5 Actionable Tips to Use More Renewable Energy

The world doesn’t seem to stop when it comes to consuming energy. As each country experience growth and development as a society, their needs for power increases to keep up with the pace of their expansion. The process is a natural one.  It’s even socially encouraged, but that doesn’t change the fact that it takes a toll on our planet. More of the world resources are exploited and processed to become fuel.

While denied by many of these industries for a long time, the ugly side of energy consumption has been exposed for the whole world to see. It has increased the awareness about the need to embrace alternative energy and waste solutions that are renewable and cleaner to avoid contamination and slow down the degradation of our many natural ecosystems.

Many of the initiatives to use clean energies are embraced in multiple countries. Some of them are backed by governments and private industries looking to preserve our planet and fix some of the damage caused by our constant demands of resources. Many people believe that individual efforts don’t count. The fact is that every single bit of help they can get adds up a lot. Here are 5 actionable tips you can follow to make proper use of renewable energy on your premises:

1. Embrace Solar-Powered Technologies

If you haven’t realized it yet the sun is one of the most powerful energy sources in the world and no one can charge to use it. This is why many developers focused on creating technology that makes the best use of the power delivered by the light and radiation offered by the main star in our solar system.

Nowadays, you can get solar-powered vehicles, and solar panels to distribute energy at your home. Such technologies can be a bit expensive but is durable as nothing else in the market, plus it is a one-time investment at best!

2. Crowdfund Clean Energy Projects

Many communities are willing to go green and use clean energy sources when they are presented the right project. Most of the times the neighbors’ just need to see a well-laid plan explaining why using renewable energy sources will be more affordable for them in the long run.

A solar-powered community project in Laos

The environmental angle can also be helpful, especially for those homeowners that live close to natural reservoirs and wish to keep the value of their properties by safekeeping the environment.

3. Support the Society of Concerned Scientist

This is an amazing initiative to get businesses and the world to become more educated and use more renewable energy.  I am not affiliated with the society at all, but it may be one of the most actionable ways to help the environment because they have built up a lot of support and assets.

Check out what they are doing here.

4. Use Water-processing Technology

Many households and modern housing projects can make use of this technology to recycle the water sources they use and avoid the unnecessary waste of such vital liquid.

The basic principles of this initiative require investment in processing plants and large tanks that can either be installed on the foundations of your home or at the side of it. Your house will always have clean running water, and you won’t take much from the natural sources near your place.

5. Wind Power for Home or Business

Many locations around the world are using wind-powered turbines to generate electricity, and it has become a business opportunity for many entrepreneurs around the world. The plants are easy to install, and the energy is very cheap to produce.

Wind-powered energy has generated an excess of power in certain locations such as China, Germany, Australia and some regions on the USA with these plants selling they’re overproduced to regular energy plants. The power provided by these alternatives is cleaner than most and very easy on a family budget.

The Global Green Economy Index 2016 – Key Findings

green-economyThe 5th edition of the Global Green Economy Index (GGEI) is a data-driven analysis of how 80 countries perform in the global green economy, as well as how expert practitioners rank this performance. Since its launch in 2010, the GGEI has signaled which countries are making progress towards greener economies, and which ones are not. The comparison of national green performance and perceptions of it revealed through the GGEI framework is more important than ever today.

Top Performers

Sweden is again the top performing country in the 2016 GGEI, followed by the other “Nordics” and Switzerland, Germany, and Austria. Amidst these strong results, the GGEI identified areas where these countries can improve their green performance further. These opportunities – focused around innovation, green branding and carbon efficiency – could propel their national green performance forward even more in the future.

Developing countries in Africa and Latin America–including Ethiopia, Zambia, Brazil, and Costa Rica– also perform well in this new GGEI edition, ranking in the top fifteen for performance. While Brazil and Costa Rica receive similarly strong results on our perception survey, Ethiopia and Zambia do not, suggesting a need for better green branding and communications in these two African countries.

