Bioethanol Sector in India: Major Challenges To Overcome

Global demand for fuel efficiency, environmental quality and energy security have elicited global attention towards liquid biofuels, such as bioethanol and biodiesel. Around the world, governments have introduced various policy measurements, mandatory fuel blending programmes, incentives for flex fuel vehicles and agricultural subsidies for the farmers.

In India, the government launched Ethanol Blended Petrol (EBP) programme in January 2013 for 5% ethanol blended petrol. The policy had significant focus on India’s opportunity to agricultural and industrial sectors with motive of boosting biofuel (bioethanol and biodiesel) usage and reducing the existing dependency on fossil fuel.

bioethanol india

The Government of India initiated significant investments in improving storage and blending infrastructure. The National Policy on Biofuels has set a target of 20% blending of biofuel by 2017. However, India has managed to achieve only 5% by September 2016 due to certain technical, market and regulatory hurdles.

In India, sugarcane molasses is the major resource for bioethanol production and inconsistency of raw material supply holds the major liability for sluggish response to blending targets.  Technically speaking, blend wall and transportation-storage are the major challenges towards the biofuel targets. Blending wall is the maximum percent of ethanol that can be blended to fuel without decreasing the fuel efficiency.

Various vehicles are adaptable to various blending ratio based on the flexibility of engines. The technology for the engine modification for flex fuel is not new but making the engines available in India along with the supply chain and calibrating the engine for Indian conditions is the halting phase. The commonly used motor vehicles in the country are not effectual with flex fuel.

Sugarcane molasses is the most common feedstock for bioethanol production in India

Sugarcane molasses is the most common feedstock for bioethanol production in India

Ethanol being a highly flammable liquid marks obligatory safety and risk assessment measures during all phases of production, storage and transportation. The non-uniform distribution of raw material throughout the country, demands a compulsory transportation and storage, especially inter-state movement, encountering diverse climatic and topographic conditions.

Major bioethanol consumers in India are potable liquor sector (45%), alcohol based chemical industry (40%), the rest for blending and other purposes. The yearly profit elevation in major sectors is a dare to an economical ethanol supply for Ethanol Blending Programme. Drastic fluctuation in pricing of sugar cane farming and sugar milling resulted to huge debt to farmers by mill owners. Gradually the farmers shifted from sugarcane cultivation other crops.

Regulatory and policy approaches on excise duty on storage and transportation of ethanol and pricing strategy of ethanol compared to crude oil are to be revised and implemented effectively. Diversifying the feedstocks (especially use of lignocellulosic biomass) and advanced technology for domestic ethanol production in blending sectors are to be fetched out from research laboratories to commercial scale. Above all the knowledge of economic and environmental benefits of biofuel like reduction in pollutants and import bills and more R&D into drop-in biofuels, need to be amplified for the common man.

Is Green Car Fuel A Reality?

drop-in-biofuelsVehicles remain a huge global pollutant, pumping out 28.85Tg of CO2 in Maharashtra alone, according to a study by the Indian Institute for Science in Bangalore. However, vehicles cannot be discarded, as they form the lifeblood of the country’s towns and cities. Between electric vehicles and hybrids, work is being done to help rectify the situation by making use of green car fuel and technological advancements.

Emissions continue to be a huge issue, and there are two main options for helping to rectify that. The first is electric, which is seeing widespread adoption; and the second, biomass fuel, for more traditional vehicles. Between the two, excellent progress is being made, but there’s much more to be done.

How electric is helping

Electric cars are favoured heavily by the national authorities. A recent Times of India report outlined how the government is aiming for an all-electric vehicle fleet by 2030 and is pushing this through with up to US$16m of electric vehicle grants this year.

Green vehicles are obviously a great choice, improving in-city noise and air pollution whilst providing better vehicular safety to boot; a study by the USA’s MIT suggested that electric vehicles are all-around safer than combustion.

However, where EVs fall down to some extent is through the energy they use. As they are charged from the electricity grid, this means that the electricity is largely derived from fossil fuels – official statistics show that India is 44% powered by coal. Ultimately, however, this does mean that emissions are reduced. Fuel is only burned at one source, and oil refining isn’t done at all, which is another source of pollutants. However, as time goes on and the government’s energy policy changes, EVs will continue to be a great option.

