Counseling Resources for Stressed Scientists

Professionals who work in fast-paced, high-stress jobs often find themselves struggling to keep up with their mental health. Scientists, engineers, and physicians dedicate themselves to careers of science without always managing the personal ramifications of a demanding work life. While it benefits all of society when scientists are dedicated to their work, it is also extremely important that they take care of their own mental health both for their personal development as well as long-term, lasting professional success.

high-energy-bills

Resources for Stress Management

If you experience struggles with your mental health, it may help to read self-help articles written by mental health professionals. For scientists, this is much akin to reading research papers and then applying the findings to your own research. After reading such articles, reflect upon their value and delve into an analysis of how their advice can be applied in your own life.

As a scientist, you may be able to think linearly and analytically, and this thought process can actually be applied to the analysis of your mental health. Try searching MyTherapist for online resources, tips, and advice on finding qualified therapists who are ready to work with you.

When available academic resources do not adequately treat your mental health, the next step in the progression of addressing mental health issues may be to talk with a friend, colleague, or significant other. It is very helpful to discuss feelings and concerns with people you trust. It may even be worthwhile to read the self-help articles with another person so that you can each brainstorm ways in which the information included in the articles can be integrated into your life.

These articles may contain actionable advice, like instructions for meditation, journaling, or deep breathing that could begin your journey to improved mental wellness.

Therapy and Counseling

If your mental state does not improve after reading articles and having discussions with trusted companions, it is likely time to pursue therapy. Therapy can help when mental health issues loom with no apparent end to the symptoms in sight.

marriage-therapy

The stigmas surrounding therapy have fortunately been shrinking. Therapy works well for those experiencing a diagnosed mental illness, but it can work wonders for anyone. Especially for those bright-minded scientists who regard their mental strength as impressive, it may feel demoralizing to need to speak with someone to regain control of your mind. Just remember that experiencing troubles with mental health is a very common occurrence.

Just because a person is very smart, it does not mean that they can control all mental processes and emotions. Addressing and improving any existing mental health struggles through therapy could actually benefit your thought process and therefore your work.

Online Therapy

Virtual therapy is a great resource that is only growing in popularity and availability. It provides patients with a convenient and confidential way to work through issues with a licensed therapist.

For busy scientific professionals, it may be difficult to find the time to schedule therapy sessions, drive to the therapist’s office, spend an hour in therapy, and then drive home. Thanks to virtual therapy, sessions may be more flexible and can involve less commuting and associated stress.

virtual-psychotherapy

Scheduling therapy sessions online is a simple, quick task that provides great flexibility in scheduling. And, since everything is online, the patient need not leave the comfort of their home or office to engage in therapy sessions.

Another benefit of virtual therapy is that the cost of online sessions is typically lower than in-office visits. While some health insurance companies may not cover virtual therapy as much as in-person therapy, the overall cost is still often much lower.

In-person therapy can cost between $65 and $200+ per session, depending upon the therapist and the type of therapy needed. Luckily, there are different types of online mental health services available to patients that represent a range of price points.

On some sites, text or email options can be available for around $40 per week. Sessions with online therapists are less expensive than in-office sessions and typically run between $75 and $120 per session. This is a moderately priced therapy option that provides virtual face-to-face treatment at a lower cost.

Remember to choose the treatment options that are appropriate for your mental condition and fit well with your lifestyle. The life of a scientist is tough enough, and caring for your mental health is a vital and valuable part of one’s personal and professional success.

Methods For Heavy Metal Analysis

A heavy metal analysis can be a useful tool for evaluating soil contamination. It determines the amount of elements in a sample, which indicates the dispersion and level of contamination. Fortunately, there are several methods available for environmental analysis. In this article, we will discuss some of them.

Methods to analyze heavy metals

Inductively Coupled Plasma Mass Spectroscopy (ICP-MS)

ICP-MS is a method for quantitative analysis of heavy elements. It uses a laser ablation system to analyze solid samples, requiring minimal sample preparation. The method has a single side-effect, minor depletion of the sample material. However, this side-effect is acceptable for most applications.

ICP-MS is a highly sensitive method for heavy metal analysis, and it is widely used for determining concentrations of elements. The method works by introducing a fine aerosol of the sample to a plasma containing 6000-10,000 K. The plasma causes the atoms of the analyte to be ionized at the same time. The ions are then sorted and quantified.

