4 Fascinating Benefits of Studying Supply Chain and Logistics Management

The business world is quite dynamic. You need to have a comprehensive understanding of how it operates. It’s essential to learn the process within and between an organization. Its where supply chain and logistics management comes in. It’s an exciting course that you can take online. Here are the top fascinating benefits of studying supply chain and logistics management.

1. Improve the organization’s profitability

There’re numerous job opportunities within supply chain management. Organizations are searching for individuals who can contribute to their financial success. They need someone who can analyze cost efficiencies, maintain proper inventory levels as well as decrease operating expenses

Working as a supply chain manager is beneficial as you get to do what you enjoy. You contribute to the company’s goal of increasing sales, infiltrating new markers as well as making a difference. It’s a chance to make the company gain a competitive advantage as well as increase shareholder value. Engaging in online management courses is the ideal way to prepare you for the responsibilities that lie ahead.

2. Logistics as well as decision making

Businesses continue to experience significant changes, and the global supply chain continues to become dated. Its causing businesses to keep struggling when they have to adapt to manufacturing location changes and using cost-effective techniques

Companies keep looking for individuals who have logistic management training. Its because these individuals can spot a complication. They then proceed to provide the best possible solution. It’s nice to study a course that is quite relevant to business dynamics.

3. Proper system implementation

Studying supply chain and logistics management is a suitable career investment. It enables you to work around the technology. You stand to benefit from implementing new technology into a company’s current operations. It is because these technological advancements minimize cost as well as streamline the processes.

Being a supply chain manager means you will be at the forefront of applying the best possible technology. You must undertake a course that will enable you to be part of the movers and shakers of the organization.

4. Keep up with challenges and trends

When you choose to study supply chain and logistics management, you get to know how to handle trends in the industry. It’s an excellent opportunity to deal with what clients want and calculating the company’s books.

It’s time to embrace new technology and spearhead it within an organization. You get to keep a close eye on each further advancement and offer excellent communication to clients, vendors, and the company. In the current world, you need to take a thrilling course that will enable you to stay relevant in the ever-changing business environment

The beauty of studying supply chain and logistics management is that there are plenty of job opportunities. You get to possess an educational background to work as an enterprise process engineer, an analyst as well as a scheduling manager. You can take up various online management courses to further your career. It’s a convenient time to enhance a company’s responsiveness, offer value to clients, develop networking resilience, and so much more.

Rationale for Biomass Supply Chain

Biomass resources have been in use for a variety of purposes since ages. The multiple uses of biomass includes usage as a livestock or for meeting domestic and industrial thermal requirements or for the generation of power to fulfill any electrical or mechanical needs. One of the major issues, however, associated with the use of any biomass resources is its supply chain management. The resource being bulky, voluminous and only seasonally available creates serious hurdles in the reliable supply of the feedstock, regardless of its application. The idea is thus to have something which plugs in this gap between the biomass resource availability and its demand.

The Problem

The supply chain management in any biomass based project is nothing less than a big management conundrum. The complexity deepens owing to the large number of stages which encompass the entire biomass value chain. It starts right from the resource harvesting and goes on to include the resource collection, processing, storage and eventually its transportation to the point of ultimate utilization.

Owing to the voluminous nature of the resource, its handling becomes a major issue since it requires bigger modes of logistics, employment of a larger number of work-force and a better storage infrastructure, as compared to any other fuel or feedstock. Not only this their lower energy density characteristic, makes it inevitable for the resource to be first processed and then utilized for power generation to make for better economics.

All these hassles associated with such resources, magnify the issue of their utilization when it comes to their supply chain. The seasonal availability of most of the biomass resources, alternative application options, weather considerations, geographical conditions and numerous other parameters make it difficult for the resource to be made consistently available throughout the year. This results in poor feedstock inputs at the utilization point which ends up generating energy in a highly erratic and unreliable manner.

The Solution

Although most of the problems discussed above, are issues inherently associated with the usage of biomass resources, they can be curtailed to a larger extent by strengthening the most important loophole in such projects – The Biomass Resource Supply Chain.

World over, major emphasis has been laid in researching upon the means to improve the efficiencies of such technologies. However, no significant due diligence has been carried out in fortifying the entire resource chain to assure such plants for a continuous resource supply.

The usual solution to encounter such a problem is to have long term contracts with the resource providers to not only have an assured supply but also guard the project against unrealistic escalations in the fuel costs. Although, this solution has been found to be viable, it becomes difficult to sustain such contracts for longer duration since these resources are also susceptible to numerous externalities which could be in the form of any natural disaster, infection from pests or any other socio-political or geographical disturbances, which eventually lead to an increased burden on the producers.

