Everything You Need to Know About Carbon Black

Carbon Black is a commercial form of solid carbon that is manufactured in highly controlled processes to produce specifically engineered aggregates of carbon particles that vary in particle size, aggregate size, shape, porosity and surface chemistry. Carbon Black typically contains more than 95 % pure carbon with minimal quantities of oxygen, hydrogen and nitrogen.

In the manufacturing process, Carbon Black particles range from 10 nm to approximately 500 nm in size. These fuse into chain-like aggregates, which define the structure of individual Carbon Black grades.

What is Carbon Black

Carbon Black is used in a diverse group of materials in order to enhance their physical, electrical and optical properties. Its largest volume use is as a reinforcement and performance additive in rubber products.

In rubber compounding, natural and synthetic elastomers are blended with Carbon Black, elemental sulphur, processing oils and various organic processing chemicals, and then heated to produce a wide range of vulcanized rubber products. In these applications, Carbon Black provides reinforcement and improves resilience, tear-strength, conductivity and other physical properties.

Carbon Black is the most widely used and cost effective rubber reinforcing agent (typically called Rubber Carbon Black) in tire components (such as treads, sidewalls and inner liners), in mechanical rubber goods (“MRG”), including industrial rubber goods, membrane roofing, automotive rubber parts (such as sealing systems, hoses and anti-vibration parts) and in general rubber goods (such as hoses, belts, gaskets and seals).

Applications of Carbon Black

Besides rubber reinforcement, Carbon Black is used as black pigment and as an additive to enhance material performance, including conductivity, viscosity, static charge control and UV protection. This type of Carbon Black (typically called Specialty Carbon Black) is used in a variety of applications in the coatings, polymers and printing industries, as well as in various other special applications.

Actually, after oil removal and ash removal processing from tire pyrolysis, we can get high-purity commercial carbon black, which can be used to make color masterbatch, color paste, oil ink and as addictive in plastic and rubber products. Besides, after activation treatment, the carbon black will become good materials to produce activated carbon.

In the coatings industry, treated fine particle Carbon Black is the key to deep jet black paints. The automotive industry requires the highest black intensity of black pigments and a bluish undertones.

Carbon Black has got a wide array of applications in different industries

Small particle size Carbon Blacks fulfill these requirements. Coarser Carbon Blacks, which offer a more brownish undertone, are commonly used for tinting and are indispensable for obtaining a desired grey shade or color hue.

In the polymer industry, fine particle Carbon Black is used to obtain a deep jet black color. A major attribute of Carbon Black is its ability to absorb detrimental UV light and convert it into heat, thereby making polymers, such as polypropylene and polyethylene, more resistant to degradation by UV radiation from sunlight. Specialty Carbon Black is also used in polymer insulation for wires and cables. Specialty Carbon Black also improves the insulation properties of polystyrene, which is widely used in construction.

In the printing industry, Carbon Black is not only used as pigment but also to achieve the required viscosity for optimum print quality. Post-treating Carbon Black permits effective use of binding agents in ink for optimum system properties. New Specialty Carbon Blacks are being developed on an ongoing basis and contribute to the pace of innovation in non-impact printing.

The Promise of Algae

This year has witnessed the U.S. Navy debut their “Great Green Fleet,” the first aircraft carrier strike group powered largely by alternative, nonpetroleum-based fuels, the British Ministry of Defence launch a competition to reduce its equipment energy spend and the Pentagon increase its investment in clean-energy technologies, including biofuels development.  Could we be witnessing the start of the end of our reliance on “fossil fuel” petroleum?

algae_biofuels

In 2010, the MOD spent £628m on equipment energy and, for every 1p per litre rise in the price of fuel, the MOD’s annual equipment energy bill increases by £13m. These rising oil prices have once again positioned biofuels centre stage as a potential substitute to fulfil our global thirst for fuel.

With so many biofuel crops needing to compete for space and freshwater supplies with agriculture, algae are being seen as an ideal, sustainable alternative.  Algae can be grown in areas where crops cannot, but until now, it’s been difficult to achieve the scale needed for commercial  algal production.

Leading international authority on algal biotechnology and head of the Culture Collection of Algae and Protozoa, Dr John Day, thinks it’s a major step forward.  Dr Day has over 25 years’ experience in biotechnology and applied algal research and comments “Commercial confidence in the scalability of algal biofuel production is an exciting step forward in the journey towards sustainable, economic biofuel production using microalgae.