The ICP-MS is capable of detecting the smallest particles, and it is also able to detect elements with very low ppt (parts-per-trillion) levels. Although the method does not have the accuracy of ICP-OES, it is able to detect elements with a much lower ppt (parts-per trillion).

ICP-MS is a fast and reliable technique for elemental analysis. It is particularly useful for measuring the isotopic ratios of elements with multiple isotopes. Click here to learn more about isotopes. Its high speed and low detection limits make it a highly versatile analytical tool. Because of these characteristics, ICP-MS is considered a mature technique that requires strict quality control.

ICP-MS is used in both primary and secondary tissue analysis. It can also be used to analyze inorganic nanoparticles. The technique has shown promising results for simultaneous determination of the concentration and size of inorganic nanoparticles in environmental and food samples.

Single-particle ICP-MS is also capable of detecting single-element elements in a single sample. It has a high degree of sensitivity, and it can also distinguish between particulate and ionic forms of analyte.

ICP-MS has numerous applications, and is one of the fastest growing trace element techniques. It was first commercialized in 1983, and today, over 16,000 systems are installed worldwide. This technology is used for industrial, pharmaceutical, environmental, and nuclear applications.

ICP-MS is the fastest elemental analysis technique available today. It can detect almost every element in the periodic table in parts per billion concentrations. This technology works by passing small amounts of material into plasma, which operates at approximately 8000 degrees Celsius. The plasma is then cooled and a mass spectrometer separates the sample ions according to their mass/charge ratio.

Atomic absorption spectroscopy

Atomic absorption spectroscopy (AAS) is another analytical technique used in this field. The technique is suitable for identifying and determining the concentrations of several metals. Table 3 provides examples of samples that are analyzed using AAS. Lead and cadmium are among the metals that have been determined in this way.

Atomic absorption spectroscopy is a technique that uses light to determine the concentration of specific metal atoms in a liquid or solid. The light is excited by a specific wavelength and the atoms in the sample absorb energy. The amount of energy absorbed is proportional to the number of atoms in the sample. The sample is then compared to a standard solution to determine the concentration of the element.

methods for heavy metal analysis

The advantages of AAS over classical gravimetric methods include increased sensitivity and selectivity. This technique has many applications in mining, oceanographic studies, drinking water, and soil analysis. There are also various types of spectroscopy used in the pharmaceutical industry.  An AAS is used to determine the concentration of contaminants in soils and other materials.

Atomic absorption spectroscopy is also used in clinical samples. This technique can determine the concentrations of various materials in human muscle, liver, hair, and brain tissue. It can also help determine the levels of mercury in fish. Mercury is an extremely toxic element that can build up in the environment and pose a risk to the food chain.

Methods to analyze heavy metals

Determining the level of metals in the environment is essential in creating an action plan to help mitigate their presence. Methods of heavy metal analysis are a major part of environmental pollution control. They can help ensure that toxic metals are not present in drinking water and are a reliable indicator for pollution prevention. Methods to analyze metals are widely used for monitoring the presence of heavy metals in a wide range of samples, from soil to solid waste.

The first step is to identify the metals that are present in a particular sample. This will determine their concentration. Using inter-element analysis, these metals are compared with the levels in waste water. If the correlations are high, the source of the heavy metals is likely to be anthropogenic.

Everything You Need to Know About Carbon Black

Carbon Black is a commercial form of solid carbon that is manufactured in highly controlled processes to produce specifically engineered aggregates of carbon particles that vary in particle size, aggregate size, shape, porosity and surface chemistry. Carbon Black typically contains more than 95 % pure carbon with minimal quantities of oxygen, hydrogen and nitrogen.

In the manufacturing process, Carbon Black particles range from 10 nm to approximately 500 nm in size. These fuse into chain-like aggregates, which define the structure of individual Carbon Black grades.

What is Carbon Black

Carbon Black is used in a diverse group of materials in order to enhance their physical, electrical and optical properties. Its largest volume use is as a reinforcement and performance additive in rubber products.

In rubber compounding, natural and synthetic elastomers are blended with Carbon Black, elemental sulphur, processing oils and various organic processing chemicals, and then heated to produce a wide range of vulcanized rubber products. In these applications, Carbon Black provides reinforcement and improves resilience, tear-strength, conductivity and other physical properties.

