Finding the Most Appropriate Renewable Energy

Energy is very important nowadays. Contemporary people can hardly imagine their existence without it. Humans always tried to produce cheaper and safer energy. Nature provides us with the energy we can renew daily. It provides people with the benefit which nobody can argue. It almost has no negative impact on the surrounding and is considered to be rather safe.

The cost of alternative energy systems has dropped sharply in recent years

When the scientists revealed that greenhouse gas effect led to the change of world’s climate they began to look for all possible ways to prevent the catastrophe. Fossil fuel does not give the chance to renew it after the use while sustainable energy can. In addition, fossil fuel is running out. That forces people to search some new ways to restore it. The depletion of sources motivated scientists to develop new methods of energy production.

A country or even some particular geographical area should select a suitable type of renewable energy source. It usually depends on sources the region possesses. For example, countries which are situated on the equator can benefit from solar energy while those regions which lack sunny weather should better provide themselves with hydro energy or biomass energy.

There are regions which experiment trying to find the most appropriate renewable energy type. For instance, Massachusetts varies the use of different renewable energy sources. The state government proves that their region is able to provide the citizens with more wind’s energy than with any other ecologically safe power supply. The use of wind energy is beneficial for the state not only because it is ecologically safe but also because it has an economic advantage. They produce both offshore and onshore winds’ energy.

Yearly industry report manifests that the first one is even cheaper and ranges up to sixteen cents one kilowatt per hour. Such energy is clean and beneficial. In 2009 the government of Massachusetts issued the project of developing offshore ocean energy for a number of its regions. This plan proves the indisputable convenience of wind power use for this concrete state of America.

Despite the fact that wind power is rather sustainable, the US industry report relies greatly on solar energy use. This conclusion is based on three main reasons. The first and most influential is the fact that not all American regions can provide wind energy because of geographical peculiarities. By the way, some scientists and consumers find it rather complicated due to huge transmission lines it requires. That is why solar energy is more effective.

All regions receive the sun energy almost equally and they can depend on it mostly. The next factor that influences the choice of solar energy is its permanency and regularity. Wind turbines are more inconstant than the solar ones. Solar panels are able to generate energy even if there is no sun. Clouds cannot stop the penetration of sun rays completely. Due to that, scientists in Massachusetts also found solar energy to be rather beneficial and constant. The last factor that contributes to the number of advantages of solar panels use is their productivity. They are capable to produce more energy than the turbines which are enabled by winds.

The experiment of solar and wind energy testing lasted during thirteen days in Massachusetts. It took place at the beginning of January. Solar panels managed to produce thirty-five kilowatt-hours of pure electricity. At the same time, the winds turbines had hardly provided the territory with fourteen kilowatt-hours of clean energy. The outcome of the experiment supported the idea of solar panels efficiency compared to the wind turbines productivity on Massachusetts territory.

The investigation reasoned the use of solar and winds’ energy. Even if some type of renewable energy is less effective still it provides humans with ecologically safe power. It is unsound to refuse at least from one of them. All renewable energy gives the chance to save the planet from ecological disaster and improve human lifestyle and health condition.

About the Author

Lauren Bradshaw started academic writing in 2003. Since then she tried her hand in SEO and website copywriting, writing for blogs, and working as a professional writer at CustomWritings professional essay writing service. Her major interests lie in content marketing, developing communication skills, and blogging. She’s also passionate about environment, philosophy, psychology, literature and painting.

How An Increase in Demand of Epoxy Resin Can Fuel the Need for Clean Energy

Epoxy resin is a kind of reactive prepolymer and polymer that contains epoxide groups. It is important to note that epoxy resin is different from other polyester resins in terms of curing. Unlike other resins, instead of using a catalyst as a curing agent, it is cured by an agent known as the hardener. It possesses many desirable properties such as high tensile strength, high adhesive strength, high corrosion resistance, and excellent moisture & chemical resistance. It is also resistant to fatigue, has a long shelf life, and has good electrical and insulating properties. The ability of epoxy resins to be used in various combinations and reinforcements makes it the foundation of a plethora of industries, including clean energy systems.

Applications of Epoxy Resins

Because of the versatile properties of epoxy resins, it is used widely in adhesives, potting, encapsulating electronics, and printed circuit boards. It is also used in the form of matrices for composites in the aerospace industries. Epoxy composite laminates are commonly used for repairing both composite as well as steel structures in marine applications.

Due to its high reactivity, epoxy resin is preferred in repairing boats that have been damaged by impact. Its low shrinking properties and ease of fabrication make it well suited for many tooling applications such as metal-shaping molds, vacuum-forming molds, jigs, patterns etc.

