Tips on Writing a Research Paper on Solar Energy

The share of energy received from the Sun is steadily increasing every year. Last year, the global solar market increased by 26%. According to forecasts, in 2018 for the first time, the mark of 100 gigawatts of new installed capacity per year will be passed all over the world. Writing a research paper on solar energy is not an easy assignment, as you will have to deal with lot’s of statistics, results of experiments, and, surprisingly, sociology — the usage of alternative sources of energy are strongly connected with the social issues and moods. In this article, you’ll receive some tips on how to write a stellar research paper on solar energy and impress your professor.

We are sure you know how to structure a research paper, and you won’t forget about an engaging thesis (problem) statement. Our tips will cover the latest trends you should mention and the discussions related to the usage of solar energy, pros, cons and exciting facts.

Pay Attention to the Latest Trends

EssayWritingService has identified several trends in the solar energy market in the near future. Read on to know more:

  • An increasing number of countries are developing solar energy projects at the national level. In 2016, there were 32 such countries, at the end of last year already 53. Tenders for the development of solar energy are planned in 23 countries.
  • In the United States in the next 4 years, the number of states installing more than 1 gigawatt will reach 18. They will account for 80% of all US photovoltaic plants.
  • Reducing the cost of solar energy can be achieved through the use of more powerful modules, which will reduce the proportion of equipment and maintenance costs.
  • The role of electronics operating at the level of a single photovoltaic panel will grow. Now micro-inventors and current converters for one module are not used very widely.
  • Prices for stationary solar systems in the world are falling, but in the USA they remain at the same level (the cost of watts of power for US home systems is the highest in the world). The price for a “sunny” watt from state to state can vary by 68 cents, and companies will have to look for ways to reduce production costs.

Talk about the Future

Naturally, interest in renewable energy sources will continue to grow. The year 2050 will be the point of no return – it is by this time that most countries will completely switch to clean energy. And in 2018 serious steps will be made in this direction.

The first to be hit will be coal power plants in Europe. To date, 54% of them are not profitable, and there are only for the sake of peak load. In 2018, Finland will ban the use of coal to generate electricity and increase the tax on carbon dioxide emissions. By 2030, the country plans to abandon this fuel completely.

The Indian coal mining company Coal India also plans to close 37 coal mines in March 2018 – their development has become uneconomical due to the growth of renewable energy. The company will save about $ 124 million on this, after which it will switch to solar power and install at least 1 GW of new solar capacity in India.

Don’t Focus Solely on Content

It is a no-brainer that the content of your research paper is the most essential part of your work. However, if you forget about formatting, citations, plagiarism, using valid academic sources, etc., your research paper can fail despite having an amazing thesis statement or the project idea. https://plagiarismdetector.net/ can help in detecting plagiarized content.

When you start doing research, note down every link you use or want to use, every quote you like, every piece of statistical information. At first, it seems very dull and unnecessary — you think you can find this information at any moment. However, days pass, and you fail to make proper references, which can be a reason of being accused of plagiarism. Proofread your research paper several times, use online sources to check grammar and spelling, don’t forget about plagiarism checkers to stay on the safe side.

If you find out that writing a proper research paper on solar energy is too complicated for you now, or you don’t have enough time energy to deal with it, it is a wise choice to get affordable research paper writing by experts who can help you immediately with your assignment. When writing a research paper on solar energy don’t forget to check on the latest numbers and analytical data worldwide. Good luck!

Why it is Important to Recycle Used Filters and Oil

Illegally or inappropriately disposed of used motor oil can have a grievous impact on the environment. Studies conducted indicate that a single gallon of used oil can pollute up to a million gallons of water. Used oil filters are made of steel which means they can be recycled. In some developed countries, they are the most recycled materials and dumping them in landfills is illegal in other countries, while some have stringent laws that define how they should be disposed of.

Regulatory organizations such as the environmental protection agency reiterate that used oil filters should only be recycled or disposed of once all the free flowing oil has been drained. Presently, oil filters manufactured in the United States are not subject to dangerous waste regulation provided the filter is:

  • Hot drained then crushed
  • Broken through the anti drain valve or the dome and hot drained
  • Hot drained then dismantled

Hot draining is the process of draining the oil filter near or at engine operating temperature above 60ºF. Basically, the filter is either crushed or punctured while still warm in order to clear any surplus oil. The environmental protection agency recommends hot draining for up to 12 hours.