Like in 2014, Copenhagen is the top green city, followed by Stockholm, Vancouver, Oslo and Singapore. This new GGEI only collected perception values for green cities as lack of data availability continues to impede our efforts to develop a comprehensive green city performance index. Given the significant role of cities in the global green economy, city-level data development is an urgent priority.

Laggards

No country in Asia ranks well for performance on this new GGEI, with the exception of Cambodia, which was the most improved country as compared to the last edition, rising 22 spots to 20th overall. China, India, Indonesia, Japan and South Korea do better on the perception side of the GGEI, but continue to register concerning performance results.

While many European Union (EU) members perform near the top of this GGEI edition, others including the Czech Republic, Estonia, Poland, Romania and Slovakia rank near the bottom. These results are worrisome and suggest uneven national green performance across the EU.

Many of the countries with high annual GDP growth today rank poorly on the GGEI, further highlighting the limits to GDP as a growth indicator. These countries are mostly in Asia (Malaysia, Thailand, Philippines) and Africa (Nigeria, Tanzania).

The top green economy performers worldwide

The top green economy performers worldwide

Countries with a high reliance on fossil fuel extraction and export generally perform poorly on the GGEI, with a few exceptions. Kuwait, Qatar, Saudi Arabia and Russia all perform poorly while Norway and Canada do much better.

Continuing Trends

Rapidly growing economies, China and India continue to show performance weakness on the GGEI Markets & Investment dimension. Given the large investment required to achieve their climate targets, green investment promotion, cleantech innovation, and corporate sustainability should be developed further.

The United States ranks near the top of the GGEI perception survey and it is widely viewed as a vital market for green investment and innovation, yet overall the U.S. continues to have mediocre performance results, ranking 30th of the 80 countries covered. However, the GGEI found that U.S. company-level initiatives to green supply chains and reduce carbon footprints are accelerating.

Despite having a new prime minister, Australia continues to register a poor result on this new GGEI, ranking 55th of the 80 countries covered for performance. While green markets there are showing some strength, the overall carbon intensity of the Australian economy remains extremely high.

Hosting the annual Conference of Parties (COP) can positively impact the host country’s green brand. Yet this short-term image boost does not always translate to improved green performance in the longer-term, as demonstrated by the low GGEI performance results for Poland (COP19), Qatar (COP18) and South Africa (COP17).

The United Kingdom’s GGEI performance continues to lag behind its EU peers, ranking 25th of the 80 countries covered. While the UK does very well on both the perception and performance side of the Markets & Investment dimension, inconsistent policies supporting renewable energy and green growth continue to hurt the UK on other parts of the GGEI.

Note: The full report can be accessed here

Biomethane Industry in Europe

Biomethane is a well-known and well-proven source of clean energy, and is witnessing increasing demand worldwide, especially in European countries. Between 2012 and 2016, more than 500 biomethane production plants were built across Europe which indicates a steep rise of 165 percent. The main reasons behind the growth of biomethane industry in Europe is increasing interest in industrial waste-derived biogas sector and public interest in biogas.  Another important reason has been the guaranteed access to gas grid for all biomethane suppliers.

Biomethane production in Europe has swiftly increased from 752 GWh in 2011 to 17,264 GWh in 2016 with Germany being the market leader with 195 biomethane production plants, followed by United Kingdom with 92 facilities. Biogas generation across Europe also witnessed a rapid growth of 59% during the year 2011 and 2016. In terms of plant capacities, the regional trend is to establish large-scale biomethane plants.

Sources of Biomethane in Europe

Landfill gas and AD plants (based on energy crops, agricultural residues, food waste, industrial waste and sewage sludge) are the major resources for biomethane production in Europe, with the predominant source being agricultural crops (such as maize) and dedicated energy crops (like miscanthus). In countries, like Germany, Austria and Denmark, energy crops, agricultural by-products, sewage sludge and animal manure are the major feedstock for biomethane production. On the other hand, France, UK, Spain and Italy rely more on landfill gas to generate biomethane.