Use of Epoxy Resins in Clean Energy

A variety of industries have been actively trying to find a path that’s moving towards a society that puts less load on the the environment and also contributes towards reducing the carbon footprint. The accelerated use of epoxy resins in generating renewable energy has lead to a rise in its production demand. This is why the epoxy resin market is projected to witness a high demand and growth rate by 2022. Here are some of the sectors contributing to the production of clean energy and how they utilize epoxy resin for their functioning:

  • Solar Energy

The harnessing of solar energy dates back to 700 B.C, when people used a magnifying glass to focus the sun’s rays to produce fire. Today solar power is a vigorously developing energy source around the globe. It not only caters to the rising energy requirements but also the need to protect the environment from the exploitation of exhaustible energy resources.

A piece of average solar equipment endures intense environmental conditions such as scorching heat, UV radiations, bitter cold,  pouring rain, hail, storms, and turbulent winds. To withstand such conditions, the sealing and mounting application of epoxy resins increase the environmental tolerance of the solar equipment.

With their high mechanical strength, impressive dimensional stability and excellent adhesion properties, they are used to protect the solar panels from a wide range of temperatures. Epoxies are cheap, less labor-intensive and easy to apply.

  • Wind Energy

The global wind industry has quickly emerged as one of the largest sources of renewable energy around the world. The wind energy in the U.S. alone grew by 9% in 2017 and today is the largest source for generating clean energy in the country. With such a tremendous demand for wind power, the need for fabricating bigger and better wind turbine blades is also rising. The industry is in a dearth of long-lasting blades, that endure the harsh climatic conditions and wear tear and are able to collect more wind energy at a time.

Sealing and mounting application of epoxy resins increase the environmental tolerance of the solar equipment

Epoxy thermosets are used for making the blades more durable because of their high tensile strength and high creep resistance. Mixing of epoxy resins with various toughening agents and using them on the blades have shown positive results towards making the blades corrosion resistant and fatigue-proof.

  • Hydropower

Hydropower is an essential source of renewable and clean energy. As the hydropower industry is developing rapidly, the solution for protecting the hydropower concrete surfaces against low temperatures and lashing water flow has also been looked into.

As a solution to this issue, epoxy mortar, a mixture of epoxy resins, binder, solvent, mineral fillers, and some additives has proven to be the most effective material used for surface protection. Owing to the properties like non-permeability, adhesive strength, anti-erosive nature, and non-abrasiveness, epoxy mortar paste has been used as a repairing paste in the hydropower industry.

Over the last few decades, epoxy resins have contributed immensely in the maintenance and protection of clean energy sources, helping them to become more efficient and productive.

Final Thoughts

While many argue that factors like a relatively high cost when compared to petroleum-based resins and conventional cement-mortar alternatives has affected the epoxy resin market growth, the fact remains that epoxy resin never fails to deliver top-notch and unmatchable results in the areas of application.

Renewable Energy Trends in Germany

Germany has been called “the world’s first major renewable energy economy” as the country is one of the world’s most prolific users of renewable energy for power, heating, and transport. Germany has rapidly expanded the use of clean energy which now contributes almost one-fourth to the national energy mix. Renewable energy contribute as much as one-fourth of the primary energy mix and the country has set a goal to producing 35 percent of electricity from renewable sources by 2020 and 100 percent by 2050.

Solar Energy

Germany is the world’s biggest solar market and largest PV installer with a solar PV capacity of more than 32.3 GW in December 2012. The German new solar PV installations increased by about 7.6 GW in 2012, with a record 1.3 million PV systems installed across the country. Germany has nearly as much installed solar power generation capacity as the rest of the world combined and gets about 5 percent of its overall annual electricity needs from solar power alone.

Wind Energy

Germany’s wind energy industry is one of the world’s largest, and it is at the forefront of technological development.  Over half of all wind turbines in Germany are owned by local residents, farmers and local authorities which have tremendously improved the acceptance of wind turbines among local communities as they directly profit.

Being Europe’s primary wind energy market, Germany represents around 30 percent of total installed capacity in Europe and 12 percent of global installed capacity. Total wind energy capacity in Germany was 31.32 GW at the end of year 2012. Currently Germany is ranked third worldwide in installed total wind capacity with its share of total domestic electricity production forecasted to reach 25 percent by 2025.

Biomass Energy

Biomass energy is making a significant contribution to renewable energy supply in Germany and accounts for about 5.5 percent of the total electricity production in the country. Germany is the market leader in biogas technology and is also Europe’s biggest biogas producer. Last year around 7,600 systems with a cumulative capacity of 3,200 MW generated 21.9 billion kWh in the country, thus consolidating Germany’s status as a pioneer in clean energy technologies.

Renewable Energy Investment

Germany’s plan to phase out all 17 of its nuclear power plants and shift to renewable energy by 2022 is the largest infrastructure investment program in Europe since World War II. The country’s transition from nuclear energy-based power network to renewable energy systems will require investments of much as $55 billion by 2030.

Germany is the world’s third largest market for renewable energy investment which totalled $31billion in 2011. Sixty-five percent of investment in Germany was directed toward solar, with 29 percent ($8.5 billion) directed to wind. In addition, 700 MW of biomass capacity was added in 2011

The country offers generous feed-in-tariffs for investors across all renewable energy segments which is attracting huge private capital in cleantech investments. In 2010, the majority ($29 billion) of cleantech investment came from corporate investors across all sectors of the economy, including farmers, energy utilities, and industrial and commercial enterprises.