While lubricating oil hardly wears out, it gets dirty. Foreign bodies such as chemicals, water, dirt or even metal scrapings can mix with it and lower its performance capability. Contaminated oil should be replaced either with re-refined or virgin oil in order to execute its job appropriately.

The contaminated oil can be taken through used oil recycling procedures with studies indicating that approximately 380 million gallons of contaminated oil are recycled annually. Recycled oil is often taken through immense re-refining to eliminate all the impurities in order to produce pure oil.

The end product referred to as re-refined oil should fit similar rigorous compounding, refining, and performance principles as pure motor oil. Re-refining is an environmentally and energy valuable method of managing used motor oil. Producing a gallon or re-refined base stock requires less energy that producing crude oil base stock.

Advantages of Recycling Used Filters and Oil

Oil re-refining helps reduce heavy metal emissions and greenhouse gases as opposed to combusting it as fuel. Re-refining is an ideal way of managing used motor oil, it is environmentally friendly, and converts used oil into a renewable resource. Re-refining used motor oil reduces a nation’s reliance on foreign crude oil.

Used motor oil filters contain oil at the time of disposal. Having the ideal recycling company recover them ensures that the oil is recovered and re-refined. This also helps safeguard landfill space.

Collection of Materials

The manufacturers of oil tanks and filters are responsible for the materials. Many times, they provide big containers for disposing of the used filters especially in large volume shops. Recycling companies however can provide bins or drums for used filters while the shops provide waste oil storage facilities.

While used oil tanks will not be replaced when service providers are changed, shop managers must analyze the state of their used oil storage facilities to rule out spillage or loss when oil is transferred to an oil truck.

If need be, many recycling companies can also provide storage facilities. Used oil filters do not necessarily have to be crushed or drained before being recycled provided they are kept in a bin or drum.

What Next?

Oil filters are broken down into small fragments while the metals are removed and sold as scrap. Eventually, they are used to manufacture various products such as manhole covers and rebar. The contaminated oil is sold recycling companies. A huge percentage of the used oil is refined, drained, and used as an energy alternative to natural gas while the remaining percent is processed into hydraulic oil.

Finally

Used oil can be detrimental to water bodies and the environment in general. Companies should incorporate stringent recycling strategies for both used oil and filters to protect the environment and conserve space in landfills.

Landfill Liners and Alternative Daily Cover

The old garbage dumps of days gone by are no more. Today’s waste disposal solutions are increasingly sophisticated. Environmental regulation, recycling, and the development of plastics – of all things – have contributed to far more tightly managed landfills, with goals inching towards zero waste.

Garbage dumps used to be large holes, usually on the edge of town, where garbage could be buried. While this was an improvement on how people have historically dealt with their trash – by throwing it out the window, into rivers and fields, or alongside the road – it was still a health hazard, an increasingly offensive thing as populations grew, and an environmental burden.

 

In the United States, the Resource Conservation and Recovery Act, passed by the US Congress in 1976, changed how garbage is processed, managed and stored. The garbage dumps of the past were simply places where garbage was buried. Today’s landfills are much more complexly engineered sites.

They are extensively planned locations that are constantly monitored. This move toward increasingly more environmentally sound methods has also increased the efficiency of these sites. Before selecting a site for a landfill, city planners must work with engineers to determine what the effects a landfill will have in the long term.

An additional safety measure came when the EPA examined using alternative materials for landfill “daily cover”. Landfills are required to be covered at the end of each working day, and the original method was to use a layer of soil. This was obviously wasteful of resources, and used up the landfill quickly.

Since the EPA report in 1993, landfills and state regulations have increasingly adopted alternative daily cover (ADC), typically turning to geosynthetic materials such as polyethylene and PVC, which work well both to contain and to filter, and can be manufactured in very large and custom-fitting sheets.

Geomembranes and geotextiles (the “geo” part simply means working with the land) had already been used as part of the liner underneath the landfill. It now became possible to use them as the top cover also.

Landfill Bottom Liners and Top Covers

One of the biggest issues surrounding landfills is their impact on the environment, particularly the potential of contaminants reaching the groundwater supply. To prevent this, a bottom liner is used. While it is well known that placing large qualities of garbage in one location can have long lasting consequence, scientists and engineers continue to work toward better solutions that are more environmentally friendly.

The EPA constantly works to regulate how landfills are designed and managed so that any new discoveries of more environmentally friendly methods can be incorporated quickly. Currently for landfill liners, it requires multiple layers of materials be used for landfills.

