Renewable Energy Trends in Germany

Germany has been called “the world’s first major renewable energy economy” as the country is one of the world’s most prolific users of renewable energy for power, heating, and transport. Germany has rapidly expanded the use of clean energy which now contributes almost one-fourth to the national energy mix. Renewable energy contribute as much as one-fourth of the primary energy mix and the country has set a goal to producing 35 percent of electricity from renewable sources by 2020 and 100 percent by 2050.

renewable-energy-germany

Solar Energy

Germany is the world’s biggest solar market and largest PV installer with a solar PV capacity of more than 49.78 GW at the end of 2019. The German new solar PV installations increased by about 4 GW in 2019. Germany has nearly as much installed solar power generation capacity as the rest of the world combined and gets about 5 percent of its overall annual electricity needs from solar power alone.

In 2019, German photovoltaic (PV) plants fed about 46.5 TWh into the public electricity grid, an increase of 1.7 percent compared to 2018.

Wind Energy

Germany’s wind energy industry is one of the world’s largest, and it is at the forefront of technological development.  Over half of all wind turbines in Germany are owned by local residents, farmers and local authorities which have tremendously improved the acceptance of wind turbines among local communities as they directly profit.

Being Europe’s primary wind energy market, Germany represents around 30 percent of total installed capacity in Europe and 12 percent of global installed capacity. Total wind energy capacity in Germany was 59.3 GW at the end of year 2019. Currently Germany is ranked third worldwide in installed total wind capacity with its share of total domestic electricity production forecasted to reach 25 percent by 2025.

Wind became the main electricity source in Germany for the first time in 2019. In eight months of the year 2019, the electricity generation from wind surpassed brown coal and in twelve months nuclear. Together wind and solar power plants generated a total of ca. 173 TWh electricity in 2019.

Biomass Energy

Biomass energy is making a significant contribution to renewable energy supply in Germany and accounts for about 5.5 percent of the total electricity production in the country. Germany is the market leader in biogas technology and is also Europe’s biggest biogas producer. Last year around 7,600 systems with a cumulative capacity of 3,200 MW generated 21.9 billion kWh in the country, thus consolidating Germany’s status as a pioneer in clean energy technologies.

Biogas_Digester_Germany

Renewable Energy Investment

Germany’s plan to phase out all 17 of its nuclear power plants and shift to renewable energy by 2022 is the largest infrastructure investment program in Europe since World War II. The country’s transition from nuclear energy-based power network to renewable energy systems will require investments of much as $55 billion by 2030.

Germany is the world’s third largest market for renewable energy investment which and ranked 5th in the Bloomberg’s 2018 global renewable investment report with total investments of $10.5 billion in 2018. Sixty-five percent of investment in Germany was directed toward solar, with 29 percent directed to wind.

The country offers generous feed-in-tariffs for investors across all renewable energy segments which is attracting huge private capital in cleantech investments. In 2018, the majority of cleantech investment came from corporate investors across all sectors of the economy, including farmers, energy utilities, and industrial and commercial enterprises.

In 2019, the total electricity production in Germany from all renewable sources was about 237 TWh, an increase of 7 percent compared to 2018, and above fossil fuel carriers (207 TWh) for the first time.

Trends in Waste-to-Energy Industry

The increasing clamor for energy and satisfying it with a combination of conventional and renewable resources is a big challenge. Accompanying energy problems in almost all parts of the world, another problem that is assuming critical proportions is that of urban waste accumulation. The quantity of waste produced all over the world amounted to more than 12 billion tonnes in 2006, with estimates of up to 13 billion tonnes in 2011. The rapid increase in population coupled with changing lifestyle and consumption patterns is expected to result in an exponential increase in waste generation of up to 18 billion tonnes by year 2020. Ironically, most of the wastes are disposed of in open fields, along highways or burnt wantonly.

Waste-to-Energy-Industry

Size of the Industry

Around 130 million tonnes of municipal solid waste (MSW) are combusted annually in over 600 waste-to-energy (WTE) facilities globally that produce electricity and steam for district heating and recovered metals for recycling. The global market for biological and thermochemical waste-to-energy technologies is expected to grow to USD 29.2 billion by 2022. Incineration, with energy recovery, is the most common waste-to-energy method employed worldwide.

Since 1995, the global WTE industry increased by more than 16 million tonnes of MSW. Over the last five years, waste incineration in Europe has generated between an average of 4% to 8% of their countries’ electricity and between an average of 10% to 15% of the continent’s domestic heat.

Advanced thermal technologies, like gasification and pyrolysis, and anaerobic digestion systems are beginning to make deep inroads in the waste-to-energy sector and are expected to increase their respective market shares on account of global interest in integrated waste management framework in urban areas. Scarcity of waste disposal sites coupled with growing waste volumes and solid waste management challenges are generating high degree of interest in energy-from-waste systems among policy-makers, urban planners, entrepreneurs, utility companies etc.

Regional Trends

Currently, the European nations are recognized as global leaders of waste-to-energy movement. They are followed behind by the Asia Pacific region and North America respectively. In 2007 there are more than 600 WTE plants in 35 different countries, including large countries such as China and small ones such as Bermuda. Some of the newest plants are located in Asia. China is witnessing a surge in waste-to-energy installations and has plans to establish 125 new waste-to-energy plants during the twelfth five-year plan ending 2015.

Incineration is the most common waste-to-energy method used worldwide.

The United States processes 14 percent of its trash in WTE plants. Denmark, on the other hand, processes more than any other country – 54 percent of its waste materials. As at the end of 2008, Europe had more than 475 WTE plants across its regions – more than any other continent in the world – that processes an average of 59 million tonnes of waste per annum. In the same year, the European WTE industry as a whole had generated revenues of approximately US$4.5bn.

Legislative shifts by European governments have seen considerable progress made in the region’s WTE industry as well as in the implementation of advanced technology and innovative recycling solutions. The most important piece of WTE legislation pertaining to the region has been the European Union’s Landfill Directive, which was officially implemented in 2001 which has resulted in the planning and commissioning of an increasing number of WTE plants over the past five years.