Carbon Black is the most widely used and cost effective rubber reinforcing agent (typically called Rubber Carbon Black) in tire components (such as treads, sidewalls and inner liners), in mechanical rubber goods (“MRG”), including industrial rubber goods, membrane roofing, automotive rubber parts (such as sealing systems, hoses and anti-vibration parts) and in general rubber goods (such as hoses, belts, gaskets and seals).

Applications of Carbon Black

Besides rubber reinforcement, Carbon Black is used as black pigment and as an additive to enhance material performance, including conductivity, viscosity, static charge control and UV protection. This type of Carbon Black (typically called Specialty Carbon Black) is used in a variety of applications in the coatings, polymers and printing industries, as well as in various other special applications.

Actually, after oil removal and ash removal processing from tire pyrolysis, we can get high-purity commercial carbon black, which can be used to make color masterbatch, color paste, oil ink and as addictive in plastic and rubber products. Besides, after activation treatment, the carbon black will become good materials to produce activated carbon.

In the coatings industry, treated fine particle Carbon Black is the key to deep jet black paints. The automotive industry requires the highest black intensity of black pigments and a bluish undertones.

Carbon Black has got a wide array of applications in different industries

Small particle size Carbon Blacks fulfill these requirements. Coarser Carbon Blacks, which offer a more brownish undertone, are commonly used for tinting and are indispensable for obtaining a desired grey shade or color hue.

In the polymer industry, fine particle Carbon Black is used to obtain a deep jet black color. A major attribute of Carbon Black is its ability to absorb detrimental UV light and convert it into heat, thereby making polymers, such as polypropylene and polyethylene, more resistant to degradation by UV radiation from sunlight. Specialty Carbon Black is also used in polymer insulation for wires and cables. Specialty Carbon Black also improves the insulation properties of polystyrene, which is widely used in construction.

In the printing industry, Carbon Black is not only used as pigment but also to achieve the required viscosity for optimum print quality. Post-treating Carbon Black permits effective use of binding agents in ink for optimum system properties. New Specialty Carbon Blacks are being developed on an ongoing basis and contribute to the pace of innovation in non-impact printing.

The Promise of Algae

This year has witnessed the U.S. Navy debut their “Great Green Fleet,” the first aircraft carrier strike group powered largely by alternative, nonpetroleum-based fuels, the British Ministry of Defence launch a competition to reduce its equipment energy spend and the Pentagon increase its investment in clean-energy technologies, including biofuels development.  Could we be witnessing the start of the end of our reliance on “fossil fuel” petroleum?

algae_biofuels

In 2010, the MOD spent £628m on equipment energy and, for every 1p per litre rise in the price of fuel, the MOD’s annual equipment energy bill increases by £13m. These rising oil prices have once again positioned biofuels centre stage as a potential substitute to fulfil our global thirst for fuel.

With so many biofuel crops needing to compete for space and freshwater supplies with agriculture, algae are being seen as an ideal, sustainable alternative.  Algae can be grown in areas where crops cannot, but until now, it’s been difficult to achieve the scale needed for commercial  algal production.

Leading international authority on algal biotechnology and head of the Culture Collection of Algae and Protozoa, Dr John Day, thinks it’s a major step forward.  Dr Day has over 25 years’ experience in biotechnology and applied algal research and comments “Commercial confidence in the scalability of algal biofuel production is an exciting step forward in the journey towards sustainable, economic biofuel production using microalgae.

“A major driver for the development of algal biofuels has been fuel security and the US Navy has successfully tested nearly all of its ships and aircraft on biofuel blends containing algal oils — including an F-18 fighter flying at twice the speed of sound and a ship moving at 50 knots.”

“Scientists at SAMS and elsewhere have been contributing to the global development of knowledge on algal biofuel. It is this understanding of the biology of these enigmatic microbes and our capacity to successfully cultivate them that will be the key to producing algal biofuels and other products.”

Driven by the desire to reduce reliance on foreign countries for petroleum, and the constant pressure to reduce costs, Governments are taking sustainable fuels very seriously.  (A recent report highlighted that Pentagon investment in green technologies rose to $1.2 billion, up from $400 million, and is projected to reach $10 billion annually by 2030.)  The Pentagon’s Defence Advanced Research Projects Agency (which finances and monitors research into algae fuels,) says it has now managed to produce algafuel for $2 per gallon and that it will produce jet aircraft quality algafuel for $3 per gallon by 2013. Unsurprisingly, commercial aviation companies around the world are also taking an interest in algae biofuels to reduce their own costs and carbon footprints.

