Air Genius: An Indoor Air Quality Monitor With a Difference

Indoor Air Quality (IAQ) refers to the air quality within and around buildings and structures, especially as it relates to the health and comfort of building occupants. Understanding and controlling common pollutants indoors can help reduce your risk of indoor health concerns. Health effects from indoor air pollutants may be experienced soon after exposure or, possibly, years later.

Immediate Health Effects

Some health effects may show up shortly after a single exposure or repeated exposures to a pollutant. These include irritation of the eyes, nose, and throat, headaches, dizziness, and fatigue. Such immediate effects are usually short-term and treatable.

Sometimes the treatment is simply eliminating the person’s exposure to the source of the pollution, if it can be identified. Soon after exposure to some indoor air pollutants, symptoms of some diseases such as asthma may show up, be aggravated or worsened.

The likelihood of immediate reactions to indoor air pollutants depends on several factors including age and preexisting medical conditions. In some cases, whether a person reacts to a pollutant depends on individual sensitivity, which varies tremendously from person to person. Some people can become sensitized to biological or chemical pollutants after repeated or high level exposures.

In long-term effects, Other health effects may show up either years after exposure has occurred or only after long or repeated periods of exposure. These effects, which include some respiratory diseases, heart disease and cancer, can be severely debilitating or fatal. It is prudent to try to improve the indoor air quality in your home even if symptoms are not noticeable.

Factors Behind Poor IAQ

Gas and respirable particulates in the air are the primary sources that contribute to poor IAQ. Sources can include inadequate ventilation, poorly maintained HVAC systems, cooking stoves, non-vented gas heaters, tobacco smoke, vehicle exhaust emissions, building materials, carpeting, furniture, maintenance products, solvents, cleaning supplies etc.

The actual concentrations of these pollutants can also be amplified by other external factors including poor ventilation, humidity, and temperature.

Air Genius – Best Indoor Air Quality Monitor

Air Genius is a state-of-the-art indoor air quality monitor that you should have at your house or in your office to monitor the air that we breathe. The device, developed by India-based Next Sense Technologies, uses the latest sensors to determine particulate matter, VOCs, total volatile organic compounds (TVOCs), carbon dioxide, temperature, humidity and other important parameters.

We have taken a leap in technological advancement by relaying the data automatically to the server so that you can access the data remotely and in real-time. Through this, one could take initiatives on switching on the Air purifier or by keeping the window open for allowing the fresh air.

Typical Applications for Air Genius Indoor Air Quality Monitor

  • IAQ complaint investigation and analysis
  • HVAC system performance monitoring
  • Air quality engineering analysis
  • Mold investigation and remediation
  • Health and comfort assessment
  • Airport lounges, shopping malls, offices
  • Colleges, schools and kindergartens
  • Hospitals and healthcare establishments

For business enquiries about Air Genius Air Quality Monitor, please visit  http://www.nextsensetechnologies.com/ or contact Mr. Mohammad Hamza on +91-9540990415 or email on enggenvsolution@gmail.com or salman@bioenergyconsult.com

Circular Economy: Past, Present and Future

For a society accustomed to the achievements of a linear economy, the transition to a circular economic system is a hard task even to contemplate. Although the changes needed may seem daunting, it is important to remember that we have already come a long way. However, the history of the waste hierarchy has taught that political perseverance and unity of approach are essential to achieving long term visions in supply chain management.

Looking back, it is helpful to view the significance of the Lansink’s Ladder in the light of the sustainability gains it has already instigated. From the outset, the Ladder encountered criticism, in part because the intuitive preference order it expresses is not (and has never been put forward as) scientifically rigorous. Opposition came from those who feared the hierarchy would impede economic growth and clash with an increasingly consumerist society. The business community expressed concerns about regulatory burdens and the cost of implementing change.

Circular-Economy

However, such criticism was not able to shake political support, either in Holland where the Ladder was adopted in the Dutch Environmental Protection Act of 1979, or subsequently across Europe, as the Waste Hierarchy was transposed into national legislation as a result of the revised Waste Framework Directive.

Prevention, reuse and recycling have become widely used words as awareness has increased that our industrial societies will eventually suffer a shortage of raw materials and energy. So, should we see the waste hierarchy as laying the first slabs of the long road to a circular economy? Or is the circular economy a radical new departure?

Positive and negative thinking

There have been two major transitionary periods in waste management: public health was the primary driver for the first, from roughly 1900 to 1960, in which waste removal was formalised as a means to avoid disease. The second gained momentum in the 1980s, when prevention, reuse and recovery came on the agenda. However, consolidation of the second transition has in turn revealed new drivers for a third. Although analysing drivers is always tricky – requiring a thorough study of causes and effects – a general indication is helpful for further discussion. Positive (+) and negative (-) drivers for a third transition may be:

(+) The development of material supply chain management through the combination of waste hierarchy thinking with cradle to cradle eco design;

(+) The need for sustainable energy solutions;

(+) Scarcity of raw materials necessary for technological innovation; and

(+) Progressive development of circular economy models, with increasing awareness of social, financial and economic barriers.