The underlying liner of new landfill sites will often consist of a soil or clay layer combined with a geotextile – a synthetic permeable membrane that screens solids out from the ever-present liquid descending from the trash, the “leachate”. This liquid is a severe pollutant and is contained and directed to a treatment process by yet another geosynthetic layer, this one impermeable. And underneath this layer will often be another impermeable layer of dense clay.

Landfill daily cover used to be almost as elaborate, taking 6 inches of soil or clay for each day’s landfill cap. With the continued improvement of geosynthetic materials, these over-engineered solutions can be replaced by a more plastic material. Landfill covers made of a synthetic reinforced polyethylene can create greater safety for the environment, combined with being easier to use, and less costly than other alternative daily covers. They can also be re-used.

Daily cover must contain gasses generated by the garbage, control odor and dust, minimize windblown litter, discourage birds, and prevent pests and the spread of disease. Geomembranes do all these things very well, as well as reducing fire risk, improving community tolerance of the landfill, and most importantly, shedding surface water efficiently – thus avoiding adding to the leachate.

The light yet tear-resistant qualities of geosynthetic materials make them easy for operators to install. To further reduce the risk of tears or holes, manufacturers can create the liner in very large or even one piece to fit the landfill size.

The benefit of using this type of cover is that it reusable. This saves cities a lot of money. Also, because operators don’t have to add additional materials to landfill, the lifespan of the site is extended. The combination of a good landfill liner and an alternative daily cover significantly decreases the long term impact the landfill has on the environment.

The federal government provides oversight of landfill operations to ensure that improvements are made Landfilthat make them more environmentally friendly. This involves tracking recycling and composting efforts. Both government and operators are also exploring ways of generating energy from waste processes.

The United States generates 262.4 metric tons of solid waste each year. That number has grown each year – but efforts in recycling and composting have caused it to plateau, and since 2005, the growth has been minimal.

Bottom Line

Landfills are becoming better about preserving the environment. Their efforts, coupled with increased recycling efforts, are improving how waste is managed in the United States. The development of synthetic materials for landfill liners and alternative daily cover has significantly advanced the design and management of landfills.

What Are the Risks of the Oil and Gas Industry?

While it’s currently necessary, there is a need to identify better alternative energy sources because of the risks of the oil and gas industry. There are risks to the environment and also to people, including workers in the industry.

The oil and gas industry is the largest source of emissions of greenhouse gases in the United States, despite being tightly regulated.

The following are things to know about the different type of human and environmental risks that come with the extraction and processing of oil.

Risks of the Oil and Gas Industry

Employee Dangers

Working in the oil industry tends to be very lucrative, and these jobs are hard to fill often. The pay is why people continue in the industry, despite the risk. Trends seem to show worsening fatality rates among workers in the industry, particularly in Texas. Texas is the largest oil-producing state in the country. There were more than 530 fatal occupational industries in Texas in 2017 related to this industry.

Since 2016, fatality rates have been increasing.

Oil production went up almost 25% in the U.S. between 2017 and 2018, which may play a role. There are more demanding deadlines for production and an increased quantity of work, which could mean more significant risks for workers.

Specific Worker Risks

There are many, but a few of the more common risks that workers in oil and gas face on the job every day include:

  • Vehicle collisions when workers and equipment are being transported to and from well sites which are often remotely located and require long-distance travel. Around 4 of every ten workers killed on the job in the industry die because of a highway vehicle accident.
  • Being stuck between moving vehicles, equipment, fall equipment and high-pressure lines leads to on-site injuries and deaths.
  • When someone works in the oil and gas industry, they are at risk of being exposed to explosions and fires because of the ignition of vapors and gases that are highly flammable. Gases and vapors, as well as hydrogen sulfide, are released from wells, equipment and trucks.
  • Another considerable risk for workers in this industry are falls because often, employees have to access equipment and platforms that are high above the ground.
  • High-pressure lines and equipment create hazards, including the potential for compressed gas exposure.

There are around 1.2 million oil and gas production facilities across the country, ranging from active wells to processing plants. More than 12 million people live within ½ mile of these locations, and below are some risks they might face.

Community Exposure

Fossil fuel pollution is sometimes called an invisible killer because it can contribute to heart and respiratory diseases over time, which are leading causes of death.

environmental risks of oil and gas industry

Fossil fuels also leak substances into the soil and drinking water sources that can be toxic, cause cancer, birth defects and contribute to liver damage.

Research shows the industry’s impact most heavily affects minority, low-income and rural communities because they are closest to these sites and may be most exposed to toxins.