A large number of biogas plants in Europe are located in agricultural areas having abundant availability of organic wastes, such as grass silage and green waste, which are cheaper than crops. Maize is the most cost-effective raw material for biomethane production. In many parts of Europe, the practice of co-digestion is practised whereby energy crops are used in combination with animal manure as a substrate. After agricultural biogas plants, sewage sludge is one of the most popular substrates for biomethane production in Europe.

Biomethane Utilization Trends in Europe

Biomethane has a wide range of applications in the clean energy sector. In Europe, the main uses of biomethane include the following:

  1. Production of heat and/or steam
  2. Power generation and combined heat and power production(CHP)
  3. Replacement for natural gas (gas grid injection)
  4. Replacement for compressed natural gas & diesel – (bio-CNG for use as transport fuel)
  5. Replacement for liquid natural gas – (bio-LNG for use as transport fuel)

Prior to practically all utilization options, the biogas has to be dried (usually through application of a cooling/condensation step). Furthermore, elements such as hydrogen sulphide and other harmful trace elements must be removed (usually trough application of an activated carbon filter) to prevent adverse effects on downstream processing equipment (such as compressors, piping, boilers and CHP systems).

biomethane-transport

Biomethane is getting popularity as a clean vehicle fuel in Europe. For example, Germany has more than 900 CNG filling stations, with a fleet of around 100,000 gas-powered vehicles including cars, buses and trucks. Around 170 CNG filling stations in Germany sell a blend mixture of natural gas and biomethane while about 125 filling stations sell 100% biomethane from AD plants.

Barriers to Overcome

The fact that energy crops can put extra pressure on land availability for cultivation of food crops has led many European countries to initiate measures to reduce or restrict biogas production from energy crops. As far as waste-derived biomethane is concerned, most of the EU nations are phasing out landfill-based waste management systems which may lead to rapid decline in landfill gas production thus putting the onus of biomethane production largely on anaerobic digestion of food waste, sewage sludge, industrial waste and agricultural residues.

The high costs of biogas upgradation and natural gas grid connection is a major hurdle in the development of biomethane sector in Eastern European nations. The injection of biomethane is also limited by location of suitable biomethane production facilities, which should ideally be located close to the natural gas grid.  Several European nations have introduced industry standards for injecting biogas into the natural gas grid but these standards differ considerably with each other.

Another important issue is the insufficient number of biomethane filling stations and biomethane-powered vehicles in Europe. A large section of the population is still not aware about the benefits of biomethane as a vehicle fuel. Strong political backing and infrastructural support will provide greater thrust to biomethane industry in Europe.

Ultrasonic Pretreatment in Anaerobic Digestion of Sewage Sludge

Anaerobic digestion process comprises of four major steps – hydrolysis, acidogenesis, acetogenesis and methanogenesis. The biological hydrolysis is the rate limiting step and pretreatment of sludge by chemical, mechanical or thermal disintegration can improve the anaerobic digestion process. Ultrasonic disintegration is a method for breakup of microbial cells to extract intracellular material.

Ultrasound activated sludge disintegration could positively affect anaerobic digestion of sewage sludge. Due to sludge disintegration, organic compounds are transferred from the sludge solids into the aqueous phase resulting in an enhanced biodegradability. Therefore disintegration of sewage sludge is a promising method to enhance anaerobic digestion rates and lead to reduce the volume of sludge digesters.

The addition of disintegrated surplus activated sludge and/or foam to the process of sludge anaerobic digestion can lead to markedly better effects of sludge handling at wastewater treatment plants. In the case of disintegrated activated sludge and/or foam addition to the process of anaerobic digestion it is possible to achieve an even twice a higher production of biogas. Here are few examples:

STP Bad Bramstedt, Germany (4.49 MGD)

  • First fundamental study on pilot scale by Technical University of Hamburg-Harburg, 3 years, 1997 – 1999
  • reduction in digestion time from 20 to 4 days without losses in degradation efficiency
  • increase in biogas production by a factor of 4
  • reduction of digested sludge mass of 25%