(-) Growth of the global economy, especially in China and India, and later in Africa;

(-) Continued growth in global travel;

(-) Rising energy demand, exceeding what can be produced from renewable energy sources and threatening further global warming;

(-) Biodiversity loss, causing a further ecological impoverishment; and

(-) Conservation of the principle of ownership, which hinders the development of the so-called ‘lease society’. 

A clear steer

As the direction, scale and weight of these drivers are difficult to assess, it’s necessary to steer developments at all levels to a sustainable solution. The second transition taught that governmental control appears indispensable, and that regulation stimulates innovation so long as adequate space is left for industry and producers to develop their own means of satisfying their legislated responsibilities.

The European Waste Framework Directive has been one such stimulatory piece of legislation. Unfortunately, the EC has decided to withdraw its Circular Economy package, which would otherwise now be on track to deliver the additional innovation needed to achieve its goals – including higher recycling targets. Messrs. Juncker and Timmermans must now either bring forward the more ambitious legislation they have hinted at, or explain why they have abandoned the serious proposals of their predecessors.

Perhaps the major differences between Member States and other countries may require a preliminary two-speed policy, but any differences in timetable between Western Europe and other countries should not stand in the way of innovation, and differences of opinion between the European Parliament and the Commission must be removed for Europe to remain credible.

Governmental control requires clear rules and definitions, and for legislative terminology to be commensurate with policy objectives. One failing in this area is the use of the generic term ‘recovery’ to cover product reuse, recycling and incineration with energy recovery, which confuses the hierarchy’s preference order. The granting of R1 status to waste incineration plants, although understandable in terms of energy diversification, turns waste processors into energy producers benefiting from full ovens. Feeding these plants reduces the scope for recycling (e.g. plastics) and increases COemissions. When relatively inefficient incinerators still appear to qualify for R1 status, it offers confusing policy signals for governments, investors and waste services providers alike.

The key role for government also is to set clear targets and create the space for producers and consumers to generate workable solutions. The waste hierarchy’s preference order is best served by transparent minimum standards, grouped around product reuse, material recycling or disposal by combustion. For designated product or material categories, multiple minimum standards are possible following preparation of the initial waste streams, which can be tightened as technological developments allow.

Where the rubber meets the road

As waste markets increase in scale, are liberalised, and come under international regulation, individual governmental control is diminished. These factors are currently playing out in the erratic prices of secondary commodities and the development of excess incinerator capacity in some nations that has brought about a rise in RDF exports from the UK and Italy. Governments, however, may make a virtue of the necessity of avoiding the minutiae: ecological policy is by definition long-term and requires a stable line; day to day control is an impossible and undesirable task.

The road to the third transition – towards a circular economy – requires a new mind-set from government that acknowledges and empowers individuals. Not only must we approach the issue from the bottom-up, but also from the side and above. Consumer behaviour must be steered by both ‘soft’ and ‘hard’ controls: through information and communication, because of the importance of psychological factors; but also through financial instruments, because both consumers and industry are clearly responsive to such stimuli.

Where we see opposition to deposit return schemes, it comes not from consumers but from industry, which fears the administrative and logistical burden. The business community must be convinced of the economic opportunities of innovation. Material supply chain management is a challenge for designers and producers, who nevertheless appreciate the benefits of product lifetime extensions and reuse. When attention to environmental risks seems to lapse – for example due to financial pressures or market failures – then politics must intervene.

Government and industry should therefore get a better grip on the under-developed positive drivers of the third transition, such as eco design, secondary materials policy, sustainable energy policy, and research and development in the areas of bio, info, and nanotechnologies. 

Third time’s the charm

Good supply chain management stands or falls with the way in which producers and consumers contribute to the policies supported by government and society. In order that producers and consumers make good on this responsibility, government must first support their environmental awareness.

The interpretation of municipal duty of care determines options for waste collection, disposal and processing. Also essential is the way in which producer responsibility takes shape, and the government must provide a clear separation of private and public duties. Businesses may be liable for the negative aspects of unbridled growth and irresponsible actions. It is also important for optimal interaction with the European legislators: a worthy entry in Brussels is valuable because of the international aspects of the third transition. Finally, supply chain management involves the use of various policy tools, including:

  • Rewarding good behaviour
  • Sharpening minimum standards
  • Development and certification of CO2 tools
  • Formulation and implementation of end-of-waste criteria
  • Remediation of waste incineration with low energy efficiency
  • Restoration or maintenance of a fair landfill tax
  • Application of the combustion load set at zero

‘Seeing is believing’ is the motto of followers of the Apostle Thomas, who is chiefly remembered for his propensity for doubt. The call for visible examples is heard ever louder as more questions are raised around the feasibility of product renewal and the possibilities of a circular economy.

Ultimately, the third transition is inevitable as we face a future of scarcity of raw materials and energy. However, while the direction is clear, the tools to be employed and the speed of change remain uncertain. Disasters are unnecessary to allow the realisation of vital changes; huge leaps forward are possible so long as government – both national and international – and society rigorously follow the preference order of the waste hierarchy. Climbing Lansink’s Ladder remains vital to attaining a perspective from which we might judge the ways in which to make a circle of our linear economy.