“A major driver for the development of algal biofuels has been fuel security and the US Navy has successfully tested nearly all of its ships and aircraft on biofuel blends containing algal oils — including an F-18 fighter flying at twice the speed of sound and a ship moving at 50 knots.”

“Scientists at SAMS and elsewhere have been contributing to the global development of knowledge on algal biofuel. It is this understanding of the biology of these enigmatic microbes and our capacity to successfully cultivate them that will be the key to producing algal biofuels and other products.”

Driven by the desire to reduce reliance on foreign countries for petroleum, and the constant pressure to reduce costs, Governments are taking sustainable fuels very seriously.  (A recent report highlighted that Pentagon investment in green technologies rose to $1.2 billion, up from $400 million, and is projected to reach $10 billion annually by 2030.)  The Pentagon’s Defence Advanced Research Projects Agency (which finances and monitors research into algae fuels,) says it has now managed to produce algafuel for $2 per gallon and that it will produce jet aircraft quality algafuel for $3 per gallon by 2013. Unsurprisingly, commercial aviation companies around the world are also taking an interest in algae biofuels to reduce their own costs and carbon footprints.

As interest grows and more funding becomes available, the industry is blossoming and more skilled people are needed. Could we witness a global shift to sustainable fuels in our lifetime?  We certainly hope so.

Everything You Need to Know About Glow Sticks

You have probably come across glow sticks at some stage of your life, however other people refer to them as chemlights or light sticks. After you bend a glow stick, the glass inside shatters and it begins to glow.

After they begin to glow, you can expect them to be visible in the dark from 1 to 12 hours. The time of how long it glows for depends on the quality and the size of the glow stick. 

Remember, that once you have broken the glass inside and the light appears, you can’t turn it off. 

You can find glow sticks in all different types of shapes and sizes. Most are no longer than 10 inches, however some you can connect together to make longer ones. They are also available in lots of different colors, such as red, blue, yellow and orange. However, it seems both the orange and red don’t light up that well. 

disposal-of-glow-sticks

Glow sticks are very popular amongst kids and party goers, but what other purposes can you use glow sticks for?

Survival

If you are planning to go out in the wild, it is vital that you pack reliable lighting. For several years, it has been common for people to use glow sticks in a crisis situation. 

Unlike other sources of lighting, glow sticks don’t need batteries to work. Purchasing a quality glow stick will give you 12 hours of light, without having to worry about the batteries running out. 

Glow sticks are safe, so you don’t have to worry about them starting a fire nor will they electrocute somebody. They are even safe for children to play with.

Because they are small and lightweight, you will easily be able to find space when you are packing. 

Even the best quality glow sticks are cheap. If you are looking for value, purchasing glow sticks in bulk is your best option.

What Survival situations would a Glow Stick prove useful?

There are many reasons why you should pack a glow stick with your survival kit such as:

  • Helps you to read a topographic map in the dark. 
  • You can mark a trail directing others to your camp
  • Keeps large groups together: At night it is very hard to organize a lot of people, so a glow stick will prove to be a very helpful device
  • After a road accident, you can use a glow stick as a marker: Glow sticks are a great way to warn oncoming traffic that there is an accident on the roadside. If there is debris on the road or gas leaks, placing a glow stick nearby will alert others.
  • Avoid falling: If you frequently camp, you have probably tripped at some stage. Small holes, trees, and other obstacles that are not visible during the night can cause injuries. By putting a glow stick nearby will help warn others. You can also place glow sticks to mark a safe path. 
  • If it is raining or you are in the water, don’t worry as glow sticks are water-resistant and are perfect for wet environments. 

Glow sticks are used by militaries all over the globe as a survival tool. If you do decide to buy glow sticks in bulk and you pack a large amount in your survival kit, you can easily write SOS with them if you are stuck in a dangerous location.

How do you Dispose of Glow Sticks and are They Safe?

One of the disadvantages of using glow sticks is that there is no environmentally safe way that you can recycle them. As each one has chemicals inside, the plastic casing cannot be reused nor can it be repurposed. 

The reason why glow sticks produce light is that there are two main ingredients that cause a chemical reaction.