As interest grows and more funding becomes available, the industry is blossoming and more skilled people are needed. Could we witness a global shift to sustainable fuels in our lifetime?  We certainly hope so.

Everything You Need to Know About Glow Sticks

You have probably come across glow sticks at some stage of your life, however other people refer to them as chemlights or light sticks. After you bend a glow stick, the glass inside shatters and it begins to glow.

After they begin to glow, you can expect them to be visible in the dark from 1 to 12 hours. The time of how long it glows for depends on the quality and the size of the glow stick. 

Remember, that once you have broken the glass inside and the light appears, you can’t turn it off. 

You can find glow sticks in all different types of shapes and sizes. Most are no longer than 10 inches, however some you can connect together to make longer ones. They are also available in lots of different colors, such as red, blue, yellow and orange. However, it seems both the orange and red don’t light up that well. 

disposal-of-glow-sticks

Glow sticks are very popular amongst kids and party goers, but what other purposes can you use glow sticks for?

Survival

If you are planning to go out in the wild, it is vital that you pack reliable lighting. For several years, it has been common for people to use glow sticks in a crisis situation. 

Unlike other sources of lighting, glow sticks don’t need batteries to work. Purchasing a quality glow stick will give you 12 hours of light, without having to worry about the batteries running out. 

Glow sticks are safe, so you don’t have to worry about them starting a fire nor will they electrocute somebody. They are even safe for children to play with.

Because they are small and lightweight, you will easily be able to find space when you are packing. 

Even the best quality glow sticks are cheap. If you are looking for value, purchasing glow sticks in bulk is your best option.

What Survival situations would a Glow Stick prove useful?

There are many reasons why you should pack a glow stick with your survival kit such as:

  • Helps you to read a topographic map in the dark. 
  • You can mark a trail directing others to your camp
  • Keeps large groups together: At night it is very hard to organize a lot of people, so a glow stick will prove to be a very helpful device
  • After a road accident, you can use a glow stick as a marker: Glow sticks are a great way to warn oncoming traffic that there is an accident on the roadside. If there is debris on the road or gas leaks, placing a glow stick nearby will alert others.
  • Avoid falling: If you frequently camp, you have probably tripped at some stage. Small holes, trees, and other obstacles that are not visible during the night can cause injuries. By putting a glow stick nearby will help warn others. You can also place glow sticks to mark a safe path. 
  • If it is raining or you are in the water, don’t worry as glow sticks are water-resistant and are perfect for wet environments. 

Glow sticks are used by militaries all over the globe as a survival tool. If you do decide to buy glow sticks in bulk and you pack a large amount in your survival kit, you can easily write SOS with them if you are stuck in a dangerous location.

How do you dispose of Glow Sticks and are they safe?

One of the disadvantages of using glow sticks is that there is no environmentally safe way that you can recycle them. As each one has chemicals inside, the plastic casing cannot be reused nor can it be repurposed. 

The reason why glow sticks produce light is that there are two main ingredients that cause a chemical reaction.

Although the casing is made of strong plastic, be careful of young children or pets chewing on the plastic. Although the chemicals are not that toxic, it is not advised to ingest them. If a child swallows some of the chemicals, make sure to rinse his or her mouth immediately. Speak to your doctor if the child has swallowed a lot. 

Click on the link for more details on how to properly disposing glow sticks.

Summary

Glow sticks have a shelf life of around 4 years, as long as it is kept in its original foil packaging. If it has been removed, you can expect it to last for 1 year. If you decide to buy in bulk, keep this in mind. If you have a large number of glow sticks and think they are out of date, test one before you throw them all away. 

Glow sticks are not just a great source of lighting, but children and families can play lots of games and have a fantastic time with them.

How Green Energy Data Can Be Used In Research

The use of data as a research tool is widespread in academia and industry. In many ways, we are already reliant on data. To name just a few examples: the majority of traffic lights now use data to control their green lights, the internet uses data to route our packets, and the UK National Health Service uses data to monitor the progress of patients and doctors alike. Data is a powerful tool, but it comes at a cost. Many of our data-driven services require a large infrastructure, which requires a lot of electricity – so why not use clean energy?