Note: The article is being republished with the permission of our collaborative partner Isonomia. The original article can be found at this link.

Tips on Writing a Research Paper on Solar Energy

The share of energy received from the Sun is steadily increasing every year. Last year, the global solar market increased by 26%. According to forecasts, in 2018 for the first time, the mark of 100 gigawatts of new installed capacity per year will be passed all over the world. Writing a research paper on solar energy is not an easy assignment, as you will have to deal with lot’s of statistics, results of experiments, and, surprisingly, sociology — the usage of alternative sources of energy are strongly connected with the social issues and moods. In this article, you’ll receive some tips on how to write a stellar research paper on solar energy and impress your professor.

We are sure you know how to structure a research paper, and you won’t forget about an engaging thesis (problem) statement. Our tips will cover the latest trends you should mention and the discussions related to the usage of solar energy, pros, cons and exciting facts.

Pay Attention to the Latest Trends

Analysts have identified trends in the solar energy market in the near future.

  • An increasing number of countries are developing solar energy projects at the national level. In 2016, there were 32 such countries, at the end of last year already 53. Tenders for the development of solar energy are planned in 23 countries.
  • In the United States in the next 4 years, the number of states installing more than 1 gigawatt will reach 18. They will account for 80% of all US photovoltaic plants.
  • Reducing the cost of solar energy can be achieved through the use of more powerful modules, which will reduce the proportion of equipment and maintenance costs.
  • The role of electronics operating at the level of a single photovoltaic panel will grow. Now micro-inventors and current converters for one module are not used very widely.
  • Prices for stationary solar systems in the world are falling, but in the USA they remain at the same level (the cost of watts of power for US home systems is the highest in the world). The price for a “sunny” watt from state to state can vary by 68 cents, and companies will have to look for ways to reduce production costs.

Talk about the Future

Naturally, interest in renewable energy sources will continue to grow. The year 2050 will be the point of no return – it is by this time that most countries will completely switch to clean energy. And in 2018 serious steps will be made in this direction.

The first to be hit will be coal power plants in Europe. To date, 54% of them are not profitable, and there are only for the sake of peak load. In 2018, Finland will ban the use of coal to generate electricity and increase the tax on carbon dioxide emissions. By 2030, the country plans to abandon this fuel completely.

The Indian coal mining company Coal India also plans to close 37 coal mines in March 2018 – their development has become uneconomical due to the growth of renewable energy. The company will save about $ 124 million on this, after which it will switch to solar power and install at least 1 GW of new solar capacity in India.

Don’t Focus Solely on Content

It is a no-brainer that the content of your research paper is the most essential part of your work. However, if you forget about formatting, citations, plagiarism, using valid academic sources, etc., your research paper can fail despite having an amazing thesis statement or the project idea.

When you start doing research, note down every link you use or want to use, every quote you like, every piece of statistical information. At first, it seems very dull and unnecessary — you think you can find this information at any moment. However, days pass, and you fail to make proper references, which can be a reason of being accused of plagiarism. Proofread your research paper several times, use online sources to check grammar and spelling, don’t forget about plagiarism checkers to stay on the safe side.

If you find out that writing a proper research paper on solar energy is too complicated for you now, or you don’t have enough time energy to deal with it, it is a wise choice to get affordable research paper writing by experts who can help you immediately with your assignment. When writing a research paper on solar energy don’t forget to check on the latest numbers and analytical data worldwide. Good luck!

Waste Management Outlook for India

Waste management crisis in India should be approached holistically; while planning for long term solutions, focus on addressing the immediate problems should be maintained. National and local governments should work with their partners to promote source separation, achieve higher percentages of recycling and produce high quality compost from organics. While this is being achieved and recycling is increased, provisions should be made to handle the non-recyclable wastes that are being generated and will continue to be generated in the future.

Recycling, composting and waste-to-energy are all integral parts of the waste disposal solution and they are complementary to each other; none of them can solve India’s waste crisis alone. Any technology should be considered as a means to address public priorities, but not as an end goal in itself. Finally, discussion on waste management should consider what technology can be used, to what extent in solving the bigger problem and within what timeframe.

Experts believe India will have more than nine waste-to-energy projects in different cities across India in the next three years, which will help alleviate the situation to a great extent. However, since waste-to-energy projects are designed to replace landfills, they also tend to displace informal settlements on the landfills. Here, governments should welcome discussions with local communities and harbor the informal recycling community by integrating it into the overall waste management system to make sure they do not lose their rights for the rest of the city’s residents.

This is important from a utilitarian perspective too, because in case of emergency situations like those in Bengaluru, Kerala, and elsewhere, the informal recycling community might be the only existing tool to mitigate damage due to improper waste management as opposed to infrastructure projects which take more than one year for completion and public awareness programs which take decades to show significant results.