Although the casing is made of strong plastic, be careful of young children or pets chewing on the plastic. Although the chemicals are not that toxic, it is not advised to ingest them. If a child swallows some of the chemicals, make sure to rinse his or her mouth immediately. Speak to your doctor if the child has swallowed a lot. 

Click on the link for more details on how to properly disposing glow sticks.

Summary

Glow sticks have a shelf life of around 4 years, as long as it is kept in its original foil packaging. If it has been removed, you can expect it to last for 1 year. If you decide to buy in bulk, keep this in mind. If you have a large number of glow sticks and think they are out of date, test one before you throw them all away. 

Glow sticks are not just a great source of lighting, but children and families can play lots of games and have a fantastic time with them.

All You Need to Know About the Benefits Of Natural Gas

All areas of our lives are literally run by energy. And with various options of energy consumption choices, it’s always good to know the benefits of each one of them so that you make a great consumer choice. Today, in this article, we are focusing on natural gas and are going to take you through some of its top benefits. So if that’s what you have been searching for, then you are at the correct place. Let’s get started!

1. Clean Burning Fuel

When compared to coal, oil, and diesel, natural gas is cleaner as it emits the least percentage of carbon dioxide and other related harmful chemicals. So when you use one, you don’t have to invest in emission lowering technologies as the efficiency is top notch. Also, since it’s odorless, it makes little contribution to air pollution and doesn’t cause any harm when inhaled by people and animals.

2. Versatile

There is a given sort of flexibility and convenience that comes with the use of natural gas. With it, you enjoy the ease of starting and turning off as it won’t take much of your time. Also, since it isn’t dependent on the wind or the sun, it can function pretty well when used with solar and wind powers. It’s a source you can depend on no matter the weather conditions outside.

So if this seems like something you would like to try out, then it’s advisable to carefully go through an apples to apples comparison of the various natural gas providers and settle for one according to your needs and financial capability.

3. Affordable

With the current hard economic times, people are always on the lookout for affordable but efficient options when it comes to products or services affecting their billings. So natural gas couldn’t have been easily accessible at a better time. In fact, it’s by far one of the cheapest energy options in the current market. This is because, even as you calculate the long-term costs of seemingly cheap options such as generators, you will realize that they aren’t as affordable as they might appear in the beginning. Take the fuel and maintenance costs, for example, you will end up spending much more than you can ever imagine.

natural-gas-applications

But this isn’t the case with natural gas. According to recent findings, its cost is expected to remain constant or relatively unchanged at least even for the next decade. So you can be sure that it’s a long-term investment, worth every cent. You make one and forget about unnecessary expenses.

4. Reliable Delivery Infrastructure

This is probably one of the natural gas‘s primary benefits. This is because you can still receive your delivery of natural gas even during extreme weather conditions such as storms, through the pipes. A case that’s different from other energy sources. Also, the infrastructure is already established in most urban areas.

Final Thoughts

Natural gas is a clean fuel that can be used in various places while keeping the air fresh and clean. Together with this, there are various benefits associated with its use and this includes the affordability, reliable infrastructure, versatility, among others. The above list isn’t exhaustive.

An Introduction to Biomass Energy

Biomass is the material derived from plants that use sunlight to grow which include plant and animal material such as wood from forests, material left over from agricultural and forestry processes, and organic industrial, human and animal wastes. Biomass energy is a type of renewable energy generated from biological (such as, anaerobic digestion) or thermal conversion (for example, combustion) of biomass resources.

Biomass comes from a variety of sources which include:

  • Wood from natural forests and woodlands
  • Forestry plantations
  • Forestry residues
  • Agricultural residues such as straw, stover, cane trash and green agricultural wastes
  • Agro-industrial wastes, such as sugarcane bagasse and rice husk
  • Animal wastes
  • Industrial wastes, such as black liquor from paper manufacturing
  • Sewage
  • Municipal solid wastes (MSW)
  • Food processing wastes

In nature, if biomass is left lying around on the ground it will break down over a long period of time, releasing carbon dioxide and its store of energy slowly. By burning biomass its store of energy is released quickly and often in a useful way. So converting biomass into useful energy imitates the natural processes but at a faster rate.

Biomass can be transformed into clean energy and/or fuels by a variety of technologies, ranging from conventional combustion process to advanced biofuels technology. Besides recovery of substantial energy, these technologies can lead to a substantial reduction in the overall biomass waste quantities requiring final disposal, which can be better managed for safe disposal in a controlled manner while meeting the pollution control standards.