The role of biofuels

Biofuels are seeing a huge growth in use – BP has reported that globally, ethanol production grew 3% in 2017. Biofuel is commonly a more favoured option by the big energy companies given the infrastructure often available already to them. While biofuel has been slow on the uptake in India, despite the massive potential available for production, there are now signs this is turning around with the construction of two US$790m biofuel facilities.

Biofuels are increasingly being used to power vehicles around the world

The big benefit of biofuel is that it will have a positive impact on combustion and electric vehicles. The Indian government has stated they intend to use biofuel alongside coal production, with as much as 10% of energy being created using biofuel. Therefore, despite not being emission-free, biofuel will provide a genuine green energy option to both types of eco-friendly vehicle.

Green car fuel is not entirely clean. The energy has to come from somewhere, and in India, this is usually from coal, gas, and oil. However, the increase in biofuel means that this energy will inevitably get cleaner, making green car fuel absolutely a reality.

The Global Green Economy Index 2016 – Key Findings

green-economyThe 5th edition of the Global Green Economy Index (GGEI) is a data-driven analysis of how 80 countries perform in the global green economy, as well as how expert practitioners rank this performance. Since its launch in 2010, the GGEI has signaled which countries are making progress towards greener economies, and which ones are not. The comparison of national green performance and perceptions of it revealed through the GGEI framework is more important than ever today.

Top Performers

Sweden is again the top performing country in the 2016 GGEI, followed by the other “Nordics” and Switzerland, Germany, and Austria. Amidst these strong results, the GGEI identified areas where these countries can improve their green performance further. These opportunities – focused around innovation, green branding and carbon efficiency – could propel their national green performance forward even more in the future.

Developing countries in Africa and Latin America–including Ethiopia, Zambia, Brazil, and Costa Rica– also perform well in this new GGEI edition, ranking in the top fifteen for performance. While Brazil and Costa Rica receive similarly strong results on our perception survey, Ethiopia and Zambia do not, suggesting a need for better green branding and communications in these two African countries.

Like in 2014, Copenhagen is the top green city, followed by Stockholm, Vancouver, Oslo and Singapore. This new GGEI only collected perception values for green cities as lack of data availability continues to impede our efforts to develop a comprehensive green city performance index. Given the significant role of cities in the global green economy, city-level data development is an urgent priority.

Laggards

No country in Asia ranks well for performance on this new GGEI, with the exception of Cambodia, which was the most improved country as compared to the last edition, rising 22 spots to 20th overall. China, India, Indonesia, Japan and South Korea do better on the perception side of the GGEI, but continue to register concerning performance results.

While many European Union (EU) members perform near the top of this GGEI edition, others including the Czech Republic, Estonia, Poland, Romania and Slovakia rank near the bottom. These results are worrisome and suggest uneven national green performance across the EU.

Many of the countries with high annual GDP growth today rank poorly on the GGEI, further highlighting the limits to GDP as a growth indicator. These countries are mostly in Asia (Malaysia, Thailand, Philippines) and Africa (Nigeria, Tanzania).

The top green economy performers worldwide

The top green economy performers worldwide

Countries with a high reliance on fossil fuel extraction and export generally perform poorly on the GGEI, with a few exceptions. Kuwait, Qatar, Saudi Arabia and Russia all perform poorly while Norway and Canada do much better.

Continuing Trends

Rapidly growing economies, China and India continue to show performance weakness on the GGEI Markets & Investment dimension. Given the large investment required to achieve their climate targets, green investment promotion, cleantech innovation, and corporate sustainability should be developed further.

The United States ranks near the top of the GGEI perception survey and it is widely viewed as a vital market for green investment and innovation, yet overall the U.S. continues to have mediocre performance results, ranking 30th of the 80 countries covered. However, the GGEI found that U.S. company-level initiatives to green supply chains and reduce carbon footprints are accelerating.

Despite having a new prime minister, Australia continues to register a poor result on this new GGEI, ranking 55th of the 80 countries covered for performance. While green markets there are showing some strength, the overall carbon intensity of the Australian economy remains extremely high.