Involvement of informal recycling community is vital for the success of any SWM program in India

Indian policy makers and municipal officials should utilize this opportunity, created by improper waste management examples across India, to make adjustments to the existing MSW Rules 2000, and design a concrete national policy based on public needs and backed by science. If this chance passes without a strong national framework to improve waste management, the conditions in today’s New Delhi, Bengaluru, Thiruvananthapuram, Kolkata, Mumbai, Chennai, Coimbatore and Srinagar will arise in many more cities as various forcing factors converge. This is what will lead to a solid waste management crisis affecting large populations of urban Indians.

The Indian Judiciary proved to be the most effective platform for the public to influence government action. The majority of local and national government activity towards improving municipal solid waste management is the result of direct public action, funneled through High Courts in each state, and the Supreme Court. In a recent case (Nov 2012), a slew of PILs led the High Court of Karnataka to threaten to supersede its state capital Bengaluru’s elected municipal council, and its dissolution, if it hinders efforts to improve waste management in the city.

In another case in the state of Haryana, two senior officials in its urban development board faced prosecution in its High Court for dumping waste illegally near suburbs. India’s strong and independent judiciary is expected to play an increasing role in waste management in the future, but it cannot bring about the required change without the aid of a comprehensive national policy.

Note: Acknowledgements will be published in the full report “Observations from India’s Crisis” on wtert.org and blog.wtert.org

Energy Potential of Bagasse

Sugarcane is one of the most promising agricultural sources of biomass energy in the world. Sugarcane produces mainly two types of biomass, Cane Trash and Bagasse. Cane Trash is the field residue remaining after harvesting the Cane stalk while bagasse is the fibrous residue left over after milling of the Cane, with 45-50% moisture content and consisting of a mixture of hard fibre, with soft and smooth parenchymatous (pith) tissue with high hygroscopic property. Bagasse contains mainly cellulose, hemi cellulose, pentosans, lignin, Sugars, wax, and minerals. The quantity obtained varies from 22 to 36% on Cane and is mainly due to the fibre portion in Cane and the cleanliness of Cane supplied, which, in turn, depends on harvesting practices.

The composition of Bagasse depends on the variety and maturity of Sugarcane as well as harvesting methods applied and efficiency of the Sugar processing. Bagasse is usually combusted in furnaces to produce steam for power generation. Bagasse is also emerging as an attractive feedstock for bioethanol production. It is also utilized as the raw material for production of paper and as feedstock for cattle. The value of Bagasse as a fuel depends largely on its calorific value, which in turn is affected by its composition, especially with respect to its water content and to the calorific value of the Sugarcane crop, which depends mainly on its sucrose content.

Moisture contents is the main determinant of calorific value i.e. the lower the moisture content, the higher the calorific value. A good milling process will result in low moisture of 45% whereas 52% moisture would indicate poor milling efficiency. Most mills produce Bagasse of 48% moisture content, and most boilers are designed to burn Bagasse at around 50% moisture. Bagasse also contains approximately equal proportion of fibre (cellulose), the components of which are carbon, hydrogen and oxygen, some sucrose (1-2 %), and ash originating from extraneous matter. Extraneous matter content is higher with mechanical harvesting and subsequently results in lower calorific value.

For every 100 tons of Sugarcane crushed, a Sugar factory produces nearly 30 tons of wet Bagasse. Bagasse is often used as a primary fuel source for Sugar mills; when burned in quantity, it produces sufficient heat and electrical energy to supply all the needs of a typical Sugar mill, with energy to spare. The resulting CO2 emissions are equal to the amount of CO2 that the Sugarcane plant absorbed from the atmosphere during its growing phase, which makes the process of cogeneration greenhouse gas-neutral.

35MW Bagasse and Coal CHP Plant in Mauritius

Cogeneration of Bagasse is one of the most attractive and successful energy projects that have already been demonstrated in many Sugarcane producing countries such as Mauritius, Reunion Island, India and Brazil. Combined heat and power from Sugarcane in the form of power generation offers renewable energy options that promote sustainable development, take advantage of domestic resources, increase profitability and competitiveness in the industry, and cost-effectively address climate mitigation and other environmental goals.

Biomass Exchange – Key to Success in Biomass Projects

Biomass exchange is emerging as a key factor in the progress of biomass energy sector in a particular country. The supply chain management in any biomass project is a big management conundrum. The complexity deepens owing to the large number of stages which encompass the entire biomass value chain. It starts right from biomass resource harvesting and goes on to include biomass collection, processing, storage and eventually its transportation to the point of ultimate utilization.

Owing to the voluminous nature of the resource, its handling becomes a major issue since it requires bigger modes of logistics, employment of a larger number of work-force and a better storage infrastructure, as compared to any other fuel or feedstock. Not only this their lower energy density characteristic, makes it inevitable for the resource to be first processed and then utilized for power generation to make for better economics.