Biomass conversion systems reduces greenhouse gas emissions in two ways.  Heat and electrical energy is generated which reduces the dependence on power plants based on fossil fuels.  The greenhouse gas emissions are significantly reduced by preventing methane emissions from decaying biomass. Moreover, biomass energy plants are highly efficient in harnessing the untapped sources of energy from biomass resources and helpful in development of rural areas.

Everything You Should Know About Electricity

Electricity, we use it every day but what is it? The dictionary defines it as a form of energy resulting from the existence of charged particles (such as electrons or protons), either statically as an accumulation of charge or dynamically as a current. This may sound confusing, but by breaking it down we can understand how it works. Electricity is used for many everyday things but breakthroughs of how to use it have resulted in many cool inventions, some of which you can explore on thehomesecuritysuperstore.

A Closer Look at Atoms

So, what is electricity? To understand how electricity works we have to break it down, starting with the charged particles. Everything is made of atoms, and these atoms are mostly empty space. Moving around in the empty space are electrons and protons. These each carry an electric charge, electrons being negative and protons being positive. These opposite charges attract each other. The atom is in balance when there are an equal number of protons and electrons. The number of protons determines what kind of element the atom is, and these numbers and elements are shown on the periodic table.

Imagine the atom as having rings around the nucleus, the center of the atom. These rings can hold a certain number of electrons which move constantly around the nucleus which holds the protons. When the rings hold electrons that are attracted to the protons the strength of this attraction can push an electron out of its orbit and even make them shift from one atom to another. This is where electricity occurs.

Traveling in Circuits

Now that we know the basics of electricity, we can look at how it works. For a basic understanding of how electricity travels through circuits and how we use electricity we will look at batteries and light bulbs. Batteries can produce electricity through a chemical substance called an electrolyte.

The battery is attached to two metals, one on either end, and produces a negative charge in one metal and a positive charge in the other metal. When the battery is then connected on either end by a conductor such as a wire the electrical charge is balanced. If you were to attach a light bulb to the wire in between the sides of the battery, the electrical current would then travel through the light bulb to get to the other side of the battery and thus powering the light.

LED-lighting-workplace

Electricity moves through electrical circuits and must have a complete path for the electrons to move through. The switch or power button on electronic devices opens and closes this path. When you turn on the light switch the circuit is closed and electrons can move freely to turn on your lights. When you turn off the switch it opens the circuit not allowing the electrons through and turning off your lights. When light bulbs burn out the small wire connecting the circuit inside the light bulb breaks and stops the flow of electrons.

Final Thoughts

Energy flows through our entire world and understanding how electricity works is just the beginning. Of course, most of the electricity in your life is not connected to a single battery as in the example above, but the understanding on a basic level is very interesting.

Electricity literally powers everything in our lives and a world without it would be very different. Understanding how these things work lets us enrich our knowledge of the world around us and provides us with practical information we can use in our everyday life. Electricity is all around us and is used in more interesting ways than just light bulbs and batteries.

Synthetic Biology – A Catalyst to Revolutionize Biogas Industry

Essentially a process operating by living organisms, the biogas industry is a natural target for synthetic biology. Synthetic biology combines biology and engineering to design and construct biological devices. Contrary to traditional genetic engineering that only alters an already existing DNA sequence, synthetic biology allows us to build entirely new sequences of DNA and put them to work in cells. This allows us to build novel biological devices that would never exist in nature.

synthetic-biology-biogas

Constructions and operations of devices that do not exist in nature, such as tools, vehicles, computers and the internet, have crafted modern civilization. Now, it is synthetic biology that is challenging nature’s limitations and advancing civilization to a higher level.

Generating biogas via anaerobic digestion of biomass and organic waste is one of the few proven, cost-effective, scalable biomass energy strategies. Biogas consists of mainly methane and carbon dioxide, and combustion of methane with air generates energy which can be used for many purposes such as cooking, heating, producing electricity and vehicle fuel. As a result, countless biogas plants are operating around the globe helping to clean up waste and generate energy. With more plants being built, they come in all sizes ranging from household to factory scales.