Hosting the annual Conference of Parties (COP) can positively impact the host country’s green brand. Yet this short-term image boost does not always translate to improved green performance in the longer-term, as demonstrated by the low GGEI performance results for Poland (COP19), Qatar (COP18) and South Africa (COP17).

The United Kingdom’s GGEI performance continues to lag behind its EU peers, ranking 25th of the 80 countries covered. While the UK does very well on both the perception and performance side of the Markets & Investment dimension, inconsistent policies supporting renewable energy and green growth continue to hurt the UK on other parts of the GGEI.

Note: The full report can be accessed here

Waste-to-Energy in India: An Interview with Salman Zafar

India’s waste-to-energy sector, which kicked off in 1987, is still searching for a successful role model, even after tens of millions of dollars of investment. In recent years, many ambitious waste-to-energy projects have been established or are being planned in different parts of the country, and it is hoped that things will brighten up in the coming years. Salman Zafar, CEO of BioEnergy Consult, talks to Power Today magazine on India’s tryst with waste-to-energy and highlights major challenges and obstacles in making waste-to-energy a success story in India.

waste-mountain

Power Today: What are the challenges that the Waste to Energy sector faces in the current scenario where there is a rejuvenated interest in clean energy? Do you think the buzz around solar and wind power has relegated the Waste to Energy sector to the back benches?

Salman Zafar: India’s experience with waste-to-energy has been lackluster until now. The progress of waste-to-energy sector in India is hampered by multiples issues including

  1. poor quality of municipal waste,
  2. high capital and O&M costs of waste-to-energy systems,
  3. lack of indigenous technology,
  4. lack of successful projects and failure of several ambitious projects,
  5. lack of coordination between municipalities, state and central governments,
  6. heavy reliance on government subsidies,
  7. difficulties in obtaining long-term Power Purchase Agreements (PPAs) with state electricity boards (SEBs)
  8. lukewarm response of banks and financial institutions and (9) weak supply chain.

Waste-to-energy is different from solar (or wind) as it essentially aims to reduce the colossal amount of solid wastes accumulating in cities and towns all over India. In addition to managing wastes, waste-to-energy has the added advantage of producing power which can be used to meet rapidly increasing energy requirements of urban India.

In my opinion, waste-to-energy sector has attracted renewed interest in the last couple of years due to Swachch Bharat Mission, though government’s heavy focus on solar power has impacted the development of waste-to-energy as well as biomass energy sectors.

Power Today: India has a Waste to Energy potential of 17,000 MW, of which only around 1,365 MW has been realised so far. How much growth do you expect in the sector?

Salman Zafar: As per Energy Statistics 2015 (refer to http://mospi.nic.in/Mospi_New/upload/Energy_stats_2015_26mar15.pdf), waste-to-energy potential in India is estimated to be 2,556 MW, of which approximately 150 MW (around 6%) has been harnessed till March 2016.

The progress of waste-to-energy sector in India is dependent on resolution of MSW supply chain issues, better understanding of waste management practices, lowering of technology costs and flexible financial model. For the next two years, I am anticipating an increase of around 75-100 MW of installed capacity across India.

Power Today: On the technological front, what kinds of advancements are happening in the sector?

Salman Zafar: Nowadays, advanced thermal technologies like MBT, thermal depolymerisation, gasification, pyrolysis and plasma gasification are hogging limelight, mainly due to better energy efficiency, high conversion rates and less emissions. Incineration is still the most popular waste-to-energy technology, though there are serious emission concerns in developing countries as many project developers try to cut down costs by going for less efficient air pollution control system.

Power Today: What according to you, is the general sentiment towards setting up of Waste to Energy plants? Do you get enough cooperation from municipal bodies, since setting up of plants involves land acquisition and capital expenditure?

Salman Zafar: MSW-to-energy projects, be it in India or any other developing country, is plagued by NIMBY (not-in-my-backyard) effect. The general attitude towards waste-to-energy is that of indifference resulting in lukewarm public participation and community engagement in such projects.