All these problems call for a mechanism to strengthen the value chain. This can be done by considering the following:

  • Assuring a readily available market for the resource providers or the producers
  • Assuring the project developers of a reliable chain and consistent feedstock availability
  • Awareness to the project developer of the resources in closest proximity to the plant site
  • Assurance to the project developer of the resource quality
  • Timely pick-up and drop of resource
  • Proper fuel preparation as per technology requirements
  • Removal of intermediaries involved in the process – to increase value for both, the producers as well as the buyers
  • No need for long term contracts (Not an obligation)
  • Competitive fuel prices
  • Assistance to producers in crop management

The figure below gives a general understanding of how such a model could work, especially in the context of developing nations where the size of land holdings is usually small and the location of resources is scattered, making their procurement a highly uneconomic affair. This model is commonly known as Biomass Exchange

In such a model, the seed, fertilizer shops and other local village level commercial enterprises could be utilized as an outreach or marketing platform for such a service.  Once the producer approves off the initial price estimate, as provided by these agencies, he could send a sample of the feedstock to the pre-deputed warehouses for a quality check.

These warehouses need to be organized at different levels according to the village hierarchy and depending on the size, cultivated area and local logistic options available in that region. On assessing the feedstock sample’s quality, these centers would release a plausible quote to the farmer after approving which, he would be asked to supply the feedstock.

On the other hand, an entity in need of the feedstock would approach the biomass exchange, where it would be appraised of the feedstock available in the region near its utilization point and made aware of the quantity and quality of the feedstock. The entity would then quote a price according to its suitability which would be relayed to the primary producer.

An agreement from both the sides would entail the placement of order and the feedstock’s subsequent processing and transportation to the buyer’s gate. The pricing mechanisms could be numerous ranging from, fixed (according to quality), bid-based or even market-driven.

Roadblocks

The hurdles could be in the form of the initial resource assessment which could in itself be a tedious and time consuming exercise. Another roadblock could be in the form of engaging the resource producers with such a mechanism. Since these would usually involve rural landscapes, things could prove to be a little difficult in terms of implementation of initial capacity building measures and concept marketing.

Benefits

The benefits of  a biomass exchange are enumerated below:

  • Support to the ever increasing power needs of the country
  • Promotion of biomass energy technologies
  • Development of rural infrastructure
  • Increased opportunities for social and micro-entrepreneurship
  • Creation of direct and indirect job opportunities
  • Efficient utilization of biomass wastes
  • Potential of averting millions of tonnes of GHGs emissions

Conclusions

In India alone, there has been several cases where biomass power projects of the scale greater than 5 MW are on sale already, even with their power purchase agreements still in place. Such events necessitate the need to have a mechanism in place which would further seek the promotion of such technologies.

Biomass Exchange is an attractive solution to different problems afflicting biomass projects, at the same time providing the investors and entrepreneurs with a multi-million dollar opportunity. Although such a concept has been in existence in the developed world for a long time now, it has not witnessed many entrepreneurial ventures in developing nations where the need to strengthen the biomass supply chain becomes even more necessary.

However, one needs to be really careful while initiating such a model since it cannot be blindly copied from Western countries owing to entirely different land-ownership patterns, regional socio-political conditions and economic framework. With a strong backup and government support, such an idea could go a long way in strengthening the biomass supply chain, promotion of associated clean energy technologies and in making a significant dent in the present power scenario in the developing world.

Biorefinery Prospects in India

India has a tremendous biomass potential which could easily be relied upon to fulfil most of our energy needs. An estimated 50 MMT (million metric tonnes) of liquid fuels are consumed annually in India, but with the actual biomass potential and its full utilization, India is capable of generating almost double that amount per annum. These biomass estimates only constitute the crop residues available in the country and essentially the second-generation fuels since the use of first-generation crop bases fuels in such food-starved nations is a criminal thought.

Existing Technologies

Currently, there are various technologies available to process such crop residues and generate value products from them. However, essentially, they all revolve around two main kinds of processes, either biochemical or thermal.

The biochemical process involves application of aerobic/anaerobic digestion for the production of biogas; or fermentation, which results in the generation of ethanol. Both these products could be subsequently treated chemically and through trans-esterification process, leading to production of biodiesel.

Alternatively, the thermochemical processes involve either the combustion, gasification or pyrolysis techniques, which produces heat, energy-rich gas and liquid fuels respectively. These products can be used as such, or could be further processed to generate high quality biofuels or chemicals.

The Need

The estimated organized energy breakup for India is 40 percent each for domestic and transport sectors and 20 percent for the industrial sectors. The current share of crude oil and gases is nearly 90 percent for the primary and transport sectors and the remaining 10 percent for the generation of industrial chemicals. The escalating prices of crude oil in the international market and the resulting concern over energy security, has lead developing nations to explore alternative and cheap sources of energy to meet the growing energy demand. One of the promising solution for agrarian economies is Biorefinery.

The Concept

Biorefinery is analogous to the traditional petroleum refineries employing fractional distillation process for obtaining different fractions or components from the same raw material, i.e. the crude oil. Biorefinery involve the integration of different biomass treatment and processing methods into one system, which results in the production of different components from the same biomass.  This makes the entire chain more viable economically and also reduces the waste generated.

Typical Model of a Biorefinery

The outcome ranges from high-volume, low-energy content liquid fuels, which could serve the transportation industry needs, to the low-volume but high-value chemicals, which could add to the feasibility of such a project. Steam and heat generated in the process could be utilized for meeting process heat requirements. By-products like chemicals, fertilizers, pharmaceuticals, polymers etc are also obtained which provide additional revenue streams.

