How to Incorporate Sustainability into Your Business

Since catapulting to the frontlines of news headlines and global consciousness, climate change is one of the most talked about and concerning topics of the modern age. Fortunately with this shift in cognition, manufacturers all across the globe have banded together to create green products in hopes of a more eco-friendly future. It’s these very products that can transform any business from a wasteful guzzler to a green success. With this guide, we’ll walk you through how you can incorporate sustainability into your daily business practice.

Switch out the incandescent light bulbs with CFL or LED bulbs for a longer-lasting and more energy-efficient brilliance. Compact-fluorescent (CFL) and LED light bulbs tend to carry higher price tags than the average fluorescent bulb, however they offer a far more attractive projected lifespan than typical fluorescent bulbs which tend to offer 1,200 hours of  light.

LED bulbs, on average, cost around $5 and offer 25,000 hours of light, while CFL light bulbs cost about $2 and offer 10,000 hours of projected lifespan. Not only are CFL and LED lights more practical from a sustainability standpoint, but they will also save you thousands on your business’s electric bill.

Using biodegradable kitchen supplies to save on plastic waste. Unless your office is the type of place where employees keep personal dishes in the kitchen cupboard, you will likely need to keep a stash of utensils, cups, and plates on deck for any catered lunches or work parties. Instead of giving into the cheap prices of eco-unfriendly plastic ware, invest in biodegradable kitchen packaging for a greener feast. With fewer resource requirements, these biodegradable forks, spoons, and knives will leave your business with a reduced carbon footprint.

Green SMEs

Recycling ink cartridges is a great practice to put in place for businesses equipped with a number of printers. Believe it or not, the vast majority of discarded ink cartridges end up in harmful, toxic landfills that eventually end up in our oceans. Ink cartridge recycling is the most eco-friendly solution to this preventable problem. There are a number of simple ways to take those empty cartridges off your hands and into the hands of a trusted recycler:

  • Find a local recycling facility: You may not even know where your local recycle center is located. Luckily Earth911 can guide you to the nearest location for easy cartridge recycling.
  • Find a local office supply store: Did you know most office supply stores offer recycle programs? Check online or call in to see if they accept ink cartridges.
  • Consider refilling original cartridges: Do a bit of research on the brand of your empty ink cartridge. You may find that they are able to refill your cartridge and you won’t ever have to worry about tossing them!

Opening up windows is an easy solution to a stuffy, warm office. When people are packed like sardines into their tiny cubicles, the air can quickly become stale and stifling. Instead of wasting money and energy on air conditioning, open a few windows to let fresh air flow in. Air conditioners put hydrofluorocarbons, a type of greenhouse gas emission, into the environment—so while you may feel refreshed, the earth is further harmed. Reduce your business’ contribution by saving the AC for the more-unbearable summer days.

Invest in renewable energy sources for a long-term, energy-efficient, and eco-friendly power solution. Every year, we see more and more solar panels sitting atop rooftops, which means the time to invest in solar panels is now. By converting sunlight into a sustainable power source, solar panels are the greenest source of energy on the planet today. Solar energy can be used heat buildings and provide energy to power lights on.

Turning to post-consumer waste to escape the cycle of high-volume paper waste is an exceptional solution for any company that uses a lot of paper. PCW paper is paper re-made at recycling facilities. According to the Environmental Paper Network Paper Calculator, PCW paper saves on

  • 5,610 gallons of water
  • 5,000,000 BTU of energy
  • 376 pounds of solid waste
  • 1,035 pounds of CO2 greenhouse gas emissions

In 2019, there are no more excuses for why a business is stuck in the past. The future can be a bright one if we all put our best foot forward and make the effort to make our spaces greener!

Finding the Most Appropriate Renewable Energy

Energy is very important nowadays. Contemporary people can hardly imagine their existence without it. Humans always tried to produce cheaper and safer energy. Nature provides us with the energy we can renew daily. It provides people with the benefit which nobody can argue. It almost has no negative impact on the surrounding and is considered to be rather safe.

The cost of alternative energy systems has dropped sharply in recent years

When the scientists revealed that greenhouse gas effect led to the change of world’s climate they began to look for all possible ways to prevent the catastrophe. Fossil fuel does not give the chance to renew it after the use while sustainable energy can. In addition, fossil fuel is running out. That forces people to search some new ways to restore it. The depletion of sources motivated scientists to develop new methods of energy production.