How scientist use data in green energy

There are a number of ways that researchers are improving our understanding of the green technologies available, how these can be used, and ultimately how to reduce the carbon emissions generated through the energy production process. Researchers at University College London recently published a study which analyzed the electricity demand profiles from 10,000 households across Europe. The researchers were able to develop algorithms to estimate the amount of power consumed in each house. The findings are particularly useful as a baseline reference point for comparing different energy options, and also to provide an accurate indicator of the amount of energy that could potentially be saved through the adoption of new energy technologies.

The development of renewable energy is a crucial part of efforts to tackle climate change, and the data available to researchers such as those at UCL, can be used to provide evidence to policy makers and the public alike. For example, a recent report produced by the Department of Energy and Climate Change (DECC) concluded that there was a significant potential to increase the penetration of solar PV, and hence reduce the amount of CO2 emitted. However, DECC found that the available data was inadequate to quantify this potential. As a result, the authors were unable to accurately predict the size of the market, or to identify the barriers to increasing uptake.

This problem is being addressed through collaboration between industry and academics. A number of organizations, including the British Solar Trade Association, the Institution of Engineering and Technology, and the Renewable Energy Association, are working together to produce a common dataset on solar photovoltaic (PV) systems, to help researchers better understand the market potential of the technology.

For other researchers, the data is not always available. While it is possible to use household surveys to capture information on household consumption patterns, this method has several limitations. Firstly, it can be difficult to capture the nuances of the behavior associated with different technologies, such as Delphix.

For example, if you ask a household whether they would consider installing a solar PV system, you will get a ‘yes’ or ‘no’ answer, but you won’t get the details of why they choose one over another. If you instead asked people directly why they selected a particular technology, you would get a more accurate reflection of the actual choices being made. Secondly, even if you do gather this kind of detailed data, it does not provide the information needed to identify the full range of options that are available.

Solar Energy Guide for Students

The use of data to improve our understanding of energy technologies is not limited to renewables. The ability to track how a technology performs is also vital for the deployment of nuclear reactors. This means that researchers have been using sensors in order to measure the performance of nuclear reactors, and thereby better understand their operation. A recent publication by researchers at the National Nuclear Laboratory and the Institute for Energy Technology provided a detailed analysis of the performance of a reactor at the Dounreay site in Scotland.

By measuring how the temperature and pressure inside the reactor changed as a function of time, it was possible to model the core’s thermal and mechanical behavior. This led to the development of algorithms which can be used to estimate the reactor’s lifetime, and also provided valuable insight into the processes that occur inside the reactor and how they affect its performance.

How scientist use data in green energy

Data is the key to unlocking many of today’s problems and issues. Scientists use this data to help create solutions and ways of tackling these. It’s why they need to gather data, so they can find out how to produce the most sustainable and efficient way of producing electricity.

Many scientists today use advanced equipment to look at data. They are analyzing how the earth’s climate is changing and what it will mean in the future. They have created ways of calculating how much carbon dioxide will remain in the atmosphere. This allows them to forecast what will happen and make decisions based on this.

There are many factors that affect the world. Some scientists are looking at renewable energies, such as solar and wind power. These have many advantages, such as creating jobs and making countries energy independent. They can be cheaper than oil, and can provide the majority of the worlds’ energy needs in many cases.

There are many types of renewable energy but the best known is wind power. Wind turbines have been around for a long time. They were used in places like Ireland, Denmark and Norway. The technology has moved on a lot since then. Today wind turbines can provide 10% of the worlds’ electricity needs. The industry is worth billions of pounds to many countries.

drone at a wind-farm

Solar power is another type of renewable energy. Solar panels collect energy from the sun and use it to create electricity. This type of renewable energy is growing quickly and it’s already contributing to some countries energy supply.

Scientists are looking into the use of hydrogen and the potential to create renewable energy. A form of hydrogen called water fuel cells are used in cars and are one of the biggest areas of interest. The process of putting hydrogen in a car works the same as that of a traditional fuel cell, but it’s cleaner, greener and easier. Hydrogen can be produced from biomass (plants/organic matter) and water.

Conclusion

In summary, we are already dependent on data for a huge number of things, but this dependence will only increase. If we want to reduce the environmental impact of our energy use, then understanding the environmental performance of the technologies we adopt is a critical component of achieving this goal. Using data science in renewable energy, we can quantify the amount of energy being generated by an individual green energy technology.

