future forecast of reducing hydrogen fuel cost can do wonders with the goal set during Paris Climate Summit.

Hydrogen use in stationary and automotive applications, such as fuel cell vehicles and hydrogen refuelling stations above all, has shown to be hindered by its volumetric energy density – the lowest among all the standard fuels nowadays used. Compression seems to be the most efficient solution to reach high storage levels, thus making hydrogen more common as a renewable and sustainable fuel.

uses of hydrogen

The availability of several hydrogen compression technologies makes the development of new innovative and environmentally-friendly solutions for the use of energy possible, leading to a transition towards a fossil fuel divestment and making a critical contribution to sustainable development

Combined Heat and Power Systems in Biomass Industry

Combined heat and power systems in the biomass industry means the simultaneous generation of multiple forms of useful energy (usually mechanical and thermal) from biomass resources in a single, integrated system. In a conventional electricity generation systems, about 35% of the energy potential contained in the fuel is converted on average into electricity, whilst the rest is lost as waste heat. CHP systems use both electricity and heat and therefore can achieve an efficiency of up to 90%.

CHP technologies are well suited for sustainable development projects because they are socio-economically attractive and technologically mature and reliable. In developing countries, cogeneration can easily be integrated in many industries, especially agriculture and food processing, taking advantage of the biomass residues of the production process. This has the dual benefits of lowering fuel costs and solving waste disposal issues.

CHP systems consist of a number of individual components—prime mover (heat engine), generator, heat recovery, and electrical interconnection—configured into an integrated whole. Prime movers for CHP units include reciprocating engines, combustion or gas turbines, steam turbines, microturbines, and fuel cells. A typical CHP system provides:

  • Distributed generation of electrical and/or mechanical power.
  • Waste-heat recovery for heating, cooling, or process applications.
  • Seamless system integration for a variety of technologies, thermal applications, and fuel types.

The success of any biomass-fuelled CHP project is heavily dependent on the availability of a suitable biomass feedstock freely available in urban and rural areas.

Rural Resources Urban Resources
Forest residues Urban wood waste
Wood wastes Municipal solid wastes
Crop residues Agro-industrial wastes
Energy crops Food processing residues
Animal manure Sewage

Technology Options

Reciprocating or internal combustion engines (ICEs) are among the most widely used prime movers to power small electricity generators. Advantages include large variations in the size range available, fast start-up, good efficiencies under partial load efficiency, reliability, and long life.

Steam turbines are the most commonly employed prime movers for large power outputs. Steam at lower pressure is extracted from the steam turbine and used directly or is converted to other forms of thermal energy. System efficiencies can vary between 15 and 35% depending on the steam parameters.

Co-firing of biomass with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels. Biomass can typically provide between 3 and 15 percent of the input energy into the power plant. Most forms of biomass are suitable for co-firing.

Steam engines are also proven technology but suited mainly for constant speed operation in industrial environments. Steam engines are available in different sizes ranging from a few kW to more than 1 MWe.

A gas turbine system requires landfill gas, biogas, or a biomass gasifier to produce the gas for the turbine. This biogas must be carefully filtered of particulate matter to avoid damaging the blades of the gas turbine.

Stirling engines utilize any source of heat provided that it is of sufficiently high temperature. A wide variety of heat sources can be used but the Stirling engine is particularly well-suited to biomass fuels. Stirling engines are available in the 0.5 to 150 kWe range and a number of companies are working on its further development.

A micro-turbine recovers part of the exhaust heat for preheating the combustion air and hence increases overall efficiency to around 20-30%. Several competing manufacturers are developing units in the 25-250kWe range. Advantages of micro-turbines include compact and light weight design, a fairly wide size range due to modularity, and low noise levels.

Fuel cells are electrochemical devices in which hydrogen-rich fuel produces heat and power. Hydrogen can be produced from a wide range of renewable and non-renewable sources. A future high temperature fuel cell burning biomass might be able to achieve greater than 50% efficiency.