There’s also a link between volatile organic compounds and the emission of nitrogen oxide that create smog. Smog is linked to a higher risk of asthma in the young and elderly, leading to missed school and workdays and increased hospitalizations.

Behind only coal-fired power plants, oil and gas production is one of the largest sources of greenhouse gases in the country.

Wildlife Disruption

The extraction of oil and gas disrupts natural balance and wildlife in addition to harming humans.

Vehicle traffic, noises and movement can impact how animals breed, nest and communicate. The habitats of many species can be broken up by the introduction of fences, roads and powerlines.

When there are oil spills, these often kill large numbers of animals and create long-lasting marine ecosystem damage. For example, the 2010 BP Deepwater Horizon oil spill in the Gulf of Mexico led to oil spreading for 68,000 square miles over the sea.

That incident alone killed around one million seabirds, 1,000 sea turtles, and 5,000 marine mammals.

Even though we don’t always hear about them, there are often more minor spills. For example, in 2020, there were nearly 2,180 spills in Colorado, New Mexico and Wyoming.

Finally, when the needed infrastructure for oil and gas extraction is developed, it significantly and negatively impacts wildlands. Wilderness is destroyed, and the damage can’t be reversed typically.

There are more than 12 million acres of public lands being used for the production of fossil fuels. To make this happen, vegetation has to be removed, and even when the sites are abandoned, it can take centuries for the land to recover.

Renewable Energy and its Applications

Renewable energy. Clean energy. Green energy. Sustainable energy. Alternative Energy. Renewal Energy. No matter what you call it, energy such as wind, solar, biomass and hydroelectric is having an impact on your life and could have an even bigger impact in the future. Renewable energy, in the most basic terms, is precisely what it sounds like. It’s power that comes from sources that regenerate, unlike fossil fuels, which only exist in a limited amount.

The cost of alternative energy systems has dropped sharply in recent years

From 2000 to 2016, the use of renewables in the United States more than doubled and is expected to continue to grow. In 2016, they made up about 10 percent of total energy consumption and 15 percent of electricity generation. During the last 5 years, green energy patents filing worldwide has increased by 50 percent. Consumption of renewable energy has grown worldwide due to government incentives and requirements for renewable energy and the desire to switch to cleaner fuel in order to protect the environment.

There are a number of different sources of renewable energy in use today. Here are some of the most common renewable energy resources and their applications:

Solar Energy

The U.S. solar industry has grown at an average annual rate of 68 percent over the last decade in the form of rooftop solar panels for individual buildings, solar farms built by utility companies and community solar projects, which produce solar for energy users in a certain area through a collection of solar panels.

In Australia the solar industry is also increasing with a record breaking 3.5 million panels installed last year. Queensland was the leader in solar panels that were installed.

Solar photovoltaic panels capture sunlight and convert it directly into electricity, which can power a small device such as a watch or sent into the grid to be distributed to a utility’s customers.

Wind Energy

People have been using windmills to utilize the wind’s energy for a long time, but today wind turbines are used to capture that energy and turn it into electricity. There are approximately 53,000 wind turbines operating in the United States today.

Wind turbines consist of a large tower, which is often around 100 feet tall, and several blades that use the power of the wind to spin. The blades are connected to a shaft that spins a generator in order to create electricity.

Like solar energy, power generated with wind can either be used for a specific application such as pumping water or powering a farm, or transferred into the electrical grid to meet other energy needs.

Biomass Energy

Biomass is another common form of renewable energy. Biomass is any natural substance such as wood, plant matter, gas from landfills and even municipal solid waste that contains stored energy from the sun.

When those substances are burned, they release that energy, which can be used as heat or fuel. Biomass can also be made into a liquid or gas that can be used as fuel.

Bioliquids, such as ethanol and biodiesel, are frequently used to power vehicles. Around 40 percent of the corn grown in the U.S. today is used for biofuels. Researchers are currently exploring new ways biomass can be used and additional substances that could be used for biomass energy.

Hydro Energy

Hydropower, energy generated with water, is one of the oldest and the most common renewable energy resource in the U.S., making up 6.5 percent of utility-scale electricity generation and 44 percent of generated renewable energy.

When water flows, it produces energy. We capture this energy by allowing moving water in rivers, waterfalls or elsewhere to turn generators that produce electricity. Hydroelectric plants can also be man-made, as is the case with dams. Man-made reservoirs hold water through the use of dams. That water is then released to flow through a turbine and create electricity.