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Lack of cooperation from municipalities is a major factor in sluggish growth of waste-to-energy sector in India. It has been observed that sometimes municipal officials connive with local politicians and ‘garbage mafia’ to create hurdles in waste collection and waste transport.

Supply of poor quality feedstock to waste-to-energy plants by municipal bodies has led to failure of several high-profile projects, such as 6 MW MSW-to-biogas project in Lucknow, which was shut down within a year of commissioning due to waste quality issues.

Power Today: Do you think that government policies are in tandem when it comes to enabling this segment? What policies need to be changed, evolved or adopted to boost this sector?

Salman Zafar: A successful waste management strategy demands an integrated approach where recycling and waste-to-energy are given due importance in government policies. Government should strive to setup a dedicated waste-to-energy research centre to develop a lost-cost and low-tech solution to harness clean energy from millions of tons of waste generated in India.

The government is planning many waste-to-energy projects in different cities in the coming years which may help in easing the waste situation to a certain extent. However, government policies should be inclined towards inclusive waste management, whereby the informal recycling community is not robbed of its livelihood due to waste-to-energy projects.

Government should also try to create favourable policies for establishment of decentralized waste-to-energy plants as big projects are a logistical nightmare and more prone to failure than small-to-medium scale venture.

Solid Waste Management – India’s Burning Issue

For the first time in the history of India, the year 2012 saw several public protests against improper solid waste management all across India – from the northernmost state Jammu and Kashmir to the southernmost Tamil Nadu. A fight for the right to clean environment and environmental justice led the people to large scale demonstrations, including an indefinite hunger strike and blocking roads leading to local waste handling facilities. Improper waste management has also caused a Dengue Fever outbreak and threatens other epidemics.

In recent years, solid waste management has been the only other unifying factor leading to public demonstrations all across India, after corruption and fuel prices. Public agitation resulted in some judicial action and the government’s remedial response, but the waste management problems are still unsolved and might lead to a crisis if this continues for too long without any long term planning and policy reforms.

Solid-Wastes-India

Hunger Strike in Kerala

The President of Vilappilsala Village Panchayat went on a hunger strike recently, against her counterpart, the Mayor of Thiruvananthapuram. Thiruvananthapuram is the state capital of Kerala, and Vilappilsala is a village 22 km away.

Since July 2000, about 80% of the waste generated in Thiruvananthapuram is being transported to a waste composting plant and a dumpsite in Vilappilsala village. Since the same month, respiratory illnesses reported in Vilappil Primary Health Center increased by 10 times from an average of 450 to 5,000 cases per month. People who used to regularly swim in the village’s aquifer started contracting infections; swarms of flies have ever since been pervasive; and a stigma of filth affected households throughout the community. This was a source of frustration as locals who, as Indians, prize the opportunity to feed and host guests, found them unwilling to even drink a glass of water in their homes. Currently, there is not a single household which has not experienced respiratory illnesses due to the waste processing plant and the adjoining dumpsite.

On the other hand, Thiruvananthapuram’s residents had to sneak out at night with plastic bags full of trash to dispose them behind bushes, on streets or in water bodies, and had to openly burn heaps of trash every morning for months. This was because the waste generated was not being collected by the City as it could not force open the composting plant and dumpsite against large scale protests by Vilappilsala’s residents. This is why in August – 2012, about 2,500 police personnel had to accompany trucks to the waste treatment plant as they were being blocked by local residents lying down on the road, and by some, including the village’s President, by going on an indefinite hunger strike.

Municipal Commissioner Replaced in Karnataka

In response to a similar situation in Bengaluru, the state capital of Karnataka, where the streets were rotting with piles of garbage for months, the municipal commissioner of the city was replaced to specifically address the waste management situation. Against the will of local residents, a landfill which was closed following the orders issued by the state’s pollution control board in response to public agitation had to be reopened soon after its closure as the city could not find a new landfill site.

Mavallipura landfill in Bangalore

Population density and the scale of increasing urban sprawl in India make finding new landfill sites around cities nearly impossible due to the sheer lack of space for Locally Unwanted Land Uses (LULUs) like waste management.