Benefits

Biorefineries can help in utilizing the optimum energy potential of organic wastes and may also resolve the problems of waste management and GHGs emissions. Wastes can be converted, through appropriate enzymatic/chemical treatment, into either gaseous or liquid fuels. The pre-treatment processes involved in biorefining generate products like paper-pulp, HFCS, solvents, acetate, resins, laminates, adhesives, flavour chemicals, activated carbon, fuel enhancers, undigested sugars etc. which generally remain untapped in the traditional processes. The suitability of this process is further enhanced from the fact that it can utilize a variety of biomass resources, whether plant-derived or animal-derived.

Applicability

The concept of biorefinery is still in early stages at most places in the world. Problems like raw material availability, feasibility in product supply chain, scalability of the model are hampering its development at commercial-scales. The National Renewable Energy Laboratory (NREL) of USA is leading the front in biorefinery research with path-breaking discoveries and inventions. Although the technology is still in nascent stages, but it holds the key to the optimum utilization of wastes and natural resources that humans have always tried to achieve. The onus now lies on governments and corporate to incentivize or finance the research and development in this field.

SWM in India – Role of Policies and Planning

Out of all the measures that are necessary in addressing India’s impending waste management crisis, the most efficient will be changes at the national policy and planning level. It is well known among the small but growing waste management sector that urban India will hit rock bottom due to improper waste management.

Unfortunately, they think such a crisis is required to bring about policy changes, as they generally tend to happen only after the damage has been done. This attitude is unfortunate because it indicates a lack of or failed effort from the sector to change policy, and also the level of India’s planning and preparedness.

Important Statistics

An average of 32,000 people will be added to urban India every day, continuously, until 2021. This number is a warning, considering how India’s waste management infrastructure went berserk trying to deal with just 25,000 new urban Indians during the last decade. The scale of urbanization in India and around the world is unprecedented with planetary consequences to Earth’s limited material and energy resources, and its natural balance.

Rate of increase in access to sanitation infrastructure generally lags behind the rate of urbanization by 33% around the world; however, the lack of planning and impromptu piecemeal responses to waste management issues observed in India might indicate a much wider gap. This means urban Indians will have to wait longer than an average urban citizen of our world for access to proper waste management infrastructure.

The clear trend in the outbreak of epidemic and public protests around India is that they are happening in the biggest cities in their respective regions. Kolkata, Bengaluru, Thiruvananthapuram, and Srinagar are capitals of their respective states, and Coimbatore is the second largest city in Tamil Nadu. However, long term national level plans to improve waste management in India do not exist and guidance offered to urban local bodies is meager.

Apart from the Jawaharlal Nehru National Urban Renewal Mission (JnNURM), there has been no national level effort required to address the problem. Even though JnNURM was phenomenal in stimulating the industry and local governments, it was not enough to address the scale and extent of the problem. This is because of JnNURM is not a long term financing program, sorts of which are required to tackle issues like solid waste management.

Role of Municipal Corporations

In the short term, municipal corporations have their hands tied and will not be able to deliver solutions immediately. They face the task of realizing waste management facilities inside or near cities while none of their citizens want them near their residences. Officials of Hyderabad’s municipal corporation have been conducting interviews with locals for about eight years now for a new landfill site, to no avail.

In spite of the mounting pressure, most corporations will not be able to close the dumpsites that they are currently using. This might not be the good news for which local residents could be waiting, but, it is important that bureaucrats, municipal officials and politicians be clear about it. Residents near Vellalore dump protested and blocked roads leading to the site because Coimbatore municipal officials repeatedly failed to fulfill their promises after every landfill fire incident.

Due to lack of existing alternatives, other than diverting waste fractionally by increasing informal recycling sector’s role, closing existing landfills would mean finding new sites. Finding new landfills in and around cities is nearly impossible because of the track record of dumpsite operations and maintenance in India and the Not in My Backyard (NIMBY) phenomenon.

However, the corporations can and should take measures to reduce landfill fires and open burning, and control pollution due to leachate and odor and vector nuisance. This will provide much needed relief to adjacent communities and give the corporations time to plan better. While navigating through an issue as sensitive this, it is of the utmost importance that they work closely with the community by increasing clarity and transparency.

Municipal officials at the meeting repeatedly stressed the issue of scarcity of land for waste disposal, which led to overflowing dumpsites and waste treatment facilities receiving more waste than what they were designed for. Most municipal officials are of the sense that a magic solution is right around the corner which will turn all of their city’s waste into fuel oil or gas, or into recycled products.

While such conversion is technologically possible with infinite energy and financial sources, that is not the reality. Despite their inability to properly manage wastes, the majority of municipal officials consider waste as “wealth” when approached by private partners. Therefore, a significant portion of officials expect royalty from private investments without sharing business risk.