STP Ahrensburg, Germany (2.64 MGD)

  • Preliminary test on pilot-scale by Technical University of Hamburg-Harburg, 6 months, 1999
  • increase in VS destruction of 20%
  • increase in biogas production of 20%

STP Bamberg, Germany (12.15 MGD)

  • Preliminary full-scale test, 4 months, 2002 2) Full-scale installation since June 2004
  • increase in VS destruction of 30%
  • increase in biogas production of 30%
  • avoided the construction of a new anaerobic digester

STP Freising, Germany (6.87 MGD)

  • Fundamental full-scale study by University of Armed Forces, Munich, 4 months, 2003
  • increase in biogas production of 15%
  • improved sludge dewatering of 10%

STP Meldorf, Germany (1.06 MGD)

  • Preliminary full-scale test, 3 months, 2004 2) Full-scale installation since December 2004
  • increase in VS destruction of 25%
  • increase in biogas production of 25%
  • no foam or filamentous organisms present in the anaerobic sludge digester

STP Ergolz 2, Switzerland (3.43 MGD)

  • Full-scale test, 3 months, 2004
  • increase in VS destruction of 15%
  • increase in biogas production of 25%

STP Beverungen, Germany (2.64 MGD)

  • Full-scale test, 3 months, 2004/2005
  • increase in VS destruction of 25%
  • increase in biogas production of 25%

To sum up, ultrasonication has a positive effect on sludge solubilisation, sludge volume, biogas production, flock size reduction and cells lyses. Ultrasonic pretreatment enhances the subsequent anaerobic digestion resulting in a better degradation of volatile solids and an increased production of biogas.

The use of low power ultrasound in bioreactors may present a significant improvement in cost reduction. Therefore, ultrasonic pretreatment enhances the subsequent anaerobic digestion resulting in a better sludge digestion and efficient recovery of valuables.

Global Trends in Solar Energy Sector

Many countries around the world have switched to solar power in order to supplement or provide an alternative source of energy that is cheaper, more reliable and efficient, and friendly to the environment. Generally speaking, to convert solar energy to electricity, there are two kinds of technologies used by the solar power plants – the PV (photovoltaic) systems which use solar panels to convert sunlight directly into electricity, and the CSP (Concentrated Solar Power) that indirectly uses the solar thermal energy to produce electricity.

renewables-investment-trends

The solar PV systems, which are either placed in ground-mounted solar farms or on rooftops are considered cheaper than CSP and constitutes the majority of solar installations, while CSP and large-scale PV accounts for the majority of the general solar electricity-generation-capacity, across the globe.

Global Trends in Solar Energy

In 2017, photovoltaic capacity increased by 95 GW, with a 34% growth year-on-year of new installations. Cumulative installed capacity exceeded 401 GW by the end of the year, sufficient to supply 2.1 percent of the world’s total electricity consumption. This growth was dramatic, and scientists viewed it as a crucial way to meet the world’s commitments to climate change.

“In most countries around the world there is still huge potential to dramatically increase the amount of energy we’re able to get from solar. The only way to achieve this is through a combination of both governance and individual responsibility.” Alastair Kay, Editor at Green Business Watch

Both CSP and PV systems are undergoing a considerable amount of growth and experts claim that by 2050, solar power will become the greatest source of electricity in the whole world. To achieve this goal, the capacity of PV systems should grow up to 4600 gigawatts, of which 50% or more would come from India or China. To date, the capacity of solar power is about 310 gigawatts, a drastic increase on the 50 gigawatts of power installed in 2010.

The United Kingdom, followed by Germany and France led Europe in the 2016 general statistics for solar power growth with new solar installations of 29%, 21%, and 8.3% respectively. In early 2016, the amount of power across Europe was near 100 gigawatts but now stands at 105 gigawatts. This growth is regarded as slow and experts in the solar industry are calling upon the European Union to give more targets concerning the renewable source of energy. It is said that setting a target that is not less than 35% will revive the solar business in Europe.