Anaerobic digestion is a process where extremely complex microbial communities degrade organic matter, such as sugars, fats and proteins, resulting in biogas as the primary end-product. Such inherent complexity makes this process very difficult to optimize. Mechanical engineers have made tremendous progress to optimize this process, but in many places it still requires government subsidies to be profitable.

Synthetic Biology and Biogas Industry

Essentially a process operating by living organisms, the biogas industry is a natural target for synthetic biology. In terms of their genetic content, organisms are classified into three natural groups, Archaea, Bacteria and Eukarya. Most microbes are Archaea and Bacteria, while humans are Eukarya.

In an anaerobic digester, many different types of Bacteria convert the complex organic matter in waste or biomass to hydrogen gas, carbon dioxide, formate and acetate. A unique group of methanogenic Archaea then produces the invaluable part of biogas, methane, by eating hydrogen and carbon dioxide, formate or acetate.

One can imagine creating a super microbe to convert the complex organic matter directly into biogas, thus making anaerobic digestion faster, more efficient and easier-to-manipulate. Making a synthetic microbial community by reprogramming key microbes may also help them work together when a tough job (i.e., eating extremely complex waste) needs to be done.

Among numerous microbes in anaerobic digester, methanogenic Archaea are one of a few microbial groups that have been extensively studied, and a number of genetic tools are available for engineering via synthetic biology. Therefore, scientists have begun to reprogram methanogenic archaea, allowing them to eat organic matter such as sugars and directly produce methane. If they succeed, they may engineer a super microbe that never existed in nature and revolutionize the biogas industry by making anaerobic digestion much simpler and more efficient.

There is also the possibility of more applications downstream. For instance, upgrading biogas by removal of carbon dioxide improves its combustibility. A super microbe could be made to upgrade biogas using hydrogen gas or even electricity to form more methane from carbon dioxide.

Conceptualized super cell that converts idealized organic matter (2CH2O) directly into biogas.

Grand Challenges

However promising, grand challenges remain when it comes to the use of synthetic biology in biogas industry. About 10,000 moving parts are needed to make an automobile, millions of parts for an airplane, and all the parts are standardized.

Similar to those engineering sectors, synthetic biology also needs many standardized genetic parts and modules to be able to create biological devices that can really revolutionize an industry. Sophisticated genetic tools are needed as well to assemble these parts and put them to work. However, few such parts, modules and tools are at disposal for engineering microbes in an anaerobic digester.

Take methanogenic Archaea for example, only three parts are available in the iGEM registry, the world largest collection of biological parts for synthetic biology. Another challenge is an apparent neglect of synthetic biology by the biogas industry. Symposiums bringing professionals from biogas industry and synthetic biology together for discussions are rare, as are major investments for promoting synthetic biology.

As a result, few research groups are developing synthetic tools and parts for the biogas industry. For example, the aforementioned three iGEM parts were all contributed by only one group, the UGA-iGEM team at the University of Georgia.

Future Perspectives

Synthetic biology is developing faster than ever, and its cost continues to fall. Thanks to prompt actions of many industrial pioneers in embracing and supporting synthetic biology, it is already starting to revolutionize a few fields.

Synthetic biology holds great potentials to revolutionize the biogas industry. To achieve this goal, joint efforts between the biogas industry and academia must be made. The former side needs to understand what synthetic biology can achieve, while the latter side should identify which parts of the process in the biogas industry can be re-designed and optimized by synthetic biology.

Once the two sides start to work together, novel synthetic parts and tools are bound to be invented, and they will make anaerobic digestion a better process for the biogas industry.

3 Ways Zero Valent Iron Can Help in Environment Protection

Zero Valent Iron (ZVI) was developed to eliminate chlorinated hydrocarbon solvents in the soil. Industrial solvents are replete with chlorinated hydrocarbon, so much toxic and bad for the environment. They get disposed in the soil along with other toxic elements to cause harm to our surrounding. In the current years, significant improvements have taken place in the realm of iron-based technology.

Zero Valent Iron can be effectively used in soil remediation

The result of years of research and significant improvement in the iron-based technology is the advent of nanoscale or polymer-supported iron-containing nanoparticles to remove contaminants from solvents and soil. This is all due to the high surface area to the volume ratio of such nanoscale particles that favor the reaction kinetics and sorption.