Dengue Outbreak in West Bengal

Even if partially because of improper waste management, Kolkata, state capital of West Bengal and the third biggest city in India experienced a Dengue Fever outbreak with 550 confirmed cases and 60 deaths. This outbreak coincides with a 600% increase in dengue cases in India and 71% increase in malarial cases in Mumbai in the last five years.

Accumulation of rain water in non biodegradable waste littered around a city act as a major breeding environment for mosquitoes, thus increasing the density of mosquito population and making the transmission of mosquito related diseases like dengue, yellow fever and malaria easier.

Rabies in Srinagar

Rabies due to stray dog bites already kills more than 20,000 people in India every year. Improper waste management has caused a 1:13 stray dog to human ratio in Srinagar (compared to 1 per 31 people in Mumbai and 1 per 100 in Chennai), where 54,000 people were bitten by stray dogs in a span of 3.5 years. Municipal waste on streets and at the dumpsite is an important source of food for stray dogs.

The ultimate solution to controlling stray dogs is effective waste management. The public has been protesting about this stray dog menace for months now with no waste management solutions in sight, but only partial short term measures like dog sterilization.

Incineration of Medical Waste: An Introduction

Incineration is a thermal process that transforms medical wastes into inorganic, incombustible matter thus leading to significant reduction in waste volume and weight. The main purpose of any medical waste incinerator is to eliminate pathogens from waste and reduce the waste to ashes. However, certain types of medical wastes, such as pharmaceutical or chemical wastes, require higher temperatures for complete destruction.

Medical waste incinerators typically operate at high temperatures between 900 and 1200°C. Developing countries of Asia and Africa usually use low-cost, high-temperature incinerators of simple design for stabilization of healthcare wastes.

The most reliable and predominant medical waste incineration technology is pyrolytic incineration, also known as controlled air incineration or double-chamber incineration. The pyrolytic incinerator comprises a pyrolytic chamber and a post-combustion chamber.

Medical waste is thermally decomposed in the pyrolytic chamber through an oxygen-deficient, medium-temperature combustion process (800– 900°C), producing solid ashes and gases. The gases produced in the pyrolytic chamber are burned at high temperature (900– 1200°C) by a fuel burner in the post-combustion chamber, using an excess of air to minimize smoke and odours.

Small-scale decentralized incinerators used in hospitals, of capacity 200–1000kg/day, are operated on demand in developing countries, such as India. On the other hand, off-site regional facilities have large-scale incinerators of capacity 1–8 tonnes/day, operating continuously and equipped with automatic loading and de-ashing devices.

In recent years, mobile incinerators are getting attraction in the developing world as such units permit on-site waste treatment in hospitals and clinics, thus avoiding the need to transport infectious waste across the city.

However, the WHO policy paper of 2004 and the Stockholm Convention, has stressed the need to consider the risks associated with the incineration of healthcare waste in the form of particulate matter, heavy metals, acid gases, carbon monoxide, organic compounds, pathogens etc.

In addition, leachable organic compounds, like dioxins and heavy metals, are usually present in bottom ash residues. Due to these factors, many industrialized countries are phasing out healthcare waste incinerators and exploring technologies that do not produce any dioxins. Countries like United States, Ireland, Portugal, Canada and Germany have completely shut down or put a moratorium on medical waste incinerators.

Addressing India’s Waste Management Problems

Out of all the measures that are necessary in addressing India’s impending waste management crisis, the most efficient will be changes at the national policy and planning level. It is well-known among the small but growing waste management sector that urban India will hit rock bottom due to improper waste management.

india_garbage_dump

Unfortunately, they think such a crisis is required to bring about policy changes, as they generally tend to happen only after the damage has been done. This attitude is unfortunate because it indicates a lack of or failed effort from the sector to change policy, and also the level of India’s planning and preparedness.

An average of 32,000 people will be added to urban India every day, continuously, until 2021. This number is a warning, considering how India’s waste management infrastructure went berserk trying to deal with just 25,000 new urban Indians during the last decade. The scale of urbanization in India and around the world is unprecedented with planetary consequences to Earth’s limited material and energy resources, and its natural balance.