Benefits of Renewable Energy

The main benefit of renewable energy sources is the fact that they release very little greenhouse gases and so are better for the environment. Because electricity makes up the largest share of our greenhouse gas emissions, changing how we get our energy is crucial in the fight against global warming.

Biofuels are increasingly being used to power vehicles

Biofuels are increasingly being used to power vehicles

Another key advantage is the fact that they are renewable, which means we won’t ever run out of them. This stability could make access to energy more stable in the future. It can also keep energy prices more predictable, because the markets are subject to changes in supply.

Renewable energy is also flexible and can power large areas or single homes. Additionally, renewable energy projects create a number of well-paying jobs and tend to have a significant economic impact.

Key Drawbacks of Clean Energy

Just like with fossil fuels, there are some disadvantages as well. Renewable energy plants are subject to fluctuations in wind, sunlight and other natural resources, meaning some days or in some particular months, a facility might produce more electricity than others. Today, in areas where renewables are common, fossil fuels are often used to make up any shortcoming in renewable energy production.

Due to their reliance on natural occurrences, renewables may fare better in some areas than others. An area with lots of direct sun all day long will be more suitable for a solar plant than somewhere that’s often dark and cloudy. Renewable energy projects also often require large areas of land, and while renewable energy tends to be cheap, initial construction and development costs can be quite high.

Despite these disadvantages, renewables are proving an important part of the energy mix of today and of the future, especially in the face of environmental concerns and worry about the availability of fossil fuels. Chances are we won’t see the end of the growing renewable energy industry any time soon.

How to Minimize Air Pollution While Growing Cannabis

As the medical marijuana, recreational marijuana and CBD markets each grow into multi-billion dollar industries, the demand for cannabis is at an all-time high — and canny entrepreneurs across the country are starting commercial cannabis grow operations in earnest. However, institutions like the Colorado Department of Public Health and Environment (CDPHE) are studying the potential effects of cannabis farms on air pollution and finding worrying results.

Aurora, Colorado, which is the second most popular locality in the nation for commercial cannabis farming operations, currently has the country’s 8th worst air quality according to the American Lung Association. The CDPHE asserts that this has much to do with cannabis farms and their output of what are known as volatile organic compounds, or VOCs.

cannabis-growing-tips

What are VOCs, and why are they a problem?

VOCs are naturally released by a wide range of plant life, and are generally harmless on their own. An example of well-known VOCs are terpenes, which are present in everything from lavender to black peppercorns. The terpene profiles of different cannabis strains give them their respective identities, like the Lime OG strain which is incredibly popular among consumers.

The problem with VOCs occurs when they combine with combustion gases and become harmful to the ozone. Cannabis farms are commonly positioned along stretches of highway, with frequent car traffic through all times of day. This makes them uniquely problematic, as unlike other VOC-emitting plants like lavender, they are positioned to release VOCs en masse to combine with automobile exhaust and produce air pollution.

We can’t alter the release of VOCs in agriculturally and industrially-grown crops like marijuana at present, but there are ways farmers can offset these emissions with the use of environmentally-friendly alternatives to onsite operations. In this post, we go over three important examples of how cannabis farms can reduce or counter their own VOC emissions with little to no impact on productivity.

Strategic Positioning of Cannabis Farms Using Road Hierarchy

The first and most obvious step that can be taken to reduce the harmful interaction of VOCs produced by cannabis farms with motor vehicle exhaust is to position them along less traffic-intensive roads. The current road hierarchy within the United States and Canada is as follows:

  • Freeways are categorized as interstate or intercity roads, limited access roads and on- and off-ramps.
  • Arterial roads are designed to accommodate plenty of traffic throughout the day, and are subdivided into minor and major arterials for urban and rural areas respectively.
  • Collector roads are the convergence points for local roads, ultimately distributing local street traffic to different arterials.
  • Local roads carry low traffic volume and can typically be found in residential areas or specialized districts. In rural areas, these are sometimes unpaved depending on budgetary constraints or development timelines.

Cannabis-friendly states like California, Oregon and Colorado would benefit from the creation of more specialized farming counties and districts, where cannabis farms are positioned along local roads connected to a single collector a respectable distance away. This would prevent anything other than essential traffic, such as transport or supply vehicles to and from the farms themselves, from being in frequent proximity to the VOCs produced by onsite crops.

cannabis

Use of Biofuels in Tractors, Tillers & Other Onsite Utility Vehicles

Continuing on from the concept of using road hierarchy in positioning cannabis farms: the risk of VOC conversion from approaching transport or supply vehicles could be further diminished if they were either electric vehicles (EVs) or made use of currently available biofuels.