But, know one thing that high pressure drops may restrict fixed-bed column application. This is why we now have modified nanosized ferrous particles to facilitate arsenic removal. The fabulous reducing agent helps in pollution recovery, and thus it benefits our environment.

Applications of Zero Valent Iron

ZVI in recent times is used widely for wastewater treatment, groundwater, and soil treatment. If made through the physico-chemical process in combination, the ZVI may be very small particles, having a large surface area. ZVI is beneficial for the environment, for it has a strong reductibility, great purity, long aging property, and similar features.

Zerovalent Iron can boost the chlorine removal efficiency of the soil, groundwater, and six valent chromium. Thus, it reduces the time required for environmental remediation. Acting as a fabulous reducing agent, it facilitates pollution recovery. Indeed, you may also combine it to bioremediation to further improve the efficacy of environment pollution recovery. Use it in the soil, solvents and industrial wastewater confidently to get rid of the contaminants. The use of ZVI paves the way for pure water and soil.

What you should look for in ZVI?

Are you planning to procure zero valent elemental metallic ions for wastewater treatment or soil remediation? Zerovalent metals or ZVI has a wide range of applications that range from electrodes and trenches to filters. Yes! It helps in the water filtration process, and thus we have pure drinking water. It gets rid of every trace of impurity or contaminant from the solvent or soil. It is important to look for a reliable company to procure ZVI.

Watch out for the following properties of ZVI

  • The particles must be fine enough to be customized as per your application
  • Look for the great adsorption performance and sound chemical activity
  • A large surface area for that very strong reductibility
  • Make sure the duration of its effect is very long to reduce the injections
  • Very fine ZVI particles to remediate pollution and to save remediation time and effort
  • Must be environment-friendly, deprived of any toxic compound

Enhanced nitrate-removing potentialllu

Zero-valent metal has an enhanced nitrate removal capacity. It eliminates nitrate from the groundwater to facilitate remediation. Hence, biochar-supported ZVI can facilitate nitrate removal while the ones with wider pH can remove larger nitrates. Biochar composite eliminates nitrate from the groundwater without leaving any harmful by-products. But, biochar has a variable nitrate-removal capacity.

ZVI biochar has a potential to reduce nitrate by mediating the redox potential, the electron transfer, pH and thus facilitates enhanced removal or reduction of nitrate from the solvent or soil. Everything revolves around the logic of intensifying chemical reduction in order to eliminate nitrate from the soil or groundwater.

Nitrate and How it Accumulates

Nitrate is the form of nitrogen, which lies beneath the cultivable land. Nitrate is water soluble and may move through the soil quite easily. Owing to its high mobility, it moves to the groundwater table. Once it has moved to the groundwater table, it persists there and deposits to a very high level.

Thus, shallow groundwater is also at a risk of contamination from chemicals of land surfaces. This is a matter of concern, and indeed, nitrate in water may harm human health, aquatic life, livestock life and contaminate the surface water. We can say that it is not that harmful to adult humans, but it can significantly affect the health of the infants. It may reduce the level of oxygen in the blood to cause ‘blue baby’ disorder.

Hence, biological denitrification, ion exchange, and reverse osmosis are the treatment processes to handle this issue. The use of ZVI is a way to denitrification and the key to attaining a safe nitrate level in the water. A zero-valent metallic reduction is an effective way to refine dirty and polluted water. As soon as ZVI is placed in the flowing water or is added to the flowing water, there starts the process of oxidizing. The resultant chain reaction will purify water or remove the contaminants.

A Tool to Remediate Acid Mine Drainage

AMD or Acid Mine Drainage is the most common source of metal in places like the Appalachians, Tennessee, and Kentucky. It is important to remediate acid mine drainage for it is highly acidic and toxic. It is the major contributor to the arsenic environment and something needs to be done. AMD is a rich source of heavy and corrosive metals, acidic in nature. Biological treatment of Acid Mine Drainage is cost-effective, efficient and environment-friendly.

Biotechnological processes are an asset when it comes to treating Acid Mine Drainage in an effective manner. ZVI is environmentally sustainable. When it is very complicated and difficult to treat or remediate Acid Mine Drainage, ZVI eases the process. It gets rid of harmful elements or potentially hazardous substances from AMD to separate metal from acid and toxic compounds. There isn’t a need to abandon a mine site just because there are acidic metal deposits. Mine metals can be reclaimed with ZVI, and herein lays the environmental benefit.