In the first six months of 2012, the amount of electricity produced from renewable resource rose from 20% to 25%, bringing Germany closer to its targets of 35% by 2020 and 80% by 2050. According to figures released by the government agency Germany Trade and Invest, 38% of the electricity produced by renewable energy during that period was through wind power, and almost 16% from solar.

A Blackout, Big Oil, and Wind Energy

During the first quarter of 2017, workers installed a wind turbine somewhere in the US every 2.4 hours. Wind provided 5.6% of all the electricity produced in the US in 2016. That’s more than double the amount of wind power in 2010. The whole world is seeing similar growth.  The wind industry isn’t without controversy. Critics blame it for the scope of a blackout in Australia. On the other hand, international oil companies have begun to build off-shore wind farms.

Critics’ case against wind energy

According to its critics, wind power is unreliable. The wind doesn’t blow all the time. It doesn’t blow on any predictable pattern. Wind turbines require some minimum wind speed for them to work at all. And if the wind is too strong, they can’t operate safely and must shut down.

Wind can cross one or the other of these thresholds multiple times a day. They operate at full capacity for only a few hours a year. So the theoretical capacity of a wind farm greatly exceeds its actual output.

The times turbines can generate electricity do not coincide with rising and falling demand for electricity. This variability creates problems for stabilizing the grid. Critics further claim that the wind industry can’t operate without massive government subsidies.

Wind power and South Australia blackout of 2016?

South Australia depends on wind energy for about 40% of its electricity. It suffered seven tornados on September 28, 2016. Two of them, with winds almost as fast as Hurricane Katrina, destroyed twenty towers that held three different transmission lines. Nine wind farms shut down.  Within minutes, the entire state suffered a massive blackout.

What contributed the most to the blackout? South Australia’s high dependence on wind power? The weather? Or something else?

Renewable energy skeptics quickly claimed the blackout justified their position. The wind farms simply failed to provide enough electricity in the emergency. Wind and solar energy, they say, are inherently unreliable. South Australia’s heavy reliance demonstrates an irresponsible policy based on ideology more than technological reality.

Certainly, the weather would have caused a disturbance in electrical service no matter what source of electricity. People near the downed transmission lines could not have avoided loss of power. But prompt action by grid operators makes it possible to bypass problem areas and limit the extent of the outage.

On closer examination, however, the correct answer to the multiple-choice question above is C: something else.

Wind turbines have “low voltage ride through” settings to keep operating for brief periods when voltage dips below the threshold at which they can operate correctly. If low-voltage conditions occur too frequently, the turbines have a protection mechanism that turns them off.

  • Ten wind farms experienced between three and six low-voltage events within two minutes. But the turbines were operating on factory settings. No one performed any testing to determine good settings under local conditions.
  • The agency that regulates the Australian electricity market knew nothing about the protection feature. It blamed the wind farms, but surely someone on staff should have been familiar with the default operation of the turbines. After all, the agency approved purchase and installation of the turbines. It had all the documentation.
  • Two gas generating plants that should have supplied backup power failed to come online.

The weather caused a problem that became a crisis not because of technical limitations of renewable energy, but because of too many different organizations’ incompetence.

If the wind is too strong, wind turbines can’t operate safely and must shut down.

One homeowner in South Australia didn’t suffer from the outage. He didn’t even know about the blackout till he saw it on the news. He had to test the accuracy of the news reports by opening his oven and noting that the light didn’t come on.

It turns out he had installed solar panels just a few weeks earlier. And since power outages in his part of South Australia occur almost every month, he decided to install a Tesla Powerwall as well.

He can’t use it to power his entire house, but it takes care of the lights and the television. It stores enough electricity for 10 hours of off-grid power.

Big oil and wind power

International oil companies have not joined the chorus of wind-industry skeptics. Several of them, including Royal Dutch Shell, have begun to invest heavily in off-shore wind farms. Especially in the North Sea. Oil production there has steadily declined for about 15 years.

Exploring for new oil fields has become too risky and expensive. These oil companies have decided that investing in wind energy helps their cash flow and makes it more predictable.

Oil companies have more expertise in working on offshore platforms than do companies that specialize in wind energy. Instead of building a foundation for turbines on the ocean floor, at least one oil company has begun to explore how to mount them on floating platforms.

Traditional wind energy firms have been operating turbines in the North Sea for years, but the oil companies have begun to outbid them. Their off-shore expertise has helped them drive down their costs.

So far, American oil companies have shown less interest in wind farms. If they decide they’re in the oil business, they will eventually lose market share to renewable energy companies. If they decide they’re in the energy business, they’ll have to start investing in renewable energy. And if any decide to invest heavily in solar power besides or instead of wind, they will still be following the lead of Total, a French oil company.

For that matter, the coal business is dying. Perhaps some of them will have enough sense to invest in renewables to improve their cash flow.