This also applies to utility vehicles operated onsite, such as tractors, diggers and tillers, all of whose emissions are in contact with VOCs far more often than those from logistics vehicles.

Green Energy to Power Onsite Machine Processes

While they may not yet have the output specifications to effectively power entire farms, solar panels can provide ample energy for common onsite machine processes, such as the extraction of cannabinoids and terpenes to make isolates or the wet-mixing of hemp hurds to make hempcrete.

Depending on the products onsite facilities are purposed to manufacture, the use of green energy could be feasible for several farms across the country that haven’t already made the switch.

Why Passive Homes Will Be the Future of Home Building

As individuals and companies alike begin to consider more sustainable building options, Passive Homes are an excellent solution. Referred to as “Passivhaus” in German, this construction concept focuses on airtight insulation to create a living space that does not require additional heating or cooling.

Developed in the 1970s, developers have incorporated the PassivHaus design in homes all over the world and in a variety of climates. As an affordable, eco-friendly and versatile construction solution, these homes will play an essential role in the future of homebuilding.

Affordable

Professionals often regard eco-friendly building solutions as too expensive. While construction costs for passive homes can cost 5 to 10% more upfront than a traditional build, these fees are negligible compared to future savings. As sustainable options become standard, these costs may drop. Passive Homes rely on design principles that promote peak energy efficiency without external systems.

With a focus on proper insulation and minimizing air leakage, homeowners can save on conventional heating costs without needing to invest in expensive forms of renewable energy. While solar panels or other types of eco-friendly power are popular, because of the efficiency of the Passive House, their usage is minimal.

Adaptable

People build Passive Houses all over the globe in a variety of climates. The five main principles of passive homebuilding are versatile and can be altered depending on the environment. The airtight construction utilizes proper heat balance, ensuring that warm air remains inside in cooler climates, and properly ventilates in warmer ones.

Another nice feature of Passive Home construction is the ability to modify each project aesthetically. Unlike other forms of sustainable building, such as straw bale homes or shipping containers, professionals can construct Passive Homes using a variety of eco-friendly building materials. This style does not limit builders to certain architectural styles. Because supplies can vary, many homeowners choose to add to the overall sustainability of their homes by using post-consumer building materials.

Eco-Friendly

Passive Homes are eco-friendly by design. In Europe, it’s the standard building practice of the future. According to The Resolution of the European Parliament, its implementation will be mandatory in new home construction by all member states in 2021.

The elements of Passive Homes are sustainable by default and do not require relying on alternative energy systems for primary energy. The standard principles are the result of research at the Passive House Institute, and include:

  • Airtight structures
  • Double and triple-insulated windows
  • Continuous insulation
  • Thermal sealing
  • Air quality management

Passive Home design principles do not rely on renewables as a primary source of energy, focusing instead on insulation and passive solar to maximize heat efficiency. They’re also the most affordable way to achieve zero-carbon, resulting in energy savings of up to 90% compared to conventional energy systems.

Passive Building for the Future

Passive Home design incorporates efficient ventilation, heat recovery and super insulation to create a high-quality structure that is not only efficient but also extremely comfortable. A contractor can adapt these buildings to any climate or design preference. While Passive Homes are already a standard — and future mandated — construction in Europe, they’re also becoming more popular in the United States.

Thanks to a U.S. Department of Energy “Building America” Grant, the PassivHaus Institute established new building standards that take into account market and climate variables throughout North America, including comfort and performance.

Any architect or contractor can easily utilize the Passive Home style, and the building standards are available via online distribution. As consumers and developers look towards a more sustainable and eco-friendly future, this style of building should be at the forefront of construction.

Trends in Waste-to-Energy Industry

The increasing clamor for energy and satisfying it with a combination of conventional and renewable resources is a big challenge. Accompanying energy problems in almost all parts of the world, another problem that is assuming critical proportions is that of urban waste accumulation. The quantity of waste produced all over the world amounted to more than 12 billion tonnes in 2006, with estimates of up to 13 billion tonnes in 2011. The rapid increase in population coupled with changing lifestyle and consumption patterns is expected to result in an exponential increase in waste generation of up to 18 billion tonnes by year 2020. Ironically, most of the wastes are disposed of in open fields, along highways or burnt wantonly.