Recycling of metallurgical waste

It is important to treat AMD or Acid Mine Drainage. The ecological solution to separate toxic metals, to reclaim water in large quantities is gaining a lot of attention. ZVI and zero valent metals save our natural resources and prepare the toxic metals for the recycling process. This is only possible through the separation of the acidic part.

We can recycle gallons of water that lay in the pond and other water bodies. It drops the acid level in the water and metal while also prevents heavy metallic reactions. When Acid Mine Drainage is one of the serious concerns in the realm of coal mining, zero valent metals prevent any exposure of sulfur-rich mineral to the water and atmospheric oxygen.

Final Thoughts

Zero-valent metals can help in the treatment of contaminated zones through the process of remediation. Zero valent iron is the highly reactive powder for remediation of wastewater and soil and works fabulously on environmentally contaminated areas. This remediation solution is highly efficient and benefits our environment in multiple ways.

What Are The Common Food Emulsifiers?

In the food industry, the process of making new products involves combining all the necessary ingredients more than anything else. Due to the need for concoction, other operations such as grinding, particle size reduction, emulsification, etc. would take place.

Successful food manufacturing requires equipment like Ginhong mixers that will help mill, grind, reduce particle size, homogenize, disperse, and emulsify. Once done, manufacturers need to make sure that fused molecules of ingredients will no longer depart from one another. In order to do this, emulsifying agents must be added to the overall compound to stabilize it.

Source: The Spruce

What is an emulsifier?

First, let’s define what an emulsifier is. As soon as stirring halts, the emulsion starts to separate again. To maintain the even mixture, an emulsifier is essential. A food emulsifier acts as a bond that holds the particles of the ingredients altogether. It makes the finished product soft and smooth in texture, improves the quality of the mixture, and keeps it firm and stabilized.

Water spattering in food preparation or cooking is also reduced by an emulsifier. It leads to better dispersion, solubilization, crystal modification, foaming, creaming ability, etc. Emulsions have many functions in food processing, even in other industries as well.

The Common Food Emulsifiers

Now that we have understood the definition and functions of an emulsifier in processed foods, it’s time to jump into the enumerated and expounded common food emulsifiers. Let’s begin!

  1. Lecithin

Lecithin is widely used in the commercial baking industry. This emulsifier, composed of fatty compounds, is present in eggs. Emulsifying properties are stored in the phospholipids existing in lecithin. It actually prevents the split of water and oil particles.

Good HDL cholesterol content is increased when lecithin is added to the food mixture, as stated by scientists. The droplets of oil in water are kept safe by this emulsifier, increasing the stability and shelf life of the food.

Lecithin is overflowing with health benefits too. It prevents high cholesterol and cirrhosis caused by drinking alcohol. Also, it improves nerve, brain and muscle functions.

  1. Fatty Acid Derivatives

There are different emulsifiers that can be derived from fatty acids. To name a few, polyglycerol esters (PGE), polysorbates, stearoyl lactylates, propylene glycol esters (PGMS), and sucrose esters are commonly known. In desserts like cakes and their icings, PGE is famously used. For toppings that are whippable, PGMS is mainly applied. Other products like gums, coffee, sauces, etc need sucrose esters in holding their particles.

  1. Polyglycerol Polyricinoleate (PGPR)

Baking is an appealing activity, especially for moms. We all can’t deny that cookies are tasty that’s why our sweet tooths would always go for it anytime. In manufacturing chocolates for applications such as baking, polyglycerol polyricinoleate (PGPR) works in enhancing the thickness and volume of the product. Chocolate coatings flow satisfactorily when PGPR is added unto its mixture. It also complements lecithin when combined.

Factories find PGPR as a helpful agent in maintaining the good quality of the chocolate or other products that require certain smoothness and viscosity. With that, baking will be much fun for everybody who loves doing it.

  1. Ammonium Phosphatide (AMP)

Ammonium phosphatide (AMP) is sunflower-based. The use of AMP has been most triumphant in chocolate and confectionery manufacturing. It is chiefly efficacious in achieving uniformity and steadiness of the mixture, leading to high-quality food products. It does pretty well in keeping the right attributes of the food. The size, texture, smell, texture, thickness, etc.

AMP can be used as a good alternative of lecithin but it can also be applied with it plus the PGPR.