Across the United States in places, such as Phoenix and Los Angeles, which are located in a sunny region, a common PV system can generate an average of 7500 kWh – similar to the electrical power in use in a typical US home.

In Africa, many nations especially those around the deserts such as Sahara receive a great deal of sunlight every day, creating an opportunity for the development of solar technology across the region. Distribution of PV systems is almost uniform in Africa with the majority of countries receiving about 2000 kWh/m2 in every year. A certain study shows that generating solar power in a facility covering about 0.3% of the area consisting of North Africa could provide all the energy needed by the European-Union.

Asia alone contributed to 66.66% of the global amount of solar power installed in 2016, with about 50% coming from China.

With these reports, it is clear that the development of solar energy technology is growing in each and every continent with just a few countries with little or no apparent growth.

The growth of solar power technology across every continent in the world is very fast and steady and in the near future, almost every country will have a history to tell about the numerous benefits of going solar. The adoption of solar power will help improve the development of other sectors of the economy, such as the electronics industry, hence creating a lot of employment opportunities.

Renewable Energy Trends in Germany

Germany has been called “the world’s first major renewable energy economy” as the country is one of the world’s most prolific users of renewable energy for power, heating, and transport. Germany has rapidly expanded the use of clean energy which now contributes almost one-fourth to the national energy mix. Renewable energy contribute as much as one-fourth of the primary energy mix and the country has set a goal to producing 35 percent of electricity from renewable sources by 2020 and 100 percent by 2050.

renewable-energy-germany

Solar Energy

Germany is the world’s biggest solar market and largest PV installer with a solar PV capacity of more than 32.3 GW in December 2012. The German new solar PV installations increased by about 7.6 GW in 2012, with a record 1.3 million PV systems installed across the country. Germany has nearly as much installed solar power generation capacity as the rest of the world combined and gets about 5 percent of its overall annual electricity needs from solar power alone.

Wind Energy

Germany’s wind energy industry is one of the world’s largest, and it is at the forefront of technological development.  Over half of all wind turbines in Germany are owned by local residents, farmers and local authorities which have tremendously improved the acceptance of wind turbines among local communities as they directly profit.

Being Europe’s primary wind energy market, Germany represents around 30 percent of total installed capacity in Europe and 12 percent of global installed capacity. Total wind energy capacity in Germany was 31.32 GW at the end of year 2012. Currently Germany is ranked third worldwide in installed total wind capacity with its share of total domestic electricity production forecasted to reach 25 percent by 2025.

Biomass Energy

Biomass energy is making a significant contribution to renewable energy supply in Germany and accounts for about 5.5 percent of the total electricity production in the country. Germany is the market leader in biogas technology and is also Europe’s biggest biogas producer. Last year around 7,600 systems with a cumulative capacity of 3,200 MW generated 21.9 billion kWh in the country, thus consolidating Germany’s status as a pioneer in clean energy technologies.

Renewable Energy Investment

Germany’s plan to phase out all 17 of its nuclear power plants and shift to renewable energy by 2022 is the largest infrastructure investment program in Europe since World War II. The country’s transition from nuclear energy-based power network to renewable energy systems will require investments of much as $55 billion by 2030.

Germany is the world’s third largest market for renewable energy investment which totalled $31billion in 2011. Sixty-five percent of investment in Germany was directed toward solar, with 29 percent ($8.5 billion) directed to wind. In addition, 700 MW of biomass capacity was added in 2011

The country offers generous feed-in-tariffs for investors across all renewable energy segments which is attracting huge private capital in cleantech investments. In 2010, the majority ($29 billion) of cleantech investment came from corporate investors across all sectors of the economy, including farmers, energy utilities, and industrial and commercial enterprises.

In the first six months of 2012, the amount of electricity produced from renewable resource rose from 20% to 25%, bringing Germany closer to its targets of 35% by 2020 and 80% by 2050. According to figures released by the government agency Germany Trade and Invest, 38% of the electricity produced by renewable energy during that period was through wind power, and almost 16% from solar.