Rate of increase in access to sanitation infrastructure generally lags behind the rate of urbanization by 33% around the world; however, the lack of planning and impromptu piecemeal responses to waste management issues observed in India might indicate a much wider gap. This means urban Indians will have to wait longer than an average urban citizen of our world for access to proper waste management infrastructure.

The clear trend in the outbreak of epidemic and public protests around India is that they are happening in the biggest cities in their respective regions. Kolkata, Bengaluru, Thiruvananthapuram, and Srinagar are capitals of their respective states, and Coimbatore is the second largest city in Tamil Nadu. However, long term national level plans to improve waste management in India do not exist and guidance offered to urban local bodies is meager.

Apart from the Jawaharlal Nehru National Urban Renewal Mission (JnNURM), there has been no national level effort required to address the problem. Even though JnNURM was phenomenal in stimulating the industry and local governments, it was not enough to address the scale and extent of the problem. This is because of JnNURM is not a long term waste management financing program, sorts of which are required to tackle issues like solid waste management.

Are Cities Hands-tied or is Change Possible?

In the short term, municipal corporations have their hands tied and will not be able to deliver solutions immediately. They face the task of realizing waste management facilities inside or near cities while none of their citizens want them near their residences. Officials of Hyderabad’s municipal corporation have been conducting interviews with locals for about eight years now for a new landfill site, to no avail.

In spite of the mounting pressure, most corporations will not be able to close the dumpsites that they are currently using. This might not be the good news for which local residents could be waiting, but, it is important that bureaucrats, municipal officials and politicians be clear about it. Residents near Vellalore dump protested and blocked roads leading to the site because Coimbatore municipal officials repeatedly failed to fulfill their promises after every landfill fire incident.

Due to lack of existing alternatives, other than diverting waste fractionally by increasing informal recycling sector’s role, closing existing landfills would mean finding new sites.  Finding new landfills in and around cities is nearly impossible because of the track record of dumpsite operations and maintenance in India and the Not in My Backyard (NIMBY) phenomenon.

However, the corporations can and should take measures to reduce landfill fires and open burning, and control pollution due to leachate and odor and vector nuisance. This will provide much needed relief to adjacent communities and give the corporations time to plan better. While navigating through an issue as sensitive this, it is of the utmost importance that they work closely with the community by increasing clarity and transparency.

Municipal officials at the meeting repeatedly stressed the issue of scarcity of land for waste disposal, which led to overflowing dumpsites and waste treatment facilities receiving more waste than what they were designed for. Most municipal officials are of the sense that a magic solution is right around the corner which will turn all of their city’s waste into electricity or fuel oil or gas, or into recycled products. While such conversion is technologically possible with infinite energy and financial sources, that is not the reality.

Despite their inability to properly manage wastes, the majority of municipal officials consider waste as “wealth” when approached by private partners. Therefore, a significant portion of officials expect royalty from private investments without sharing business risk.

Planning To Buy the Best Life Insurance Policy in India? 5 Things to Keep in Mind

Life is unpredictable and you never know what situation you may find yourself in. While you cannot plan for everything, having financial security does help you tide over unexpected times. It also gives you stability and peace of mind as it enables you to plan for large expenses like a house, a vehicle, or education.

Insurance is a kind of investment that helps you secure your future. It helps not only you but also your family by setting aside some amount for their future well-being. Before you start looking for the best life insurance policy in India, there are some things that you should know about a life insurance policy. Let’s look at the five main things that you should keep in mind.

Best Life Insurance Policy in India

1. Inform your family

You have the best life insurance policy in India and are sure that your family’s future is secured but do they know about it? Always ensure that your family members know about the policy. A good idea would be to keep the policy document in a place where everyone can access it.

Since the policy is aimed at securing your family’s future, ensure that you walk them through the policy. Tell them about the policy number, insurance amount, and what kind of policy you have taken. A great tip would be to note all the important details somewhere where your family can easily look up the details. You could make a note in a digital diary or create a document on your home computer. This helps your family in claiming the money that is due to them without any hassles.

2. Look for high sum assured

While there is no number that can give you the actual value of human life, you do need an estimation of the amount of money you want to leave for your family. Always make sure that you opt for higher life insurance as that ensures that your family is well taken care of when you are gone. Even if you have the best life insurance policy in India, you have to see if it is accurately calculating your human life value.