  1. Mono and Diglycerides

Monoglycerides stay firm in the so-called ‘apha crystalline formation’. As it is very versatile, it works well in foams that are whippable while managing the agglomeration of fats. When water molecules need to be dispersed in a fat phase, monoglycerides serve as an instrument that fairly distributes water into the oil.

For products like chocolates, it gives the sensation that feels like the food product is melting inside your mouth – adding the tastiness of the food. It prompts the smoothness and consistency of the processed bulk. The crystalline structure of the food becomes balanced through its help.

These are the most used food emulsifiers from the early times until today. They are produced when palatable oils are blended with glycerin. Aside from chocolates, baked and dairy products are the ones to consume them most as well.

Conclusion

Aside from holding the ingredients altogether, emulsifiers make the food you eat much more appealing in taste and in appearance. Preservation is also important in prolonging the shelf lives of different products. An emulsifier helps in maintaining the freshness as well as good quality of goods for varying times of consumption. Low fat spreads are prone to mold growth. Hence, an emulsifier as an accessible solution.

There is an appropriate emulsifier for every application. Make sure you’re using the right one!

CRISPR Gene Editing Set to Revolutionize Waste Management

When people think of waste management, gene editing probably does not come to most people’s minds. Yet the innovative CRISPR genome modification technology fits well within the confines of managing pollution and waste on the planet. In particular, scientists are looking at how CRISPR can help with bioremediation, or pollutant neutralization.

Why Neutralize Pollutants?

The planet is in dire need of help as the negative impact of climate change hovers on the horizon. One of the ways that researchers are revolutionizing waste management and environmentalism is by neutralizing the pollutants that are taking up space in our landfills and oceans.

Scientists have noticed that certain organisms are particularly good at removing toxins from pollutants while others have the advantage of immobilizing toxins. Researchers are connecting the dots in order to figure out how CRISPR can help make these processes more efficient.

CRISPR-Aided Bioremediation

While it is great that scientists have discovered microorganisms that can metabolize pollutants and produce less toxic matter, what if those properties could be expanded?

CRISPR researchers are trying to do just that by using genetic editing to transfer more advantageous genes to other organisms, thus giving them even more power over toxic pollutants. This would speed up the process of natural bioremediation techniques without adding high costs and dangers.

An Edge Over Traditional Techniques

Using CRISPR technology, especially the promising CRISPR/Cas9 lentiviral system, will not only speed up the process but it will do a better job than traditional methods of bioremediation. By using the gene editing technique, scientists can create more chemically superior microorganisms that have more advantageous enzymes. That results in better neutrality of harmful pollutants in the planet’s soil and oceans. In turn, this also ramps up molecular biodiversity, which improves the cleanup process.

Speaking of molecules, the CRISPR method targets different molecular processes within a microorganism’s cells, either to regulate an existing gene or to create an entirely new one. When looking at a particular gene, scientists analyze its ability to target pollutants as well as its process for remediation.

Enhancing Bioremediation with CRISPR

Experts need to keep several aspects in mind when improving the abilities of a remediating organism and ramping up its efficiency. First of all, they need to look at the molecular pathways that lead an organism to remediate or neutralize a pollutant. Are there changes or improvements scientists that can make to these pathways? What can they add or take away?

They do a similar thing with the organism’s enzymes. Next comes bioprocessing and biosensor development, which allows scientists to test the microbial cells for chemical testing and removal efficiency.

Removing Harmful Pollutants

Take mercury, for example, which is a metal that is harmful to the planet as well as those who live on it. The E. coli bacteria has a removal efficiency of 96 when it comes to eradicating mercury.

Scientists can take that Hg2 gene and transporter and perhaps transport it to another microorganism that can metabolize and neutralize another type of pollutant. Researchers continue to look at how this technique can help us clean up the growing number of pollutants in the environment.

It is not just microorganisms that they’re working on, either. Genetic manipulation in plants is another exciting endeavor that could help out in the bioremediation field. By looking at the detoxification processes in certain plants, scientists are trying to figure out how to use CRISPR technology to amp up bioremediation or, rather, phytoremediation efforts.

Some human genes could be especially useful to certain plants that can target heavy metals in the soil. Whether they enhance existing plant species or generate completely new ones, this is an exciting development in remediation efforts against pollutants.