All You Need to Know About the Benefits Of Natural Gas

All areas of our lives are literally run by energy. And with various options of energy consumption choices, it’s always good to know the benefits of each one of them so that you make a great consumer choice. Today, in this article, we are focusing on natural gas and are going to take you through some of its top benefits. So if that’s what you have been searching for, then you are at the correct place. Let’s get started!

1. Clean Burning Fuel

When compared to coal, oil, and diesel, natural gas is cleaner as it emits the least percentage of carbon dioxide and other related harmful chemicals. So when you use one, you don’t have to invest in emission lowering technologies as the efficiency is top notch. Also, since it’s odorless, it makes little contribution to air pollution and doesn’t cause any harm when inhaled by people and animals.

2. Versatile

There is a given sort of flexibility and convenience that comes with the use of natural gas. With it, you enjoy the ease of starting and turning off as it won’t take much of your time. Also, since it isn’t dependent on the wind or the sun, it can function pretty well when used with solar and wind powers. It’s a source you can depend on no matter the weather conditions outside.

So if this seems like something you would like to try out, then it’s advisable to carefully go through an apples to apples comparison of the various natural gas providers and settle for one according to your needs and financial capability.

3. Affordable

With the current hard economic times, people are always on the lookout for affordable but efficient options when it comes to products or services affecting their billings. So natural gas couldn’t have been easily accessible at a better time. In fact, it’s by far one of the cheapest energy options in the current market. This is because, even as you calculate the long-term costs of seemingly cheap options such as generators, you will realize that they aren’t as affordable as they might appear in the beginning. Take the fuel and maintenance costs, for example, you will end up spending much more than you can ever imagine.

natural-gas-applications

But this isn’t the case with natural gas. According to recent findings, its cost is expected to remain constant or relatively unchanged at least even for the next decade. So you can be sure that it’s a long-term investment, worth every cent. You make one and forget about unnecessary expenses.

4. Reliable Delivery Infrastructure

This is probably one of the natural gas‘s primary benefits. This is because you can still receive your delivery of natural gas even during extreme weather conditions such as storms, through the pipes. A case that’s different from other energy sources. Also, the infrastructure is already established in most urban areas.

Final Thoughts

Natural gas is a clean fuel that can be used in various places while keeping the air fresh and clean. Together with this, there are various benefits associated with its use and this includes the affordability, reliable infrastructure, versatility, among others. The above list isn’t exhaustive.

An Introduction to Biomass Energy

Biomass is the material derived from plants that use sunlight to grow which include plant and animal material such as wood from forests, material left over from agricultural and forestry processes, and organic industrial, human and animal wastes. Biomass energy is a type of renewable energy generated from biological (such as, anaerobic digestion) or thermal conversion (for example, combustion) of biomass resources.

Biomass comes from a variety of sources which include:

  • Wood from natural forests and woodlands
  • Forestry plantations
  • Forestry residues
  • Agricultural residues such as straw, stover, cane trash and green agricultural wastes
  • Agro-industrial wastes, such as sugarcane bagasse and rice husk
  • Animal wastes
  • Industrial wastes, such as black liquor from paper manufacturing
  • Sewage
  • Municipal solid wastes (MSW)
  • Food processing wastes

In nature, if biomass is left lying around on the ground it will break down over a long period of time, releasing carbon dioxide and its store of energy slowly. By burning biomass its store of energy is released quickly and often in a useful way. So converting biomass into useful energy imitates the natural processes but at a faster rate.

Biomass can be transformed into clean energy and/or fuels by a variety of technologies, ranging from conventional combustion process to advanced biofuels technology. Besides recovery of substantial energy, these technologies can lead to a substantial reduction in the overall biomass waste quantities requiring final disposal, which can be better managed for safe disposal in a controlled manner while meeting the pollution control standards.

Biomass conversion systems reduces greenhouse gas emissions in two ways.  Heat and electrical energy is generated which reduces the dependence on power plants based on fossil fuels.  The greenhouse gas emissions are significantly reduced by preventing methane emissions from decaying biomass. Moreover, biomass energy plants are highly efficient in harnessing the untapped sources of energy from biomass resources and helpful in development of rural areas.