Waste-to-Energy-Industry

Size of the Industry

Around 130 million tonnes of municipal solid waste (MSW) are combusted annually in over 600 waste-to-energy (WTE) facilities globally that produce electricity and steam for district heating and recovered metals for recycling. The global market for biological and thermochemical waste-to-energy technologies is expected to grow to USD 29.2 billion by 2022. Incineration, with energy recovery, is the most common waste-to-energy method employed worldwide.

Since 1995, the global WTE industry increased by more than 16 million tonnes of MSW. Over the last five years, waste incineration in Europe has generated between an average of 4% to 8% of their countries’ electricity and between an average of 10% to 15% of the continent’s domestic heat.

Advanced thermal technologies, like gasification and pyrolysis, and anaerobic digestion systems are beginning to make deep inroads in the waste-to-energy sector and are expected to increase their respective market shares on account of global interest in integrated waste management framework in urban areas. Scarcity of waste disposal sites coupled with growing waste volumes and solid waste management challenges are generating high degree of interest in energy-from-waste systems among policy-makers, urban planners, entrepreneurs, utility companies etc.

Regional Trends

Currently, the European nations are recognized as global leaders of waste-to-energy movement. They are followed behind by the Asia Pacific region and North America respectively. In 2007 there are more than 600 WTE plants in 35 different countries, including large countries such as China and small ones such as Bermuda. Some of the newest plants are located in Asia. China is witnessing a surge in waste-to-energy installations and has plans to establish 125 new waste-to-energy plants during the twelfth five-year plan ending 2015.

Incineration is the most common waste-to-energy method used worldwide.

The United States processes 14 percent of its trash in WTE plants. Denmark, on the other hand, processes more than any other country – 54 percent of its waste materials. As at the end of 2008, Europe had more than 475 WTE plants across its regions – more than any other continent in the world – that processes an average of 59 million tonnes of waste per annum. In the same year, the European WTE industry as a whole had generated revenues of approximately US$4.5bn.

Legislative shifts by European governments have seen considerable progress made in the region’s WTE industry as well as in the implementation of advanced technology and innovative recycling solutions. The most important piece of WTE legislation pertaining to the region has been the European Union’s Landfill Directive, which was officially implemented in 2001 which has resulted in the planning and commissioning of an increasing number of WTE plants over the past five years.

Zero Waste Trends in the United States

Most people don’t see what happens to their trash. They throw it in a black plastic bag, toss the bag into a dumpster and the trash man collects it once a week and makes it disappear. Magic, right?

Wrong.

Most of our trash ends up in a landfill where it is buried and mixed in with decades-worth of junk. Certain items will break down over time while others are essentially just stored there, in a graveyard of forgotten items and a mountain of garbage.

In the year since China banned the import of other countries’ plastic recyclables, the global recycling industry has been in flux, resulting in plastics ending up in landfills, incinerators and littering the environment. This is causing countries and citizens across the globe to reexamine their recycling systems and highlights the need for zero waste practices.

Zero waste is the concept of eliminating the amount of trash thrown away by only purchasing reusable items. That’s a significant shift from the 4.4 pounds of trash that the average American tosses every day. But certain trends are helping make the idea of zero waste a reality in the United States. Let us have a look:

Replace Single-Use Packaging With Reusable Materials

Way too many plastic items that we use every day are meant to be used only once. And the amount of packaging that goes into shipping one box, that will simply get tossed in the garbage after the parcel is unwrapped, is astounding. In fact, 40 percent of plastic produced is packaging, which is thrown away after it arrives at your doorstep.

Plastic bag and straw bans are on the rise across the globe. Consumers are becoming more conscious of how their use of these items contributes to the trash crisis. Recent data shows that customers are more likely to buy products from brands that promote sustainable business practices.

biodegradeable-packaging

Reduce Energy Waste By Choosing Renewable Options

Many industries are opting to reduce energy waste by pursuing renewable energy sources. U.S. manufacturers account for 30 percent of the nation’s energy consumption, which means manufacturers must take the lead in reducing fossil fuel consumption and energy waste.

The U.S. is the leader in energy waste. Americans spend $350 billion on energy costs each year, yet three-quarters of that energy goes to waste. One way to reduce the burden on our power grid — and our wallets — from all that lost energy is by switching to renewable energy sources.

Air compressors are vital to the upkeep of a successful farm, and many producers in the agricultural sector are also reducing waste by switching to high-powered air compressors that, when properly maintained, can reduce energy usage and cut costs.