The Global Green Economy Index 2016 – Key Findings

green-economyThe 5th edition of the Global Green Economy Index (GGEI) is a data-driven analysis of how 80 countries perform in the global green economy, as well as how expert practitioners rank this performance. Since its launch in 2010, the GGEI has signaled which countries are making progress towards greener economies, and which ones are not. The comparison of national green performance and perceptions of it revealed through the GGEI framework is more important than ever today.

Top Performers

Sweden is again the top performing country in the 2016 GGEI, followed by the other “Nordics” and Switzerland, Germany, and Austria. Amidst these strong results, the GGEI identified areas where these countries can improve their green performance further. These opportunities – focused around innovation, green branding and carbon efficiency – could propel their national green performance forward even more in the future.

Developing countries in Africa and Latin America–including Ethiopia, Zambia, Brazil, and Costa Rica– also perform well in this new GGEI edition, ranking in the top fifteen for performance. While Brazil and Costa Rica receive similarly strong results on our perception survey, Ethiopia and Zambia do not, suggesting a need for better green branding and communications in these two African countries.

Like in 2014, Copenhagen is the top green city, followed by Stockholm, Vancouver, Oslo and Singapore. This new GGEI only collected perception values for green cities as lack of data availability continues to impede our efforts to develop a comprehensive green city performance index. Given the significant role of cities in the global green economy, city-level data development is an urgent priority.

Laggards

No country in Asia ranks well for performance on this new GGEI, with the exception of Cambodia, which was the most improved country as compared to the last edition, rising 22 spots to 20th overall. China, India, Indonesia, Japan and South Korea do better on the perception side of the GGEI, but continue to register concerning performance results.

While many European Union (EU) members perform near the top of this GGEI edition, others including the Czech Republic, Estonia, Poland, Romania and Slovakia rank near the bottom. These results are worrisome and suggest uneven national green performance across the EU.

Many of the countries with high annual GDP growth today rank poorly on the GGEI, further highlighting the limits to GDP as a growth indicator. These countries are mostly in Asia (Malaysia, Thailand, Philippines) and Africa (Nigeria, Tanzania).

The top green economy performers worldwide

The top green economy performers worldwide

Countries with a high reliance on fossil fuel extraction and export generally perform poorly on the GGEI, with a few exceptions. Kuwait, Qatar, Saudi Arabia and Russia all perform poorly while Norway and Canada do much better.

Continuing Trends

Rapidly growing economies, China and India continue to show performance weakness on the GGEI Markets & Investment dimension. Given the large investment required to achieve their climate targets, green investment promotion, cleantech innovation, and corporate sustainability should be developed further.

The United States ranks near the top of the GGEI perception survey and it is widely viewed as a vital market for green investment and innovation, yet overall the U.S. continues to have mediocre performance results, ranking 30th of the 80 countries covered. However, the GGEI found that U.S. company-level initiatives to green supply chains and reduce carbon footprints are accelerating.

Despite having a new prime minister, Australia continues to register a poor result on this new GGEI, ranking 55th of the 80 countries covered for performance. While green markets there are showing some strength, the overall carbon intensity of the Australian economy remains extremely high.

Hosting the annual Conference of Parties (COP) can positively impact the host country’s green brand. Yet this short-term image boost does not always translate to improved green performance in the longer-term, as demonstrated by the low GGEI performance results for Poland (COP19), Qatar (COP18) and South Africa (COP17).

The United Kingdom’s GGEI performance continues to lag behind its EU peers, ranking 25th of the 80 countries covered. While the UK does very well on both the perception and performance side of the Markets & Investment dimension, inconsistent policies supporting renewable energy and green growth continue to hurt the UK on other parts of the GGEI.

Note: The full report can be accessed here

Biomass Storage Methods

Sufficient storage for biomass is necessary to accommodate seasonality of production and ensure regular supply to the biomass utilization plant. The type of storage will depend on the properties of the biomass, especially moisture content. For high moisture biomass intended to be used wet, such as in fermentation and anaerobic digestion systems, wet storage systems can be used, with storage times closely controlled to avoid excessive degradation of feedstock. Storage systems typically used with dry agricultural residues should be protected against spontaneous combustion and excess decomposition, and the maximum storage moisture depends on the type of storage employed.