Good News on the Horizon

While the situation across India is grim and official action has to be demanded through courts or public protests, there are a handful of local governments which are planning ahead and leading the way. The steps taken to solve New Delhi’s waste management problem is laudable. If it was not for the kind of leadership and determination showcased in Delhi, India would not have had its only operating WTE plant. This plant was built in 2011, at a time when the need for waste-to-energy plants was being felt all over India. 1300 tons of Delhi’s waste goes into this facility every day to generate electricity. The successful operation of this facility reinvigorated dormant projects across the nation.

After living with heaps of garbage for months, Thiruvananthapuram Municipal Corporation started penalizing institutions which dump their waste openly. It has also increased the subsidy on the cost of small scale biogas units to 75% and aerobic composting units to 90% to encourage decentralized waste management. The corporation is optimistic with the increase in number of applications for the subsidy from 10 in an entire year to 18 in just a few months after the announcement.

In Bengaluru, improper waste management led to the change of the city’s municipal commissioner. The new commissioner was handed over the job to particularly improve waste management in the city. As a response to the dengue outbreak in Kolkata, the state’s Chief Minister went door to door to create awareness about waste management, and also included the topic in her public speeches. For good or bad, many cities in India have started or initiated steps for banning plastics without performing life cycle analyses.

Note: Acknowledgements will be published in the full report “Observations from India’s Crisis” on wtert.org and blog.wtert.org

Cogeneration of Bagasse

Cogeneration of bagasse is one of the most attractive and successful energy projects that have already been demonstrated in many sugarcane producing countries such as Mauritius, Reunion Island, India and Brazil. Combined heat and power from sugarcane in the form of power generation offers renewable energy options that promote sustainable development, take advantage of domestic resources, increase profitability and competitiveness in the industry, and cost-effectively address climate mitigation and other environmental goals.

According to World Alliance for Decentralized Energy (WADE) report on Bagasse Cogeneration, bagasse-based cogeneration could deliver up to 25% of current power demand requirements in the world’s main cane producing countries. The overall potential share in the world’s major developing country producers exceeds 7%. There is abundant opportunity for the wider use of bagasse-based cogeneration in sugarcane-producing countries. It is especially great in the world’s main cane producing countries like Brazil, India, Thailand, Pakistan, Mexico, Cuba, Colombia, Philippines and Vietnam. Yet this potential remains by and large unexploited.

Using bagasse to generate power represents an opportunity to generate significant revenue through the sale of electricity and carbon credits. Additionally, cogeneration of heat and power allows sugar producers to meet their internal energy requirements and drastically reduce their operational costs, in many cases by as much as 25%. Burning bagasse also removes a waste product through its use as a feedstock for the electrical generators and steam turbines.

Most sugarcane mills around the globe have achieved energy self-sufficiency for the manufacture of raw sugar and can also generate a small amount of exportable electricity. However, using traditional equipment such as low-pressure boilers and counter-pressure turbo alternators, the level and reliability of electricity production is not sufficient to change the energy balance and attract interest for export to the electric power grid.

On the other hand, revamping the boiler house of sugar mills with high pressure boilers and condensing extraction steam turbine can substantially increase the level of exportable electricity. This experience has been witnessed in Mauritius, where, following major changes in the processing configurations, the exportable electricity from its sugar factory increased from around 30-40 kWh to around 100–140 kWh per ton cane crushed. In Brazil, the world’s largest cane producer, most of the sugar mills are upgrading their boiler configurations to 42 bars or even higher pressure of up to 67 bars.

Technology Options

The prime technology for sugar mill cogeneration is the conventional steam-Rankine cycle design for conversion of fuel into electricity. A combination of stored and fresh bagasse is usually fed to a specially designed furnace to generate steam in a boiler at typical pressures and temperatures of usually more than 40 bars and 440°C respectively. The high pressure steam is then expanded either in a back pressure or single extraction back pressure or single extraction condensing or double extraction cum condensing type turbo generator operating at similar inlet steam conditions.

Due to high pressure and temperature, as well as extraction and condensing modes of the turbine, higher quantum of power gets generated in the turbine–generator set, over and above the power required for sugar process, other by-products, and cogeneration plant auxiliaries. The excess power generated in the turbine generator set is then stepped up to extra high voltage of 66/110/220 kV, depending on the nearby substation configuration and fed into the nearby utility grid. As the sugar industry operates seasonally, the boilers are normally designed for multi-fuel operations, so as to utilize mill bagasse, procured Bagasse/biomass, coal and fossil fuel, so as to ensure year round operation of the power plant for export to the grid.

Latest Trends

Modern power plants use higher pressures, up to 87 bars or more. The higher pressure normally generates more power with the same quantity of Bagasse or biomass fuel. Thus, a higher pressure and temperature configuration is a key in increasing exportable surplus electricity.

In general, 67 bars pressure and 495°C temperature configurations for sugar mill cogeneration plants are well-established in many sugar mills in India. Extra high pressure at 87 bars and 510°C, configuration comparable to those in Mauritius, is the current trend and there are about several projects commissioned and operating in India and Brazil. The average increase of power export from 40 bars to 60 bars to 80 bars stages is usually in the range of 7-10%.