IMS PCB: Everything You Need to Know

The metal substrate of IMS PCBs improves mechanical and thermal conductivity. Copper and aluminum are common materials used because they are both inexpensive and light. Copper is more suitable for high-density designs, but it has a lower CTE. A single electrical layer must be sandwiched between a metallic substrate and a prepreg layer in the Integrated Metal Substrate PCB design layout. Typically, these boards are used for simple circuits.

applications of IMS boards

IMS PCBs are suitable for a wide range of applications, including high-power, flammable, and high-temperature environments. They can serve as ground layers to protect sensitive electronic components and directly absorb heat produced by SMD components. These boards are particularly useful in the fields of LEDs, solid-state relays, and power electronics. They do, however, provide additional benefits. If you’re not sure whether IMS PCBs are the right choice for your next project, keep reading to learn more about IMS PCBs and how they can help you make your next project.

IMS PCBs is used in automotive applications because they aid in the cooling of surface-mount components. The dimensional stability of the IMS PCB allows it to operate without cracking in temperatures ranging from 140 to 150 degrees Celsius. Furthermore, its thickness does not increase significantly with temperature, and it can withstand high temperatures. IMS PCBs is frequently more expensive than FR4 PCBs, so choose PCB May if you need high-quality IMS PCBs.

To help manage heat, an IMS PCB has a copper-based base material and a copper-based layer. This layer is made of a copper-based alloy and is either 1.0mm or 1.6mm thick. A single-sided IMS PCB is clear, whereas a double-sided IMS PCB has an aluminum layer on the board’s outside. The IMS PCB is a multilayer PCB regardless of the materials used.

Thermal vias can be counterproductive in some cases because they must be drilled through large areas of well-conducting aluminum. Thermal insulation is insufficient in such cases, and the aluminum cladding alone may suffice. IMS PCBs without thermal vias may be more efficient in this regard because heat is transferred by the aluminum within the carrier. It could even be more efficient than FR4 PCBs.

The thermal management properties of an IMS PCB are one of its most common advantages. A thermally conductive base metal, for example, is a good thermal conductor, reducing the amount of heat that must be transferred. The manufacturer will design and manufacture the board in accordance with these guidelines, and using a standard thickness can help to reduce costs. It is critical, however, to ensure that the material used for the base metal is thermally conductive in order to avoid excessive heat buildup.

Copper, aluminum, and other metals are commonly used to make IMS PCBs. Because of its excellent thermal and electrical properties, copper is frequently used in IMS PCBs. Aluminum is the most common metal substrate and is significantly less expensive than copper. Aluminum is also electrically and thermally conductive, making it an excellent choice for a wide range of applications. However, keep in mind that aluminum is much less resistant to corrosion.

The Advantages of IMS PCBs

When considering the advantages of IMS PCBs, it is useful to understand what distinguishes them from standard boards. A single copper layer is present on a single-layer PCB. On the other side, they are insulated by a metal substrate that also serves as a heatsink. However, if a circuit requires two copper layers, more complex circuits can be integrated. IMS PCBs also include heat transferring vias, which allow heat to be transferred from the top-side components to the bottom-side substrate.

It is critical to consider both the physical and electrical properties of IMS PCBs when using them. The dielectric constant, for example, is used to measure the electrical properties of an IMS PCB by comparing the capacitance of the metal substrate to that of the vacuum. The rate at which the metal substrate changes along the z-axis is another important parameter known as the thermal expansion coefficient. Finally, another important feature is the temperature at which the material transitions to a glass state and decomposition, which determines the material’s heat resistance.

IMS PCBs is constructed from several layers of thermally conductive dielectrics. The circuitry is buried in one or more dielectric layers that serve as thermal and signal vias. Multilayer printed circuit boards are more expensive than single-layer printed circuit boards, but they provide simple heat dissipation for complex circuits. They are an excellent choice for high-end PCs.

Applications of IMS Boards

Because they keep surface-mount components cool, IMS Boards are ideal. The electrical and mechanical properties of IMS PCBs must be thoroughly examined, and the copper thickness must be 0.5 oz. The benefits of the metal substrate and thermal conductivity are completely negated by thick copper. To create the holes for the components, the board must be precisely drilled. The components are then soldered or bonded to the copper surface. Desmearing is required after drilling to remove any melted resin from the drilled holes.

what is IMS PCB

A motherboard and two IMS evaluation modules, which can be configured as a full or half-bridge, comprise the IMS evaluation platform. The evaluation modules support both power levels and include GaN E-HEMTs, gate drivers, DC bus decoupling capacitors, and a heatsink. The evaluation modules can be used to prototype high-power GaN intelligent power modules and in-systems. The board is also intended for high-power applications, making use of vertical space.