Moisture limits must be observed to avoid spontaneous combustion and the emission of regulated compounds. Cost of storage is important to the overall feasibility of the biomass enterprise. In some cases, the storage can be on the same site as the source of the feedstock. In others, necessary volumes can only be achieved by combining the feedstock from a number of relatively close sources. Typically, delivery within about 50 miles is economic, but longer range transport is sometimes acceptable, especially when disposal fees can be reduced.

Storage of biomass fuels is expensive and increases with capacity.

Agricultural residues such as wheat straw, rice husk, rice straw and corn stover are usually spread or windrowed behind the grain harvesters for later baling. Typically these residues are left in the field to air dry to moisture levels below about 14% preferred for bales in stacks or large piles of loose material. After collection, biomass may be stored in the open or protected from the elements by tarps or various structures. Pelletizing may be employed to increase bulk density and reduce storage and transport volume and cost.

Biomass Storage Options

  • Feedstock is hauled directly to the plant with no storage at the production site.
  • Feedstock is stored at the production site and then transported to the plant as needed.
  • Feedstock is stored at a collective storage facility and then transported to the plant from the intermediate storage location.

Biomass Storage Systems

The type of biomass storage system used at the production site, intermediate site, or plant can greatly affect the cost and the quality of the fuel. The most expensive storage systems, no doubt, are the most efficient in terms of maintaining the high fuel quality. Typical storage systems, ranked from highest cost to lowest cost, include:

  • Enclosed structure with crushed rock floor
  • Open structure with crushed rock floor
  • Reusable tarp on crushed rock
  • Outside unprotected on crushed rock
  • Outside unprotected on ground
  • Subterranean

The storage of biomass is often necessary due to its seasonal production versus the need to produce energy all year round. Therefore to provide a constant and regular supply of fuel for the plant requires either storage or multi-feedstocks to be used, both of which tend to add cost to the system.

Reducing the cost of handling and stable storage of biomass feedstocks are both critical to developing a sustainable infrastructure capable of supplying large quantities of biomass to biomass processing plants. Storage and handling of biomass fuels is expensive and increases with capacity. The most suitable type of fuel store for solid biomass fuel depends on space available and the physical characteristics of the fuel.

Issues Confronting Biomass Energy Ventures

Biomass resources can be transformed into clean energy and/or fuels by thermal and biochemical technologies. Besides recovery of substantial energy, these technologies can lead to a substantial reduction in the overall waste quantities requiring final disposal. However, biomass energy projects worldwide are often hampered by a variety of techno-commercial issues. The issues enumerated below are not geography-specific and are usually a matter of concern for project developers, entrepreneurs and technology companies:

  1. Large Project Costs: In India, a 1 MW gasification plant usually costs about USD 1-1.5 million. A combustion-based 1 MW plant would need a little more expenditure, to the tune of USD 1-2 million. An anaerobic digestion-based plant of the same capacity, on the other hand, could range anywhere upwards USD 3 million. Such high capital costs prove to be a big hurdle for any entrepreneur or cleantech enthusiast to come forward and invest into these technologies.
  2. Low Conversion Efficiencies: In general, efficiencies of combustion-based systems are in the range of 20-25% and gasification-based systems are considered even poorer, with their efficiencies being in the range of a measly 10-15%. The biomass resources themselves are low in energy density, and such poor system efficiencies could add a double blow to the entire project.
  3. Dearth of Mature Technologies: Poor efficiencies call for a larger quantum of resources needed to generate a unit amount of energy. Owing to this reason, investors and project developers find it hard to go for such plants on a larger scale. Moreover, the availability of only a few reliable technology and operation & maintenance service providers makes these technologies further undesirable. Gasification technology is still limited to scales lesser than 1 MW in most parts of the world. Combustion-based systems have although gone upwards of 1 MW, a lot many are now facing hurdles because of factors like unreliable resource chain, grid availability, and many others.
  4. Lack of Funding Options: Financing agencies usually give a tough time to biomass project developers as compared to what it takes to invest in other renewable energy technologies.
  5. Non-Transparent Trade Markets: Usually, the biomass energy resources are obtained through forests, farms, industries, animal farms etc. There is no standard pricing mechanism for such resources and these usually vary from vendor to vendor, even with the same resource in consideration.
  6. High Risks / Low Pay-Backs: Biomass energy projects are not much sought-after owing to high project risks which could entail from failed crops, natural disasters, local disturbances, etc.
  7. Resource Price Escalation: Unrealistic fuel price escalation too is a major cause of worry for the plant owners. Usually, an escalation of 3-5% is considered while carrying out the project’s financial modelling. However, it has been observed that in some cases, the rise has been as staggering as 15-20% per annum, forcing the plants to shut down.