A promising alternative to steam turbines are gas turbines fuelled by gas produced by thermochemical conversion of biomass. The exhaust is used to raise steam in heat recovery systems used in any of the following ways: heating process needs in a cogeneration system, for injecting back into gas turbine to raise power output and efficiency in a steam-injected gas turbine cycle (STIG) or expanding through a steam turbine to boost power output and efficiency in a gas turbine/steam turbine combined cycle (GTCC). Gas turbines, unlike steam turbines, are characterized by lower unit capital costs at modest scale, and the most efficient cycles are considerably more efficient than comparably sized steam turbines.

Biomass Sector in India – Problems and Challenges

Biomass power plants in India are based mostly on agricultural wastes. Gasifier-based power plants are providing a great solution for off-grid decentralized power and are lighting homes in several Indian states. While for providing grid-based power 8-15 MW thermal biomass power plants are suitable for Indian conditions, they stand nowhere when compared to power plants being set up in Europe which are at least 20 times larger.

Energy from biomass is reliable as it is free of fluctuation unlike wind power and does not need storage to be used in times of non-availability as is the case with solar. Still it is not the preferred renewable energy source till now, the primary reason that may be cited is the biomass supply chain. Biomass availability is not certain for whole year. Biomass from agriculture is available only after harvesting period which can stretch only for 2-3 months in a year. So there is a need to procure and then store required quantity of biomass within this stipulated time.

Some of the Indian states leading the pack in establishing biomass-based power supply are Karnataka, Andhra Pradesh, and Maharashtra. Ironically, states having agricultural-based economy have not properly been able to utilize the opportunity and figure low on biomass energy utilization. Only Uttar Pradesh has utilized large part of the biomass potential in north Indian States and that is mainly due to the sugarcane industry and the co-generation power plants. Interestingly Punjab and Haryana don’t have much installed capacity in comparison to potential even though tariff rates are more than Rs. 5 per unit, which are better than most of the states. This can be attributed to the fact that these tariffs were implemented very recently and it will take time to reflect the capacity utilization.

Table: Biomass Potential and Installed Capacity in Key Indian States

State

Power Potential (MWe) Installed Capacity (by 2011)

Tariff

Punjab 2413.2 74.5

@ Rs 5.25 per unit, (2010-11)

Uttar Pradesh 1594.3 592.5 @ Rs 4.70
Haryana 1120.8 35.8 @Rs 5.24 per unit
Rajasthan 1093.5 73.3

@ Rs 4.72/unit water cooled (2010-11)

Maharashtra 1014.2 403 @ Rs 4.98 (2010-11)
Madhya Pradesh 841.7 1.0

@ Rs 3.33 to 5.14/unit paise for 20 years with escalation of 3-8 paise

Karnataka 631.9 365.18

@ Rs 3.66 per unit (PPA signing date)

Rs 4.13 (10th year)

Andhra Pradesh 625 363.25 @ Rs 4.28 per unit  (2010-11)
Gujarat 457.7 0.5

@ Rs 4.40 per unit (with accelerated depreciation)

Chhattisgarh 248.5 231.9 @Rs 3.93 per unit (2010-11)
Kerala 195.9 @ Rs 2.80 per unit escalated at 5% for
five years (2000-01
Source: Biomass Atlas by IISc, Bangalore and MNRE website

The electricity generation could be cheaper than coal if biomass could be sourced economically but ssome established biomass power plants tend to misuse the limit of coal use provided to them (generally 10-15% of biomass use) to keep it operational in lean period of biomass supply. They are not able to run power plants solely on biomass economically which can be attributed to :

  • Biomass price increases very fast after commissioning of power project and therefore government tariff policy needs an annual revision
  • Lack of mechanization in Indian Agriculture Sector
  • Defragmented land holdings
  • Most of the farmers are small or marginal

Government policy is the biggest factor behind lack of investment in biopower sector in states with high biomass potential. Defragmented nature of agricultural lands do not allow high mechanization which results in reduction of efficiency and increase in procurement cost.

Transportation cost constitutes a significant portion of  the costs associated with the establishment and running of biomass power plants. There is need of processing in form of shredding the biomass onsite before transportation to increase its density when procurement is done from more than a particular distance. While transportation in any kind or form from more than 50 Km becomes unviable for a power plant of size 10-15MW. European power plants are importing their biomass in form of pellets from other countries to meet the requirement of the huge biopower plants.

Not all the biomass which is regarded as agri-waste is usually a waste; part of it is used as fuel for cooking while some part is necessary to go back to soil to retain the soil nutrients. According to conservative estimates, only two-third of agricultural residues could be procured for power production.

And as human mentality goes waste is nothing but a heap of ash for the farmer till someone finds a way to make profit out of it, and from there on the demand of waste increases and so its price. Though there is nothing wrong in transferring benefits to the farmers and providing them a competitive cost of the agri-waste but operations becomes increasingly unviable with time. A robust business model is necessary to motivate local entrepreneurs to take up the responsibility of supplying biomass to processing facilities. Collection centres covering 2-3 villages can be set up to facilitate decentralization of biomass supply mechanism. Biomass power plant operators may explore the possibility of using energy crops as a substitute for crop wastes, in case of crop failure. Bamboo and napier grass can be grown on marginal and degraded lands.