There is a simple way to judge the amount of insurance. Typically, we would look at how much the person is earning and when they plan to retire. For instance, if Mr. X, aged 30, earns Rs 10 lakh per annum and plans to retire at 60, then the sum that he should aim at is Rs. 3 crores (10 lakh multiplied by 30). This is a simplified way of looking at this, you would also need to account for inflation and any hike in your salary to arrive at the value.

Taking insurance that assures you a sum at the higher end helps your family maintain their current standard of living. This is why it is very important to take a hard look at the assured sum of the life insurance policy.

3. Do your research before buying

This is very important as all policy sellers will tell you that they are the best life insurance policy in India. However, before you buy the life insurance policy, you need to do your research and ensure that it aligns with your financial goals.

Since your family’s future is at stake here, make sure you know the policy thoroughly. There are a few things that you need to look out for in particular. These include the human life value, why you want to insure, the type of life insurance policy, affordability, and the ease of policy servicing. In addition to these, also look at the claim ratio and how the linked funds are performing.

4. Know your needs before you invest

While all agents will claim they have the best insurance policy, does it align with what you want? This is the first thing you need to know. People take out insurance for a variety of reasons- safeguard their family’s future, education expenses, retirement planning.

After you identify why you need a life insurance policy, you can look for the best one for your needs. There is a range of life insurance policies that cater to different needs, and it can be easy to get lost in the information if you don’t know what you are looking for. Look at different online resources like life insurance explained to get a better idea of its finer points.

5. Make regular payments

Once you decide on the policy, ensure that you make regular payments. Simply having the best life insurance policy is not enough to secure your family’s future, you will need to actively invest in it.

Ensure that you keep on track with the payments and avoid a lapse of your policy at all costs. Remember that you are investing in your future and ensuring that your family is taken care of when you are gone.

Global Trends in Solar Energy Sector

Many countries around the world have switched to solar power in order to supplement or provide an alternative source of energy that is cheaper, more reliable and efficient, and friendly to the environment. Generally speaking, to convert solar energy to electricity, there are two kinds of technologies used by the solar power plants – the PV (photovoltaic) systems which use solar panels to convert sunlight directly into electricity, and the CSP (Concentrated Solar Power) that indirectly uses the solar thermal energy to produce electricity.

renewables-investment-trends

The solar PV systems, which are either placed in ground-mounted solar farms or on rooftops are considered cheaper than CSP and constitutes the majority of solar installations, while CSP and large-scale PV accounts for the majority of the general solar electricity-generation-capacity, across the globe.

Global Trends in Solar Energy

In 2017, solar photovoltaic capacity increased by 95 GW, with a 34% growth year-on-year of new installations. Cumulative installed capacity exceeded 401 GW by the end of the year, sufficient to supply 2.1 percent of the world’s total electricity consumption. This growth was dramatic, and scientists viewed it as a crucial way to meet the world’s commitments to climate change.

“In most countries around the world there is still huge potential to dramatically increase the amount of energy we’re able to get from solar. The only way to achieve this is through a combination of both governance and individual responsibility.” Alastair Kay, Editor at Green Business Watch

Both CSP and PV systems are an essential part of energy and infrastructure portfolio and experts claim that by 2050, solar power will become the greatest source of electricity in the whole world. To achieve this goal, the capacity of PV systems should grow up to 4600 gigawatts, of which 50% or more would come from India or China. To date, the capacity of solar power is about 310 gigawatts, a drastic increase on the 50 gigawatts of power installed in 2010.

The United Kingdom, followed by Germany and France led Europe in the 2016 general statistics for solar power growth with new solar installations of 29%, 21%, and 8.3% respectively. In early 2016, the amount of power across Europe was near 100 gigawatts but now stands at 105 gigawatts. This growth is regarded as slow and experts in the solar industry are calling upon the European Union to give more targets concerning the renewable source of energy. It is said that setting a target that is not less than 35% will revive the solar business in Europe.