Hundreds of control units in modern cars are located around the engine area and are subject to extreme temperatures. Because they can transport heat without the use of discrete heatsinks, industrial IMS PCBs are the ideal solution for applications like this. Solid-state relays, which are small circuits made up of an optocoupler and a MOSFET, are an excellent example of how IMS PCBs are used to transfer heat.

IMS PCBs is also well-known for providing effective thermal dissipation. They can reduce power losses and improve overall product performance because they can be made of thin copper sheets. This allows for higher packing densities on the board, improved overall security, and longer operating times. It is also suitable for use in single-board computers. This simplifies the production of double-sided boards with metal cores.

High-power IMS printed circuit boards are ideal for high-power, high-temperature, and combustible environments. IMS PCBs also serves as an electromagnetic shield and a ground layer. Because of these benefits, IMS PCBs is a popular choice for a variety of applications, including power electronics, solid-state relays, and LEDs. IMS PCBs also enables more compact designs that are less prone to catching fire.

IMS PCBs is more expensive than FR4 PCBs, despite their superior thermal conductivity. Copper-based PCBs have more layers than FR4 PCBs, which can also have multiple layers. PCBs of various thicknesses can be produced using standard machinery. Copper-based boards, on the other hand, are more expensive than their counterparts and have inferior thermal and electrical properties.

Everything You Should Know About Electricity

Electricity, we use it every day but what is it? The dictionary defines it as a form of energy resulting from the existence of charged particles (such as electrons or protons), either statically as an accumulation of charge or dynamically as a current. This may sound confusing, but by breaking it down we can understand how it works. Electricity is used for many everyday things but breakthroughs of how to use it have resulted in many cool inventions, some of which you can explore on thehomesecuritysuperstore.

A Closer Look at Atoms

So, what is electricity? To understand how electricity works we have to break it down, starting with the charged particles. Everything is made of atoms, and these atoms are mostly empty space. Moving around in the empty space are electrons and protons. These each carry an electric charge, electrons being negative and protons being positive. These opposite charges attract each other. The atom is in balance when there are an equal number of protons and electrons. The number of protons determines what kind of element the atom is, and these numbers and elements are shown on the periodic table.

Imagine the atom as having rings around the nucleus, the center of the atom. These rings can hold a certain number of electrons which move constantly around the nucleus which holds the protons. When the rings hold electrons that are attracted to the protons the strength of this attraction can push an electron out of its orbit and even make them shift from one atom to another. This is where electricity occurs.

Traveling in Circuits

Now that we know the basics of electricity, we can look at how it works. For a basic understanding of how electricity travels through circuits and how we use electricity we will look at batteries and light bulbs. Batteries can produce electricity through a chemical substance called an electrolyte.

The battery is attached to two metals, one on either end, and produces a negative charge in one metal and a positive charge in the other metal. When the battery is then connected on either end by a conductor such as an electrical wire the electrical charge is balanced. If you were to attach a light bulb to the wire in between the sides of the battery, the electrical current would then travel through the light bulb to get to the other side of the battery and thus powering the light.

LED-lighting-workplace

Electricity moves through electrical circuits and must have a complete path for the electrons to move through. The switch or power button on electronic devices opens and closes this path. When you turn on the light switch the circuit is closed and electrons can move freely to turn on your lights. When you turn off the switch it opens the circuit not allowing the electrons through and turning off your lights. When light bulbs burn out the small wire connecting the circuit inside the light bulb breaks and stops the flow of electrons.

Final Thoughts

Energy flows through our entire world and understanding how electricity works is just the beginning. Of course, most of the electricity in your life is not connected to a single battery as in the example above, but the understanding on a basic level is very interesting.

Electricity literally powers everything in our lives and a world without it would be very different. Understanding how these things work lets us enrich our knowledge of the world around us and provides us with practical information we can use in our everyday life. Electricity is all around us and is used in more interesting ways than just light bulbs and batteries.