Eliminate Food Waste

About 94 percent of food waste ends up in landfills, which contribute to methane gas emissions. Reducing food waste not only helps the environment, but it also decreases the amount you have to spend at the grocery store. It also helps to conserve energy, as less power is needed to grow and produce food if less is wasted.

Individual consumers can help eliminate food waste by freezing leftovers to preserve them and composting uneaten food, as opposed to tossing in the trash.

Restaurants can use these tactics and others to cut down on food waste, such as donating leftovers and properly training staff to get on board with waste reduction. They can also hire auditors to help them identify ways to reduce waste and streamline business practices.

Never Too Late to Make a Change

Though the statistics may seem disheartening, the reality is that it’s never too late to make a change in your individual or business habits to help cut down on waste and work toward the goal of accomplishing zero waste. Following these trends and implementing others is just one way to do your part to eliminate waste and protect the environment.

5 Solar Panel Facts You Might Not Know

Over the last decade, it seems that the cost of electricity has risen in most areas. This is one of the reasons why so many people are getting solar energy systems installed in their homes. Due to its rise in popularity, we have seen prices for solar panels and other equipment needed to make your home more eco-friendly decrease.

Because solar energy is still fairly new technology, many people still know very little about the industry. To help you out, we have compiled a few interesting facts about solar panels which you might find interesting.

As the industry grows, you will probably be hearing much more about solar panels and the benefits of using this eco-friendly method to provide energy for your home. Below are solar panel FAQs to remember:

solar-energy-diy

 

1. The First Solar Panel Cell was Discovered in 1941

Although it seems like solar panels have only been around for the last few decades, the world’s first solar panel cell was invented by Russell Ohl in 1941. Shortly after the invention of the first solar panel cell was invented, Bell Laboratories came up with the world’s first commercial panel in 1954.

Although it seems we are still at the stone age of solar power, photovoltaic (the conversion of light into electricity) was discovered by French scientist Alexandre Edmond Becquerel in 1839.

2. In the Long Run, Solar Power can help Save you Money

Although the initial cost of installing a solar system in your home might be frightening, the overall running cost of the system can save you a lot of money. Although prices of installation and equipment are becoming more affordable, it still is expensive for the average household.

However, try to keep in mind that you won’t ever have to pay to heat or cool down your house again (assuming your solar panels power system can provide enough energy throughout the year for your home). The average household spends $1,300 annually on their electricity bill.

Throughout the world, it seems more and more governments are trying to encourage homeowners and business owners to invest in solar panels. Lots of governments have offered people incentives and tax breaks in the hope that the number of households using this eco-friendly method will increase. In some states in America, people who purchase solar panels are eligible for a 30% tax break. Also, some states allow those who own solar power to sell their excess energy, so they can make some profit from their system.

3. A Communal Effort

Community solar systems are becoming more common these days. Instead of just having an individual solar system in your home, more communities are investing in community solar systems instead.

Over the last 15 years or so, instead of each household having individual systems installed, whole communities are getting together and investing in a system that will provide energy for the entire community. If you are considering making your home more eco-friendly, why not speak to others in your community to see if everybody on the block is interested in getting a communal solar system installed instead?

what-is-community-solar

4. The Industry is Growing Extremely Fast

Between 2018 and 2010, the number of households and businesses having solar power installed in their buildings grew 23 times in the United States. Solar power is not only becoming more appealing to homeowners in the United States, but it seems like people all over the world are deciding to go green and install solar power systems into their homes.

China uses more solar power than any other country on the planet. The Chinese government has been offering the residents of the country plenty of incentives that has resulted in many people installing a solar power system in their home.

If you are thinking about installing a solar power system inside your home, check out Solar Panels Network USA for more information. If you are still on the fence about joining the solar power movement, ask them for advice.

5. Maintaining a Solar Power System

Maintaining your solar power system tends to be fairly cheap too. In fact, once the system is fully installed there is actually very little maintenance needed. Apart from cleaning the panels now and again, and making sure that it’s getting sunlight and not shaded, it should work smoothly. You may have to trim some trees at times but that’s about it.

solar-panels-pigeon-issue

Most solar panels have been installed on a tilted roof, so when the rain hits it will clean any dust and dirt from the panel so you won’t have to clean it too often.

Most solar power system suppliers offer 25 year warranty, but it is not too uncommon to see a quality solar power system last for 40 years. If your system does manage to last for that length of time, you can imagine how much money you will save on electricity.