Across the United States in places, such as Phoenix and Los Angeles, which are located in a sunny region, a common PV system can generate an average of 7500 kWh – similar to the electrical power in use in a typical US home.

In Africa, many nations especially those around the deserts such as Sahara receive a great deal of sunlight every day, creating an opportunity for the development of solar technology across the region. Distribution of PV systems is almost uniform in Africa with the majority of countries receiving about 2000 kWh/m2 in every year. A certain study shows that generating solar power in a facility covering about 0.3% of the area consisting of North Africa could provide all the energy needed by the European-Union.

Asia alone contributed to 66.66% of the global amount of solar power installed in 2016, with about 50% coming from China.

With these reports, it is clear that the development of solar energy technology is growing in each and every continent with just a few countries with little or no apparent growth.

The growth of solar power technology across every continent in the world is very fast and steady and in the near future, almost every country will have a history to tell about the numerous benefits of going solar. The adoption of solar power will help improve the development of other sectors of the economy, such as the electronics industry, hence creating a lot of employment opportunities.

Biodiesel Program in India – An Analysis

The Government of India approved the National Policy on Biofuels in December 2009. The biofuel policy encouraged the use of renewable energy resources as alternate fuels to supplement transport fuels (petrol and diesel for vehicles) and proposed a target of 20 percent biofuel blending (both biodiesel and bioethanol) by 2017. The government launched the National Biodiesel Mission (NBM) identifying Jatropha curcas as the most suitable tree-borne oilseed for biodiesel production.

The Planning Commission of India had set an ambitious target covering 11.2 to 13.4 million hectares of land under Jatropha cultivation by the end of the 11th Five-Year Plan. The central government and several state governments are providing fiscal incentives for supporting plantations of Jatropha and other non-edible oilseeds. Several public institutions, state biofuel boards, state agricultural universities and cooperative sectors are also supporting the biofuel mission in different capacities.

renewable-diesel

Biofuels are increasingly being used to power vehicles around the world

State of the Affairs

The biodiesel industry in India is still in infancy despite the fact that demand for diesel is five times higher than that for petrol. The government’s ambitious plan of producing sufficient biodiesel to meet its mandate of 20 percent diesel blending by 2012 was not realized due to a lack of sufficient Jatropha seeds to produce biodiesel.

Currently, Jatropha occupies only around 0.5 million hectares of low-quality wastelands across the country, of which 65-70 percent are new plantations of less than three years. Several corporations, petroleum companies and private companies have entered into a memorandum of understanding with state governments to establish and promote Jatropha plantations on government-owned wastelands or contract farming with small and medium farmers. However, only a few states have been able to actively promote Jatropha plantations despite government incentives.

Key Hurdles

The non-availability of sufficient feedstock and lack of R&D to evolve high-yielding drought tolerant Jatropha seeds have been major stumbling blocks in biodiesel program in India. In addition, smaller land holdings, ownership issues with government or community-owned wastelands, lackluster progress by state governments and negligible commercial production of biodiesel have hampered the efforts and investments made by both private and public sector companies.

Another major obstacle in implementing the biodiesel programme has been the difficulty in initiating large-scale cultivation of Jatropha. The Jatropha production program was started without any planned varietal improvement program, and use of low-yielding cultivars made things difficult for smallholders. The higher gestation period of biodiesel crops (3–5 years for Jatropha and 6–8 years for Pongamia) results in a longer payback period and creates additional problems for farmers where state support is not readily available.

The Jatropha seed distribution channels are currently underdeveloped as sufficient numbers of processing industries are not operating. There are no specific markets for Jatropha seed supply and hence the middlemen play a major role in taking the seeds to the processing centres and this inflates the marketing margin.

Biodiesel distribution channels are virtually non-existent as most of the biofuel produced is used either by the producing companies for self-use or by certain transport companies on a trial basis. Further, the cost of biodiesel depends substantially on the cost of seeds and the economy of scale at which the processing plant is operating.

The lack of assured supplies of feedstock supply has hampered efforts by the private sector to set up biodiesel plants in India. In the absence of seed collection and oil extraction infrastructure, it becomes difficult to persuade entrepreneurs to install trans-esterification plants.