A country or even some particular geographical area should select a suitable type of renewable energy source. It usually depends on sources the region possesses. For example, countries which are situated on the equator can benefit from solar energy while those regions which lack sunny weather should better provide themselves with hydro energy or biomass energy.

There are regions which experiment trying to find the most appropriate renewable energy type. For instance, Massachusetts varies the use of different renewable energy sources. The state government proves that their region is able to provide the citizens with more wind’s energy than with any other ecologically safe power supply. The use of wind energy is beneficial for the state not only because it is ecologically safe but also because it has an economic advantage. They produce both offshore and onshore winds’ energy.

Yearly industry report manifests that the first one is even cheaper and ranges up to sixteen cents one kilowatt per hour. Such energy is clean and beneficial. In 2009 the government of Massachusetts issued the project of developing offshore ocean energy for a number of its regions. This plan proves the indisputable convenience of wind power use for this concrete state of America.

Despite the fact that wind power is rather sustainable, the US industry report relies greatly on solar energy use. This conclusion is based on three main reasons. The first and most influential is the fact that not all American regions can provide wind energy because of geographical peculiarities. By the way, some scientists and consumers find it rather complicated due to huge transmission lines it requires. That is why solar energy is more effective.

All regions receive the sun energy almost equally and they can depend on it mostly. The next factor that influences the choice of solar energy is its permanency and regularity. Wind turbines are more inconstant than the solar ones. Solar panels are able to generate energy even if there is no sun. Clouds cannot stop the penetration of sun rays completely. Due to that, scientists in Massachusetts also found solar energy to be rather beneficial and constant. The last factor that contributes to the number of advantages of solar panels use is their productivity. They are capable to produce more energy than the turbines which are enabled by winds.

The experiment of solar and wind energy testing lasted during thirteen days in Massachusetts. It took place at the beginning of January. Solar panels managed to produce thirty-five kilowatt-hours of pure electricity. At the same time, the winds turbines had hardly provided the territory with fourteen kilowatt-hours of clean energy. The outcome of the experiment supported the idea of solar panels efficiency compared to the wind turbines productivity on Massachusetts territory.

The investigation reasoned the use of solar and winds’ energy. Even if some type of renewable energy is less effective still it provides humans with ecologically safe power. It is unsound to refuse at least from one of them. All renewable energy gives the chance to save the planet from ecological disaster and improve human lifestyle and health condition.

About the Author

Lauren Bradshaw started academic writing in 2003. Since then she tried her hand in SEO and website copywriting, writing for blogs, and working as a professional writer at CustomWritings professional essay writing service. Her major interests lie in content marketing, developing communication skills, and blogging. She’s also passionate about environment, philosophy, psychology, literature and painting.

How An Increase in Demand of Epoxy Resin Can Fuel the Need for Clean Energy

Epoxy resin is a kind of reactive prepolymer and polymer that contains epoxide groups. It is important to note that epoxy resin is different from other polyester resins in terms of curing. Unlike other resins, instead of using a catalyst as a curing agent, it is cured by an agent known as the hardener. It possesses many desirable properties such as high tensile strength, high adhesive strength, high corrosion resistance, and excellent moisture & chemical resistance. It is also resistant to fatigue, has a long shelf life, and has good electrical and insulating properties. The ability of epoxy resins to be used in various combinations and reinforcements makes it the foundation of a plethora of industries, including clean energy systems.

Applications of Epoxy Resins

Because of the versatile properties of epoxy resins, it is used widely in adhesives, potting, encapsulating electronics, and printed circuit boards. It is also used in the form of matrices for composites in the aerospace industries. Epoxy composite laminates are commonly used for repairing both composite as well as steel structures in marine applications.

Due to its high reactivity, epoxy resin is preferred in repairing boats that have been damaged by impact. Its low shrinking properties and ease of fabrication make it well suited for many tooling applications such as metal-shaping molds, vacuum-forming molds, jigs, patterns etc.

Use of Epoxy Resins in Clean Energy

A variety of industries have been actively trying to find a path that’s moving towards a society that puts less load on the the environment and also contributes towards reducing the carbon footprint. The accelerated use of epoxy resins in generating renewable energy has lead to a rise in its production demand. This is why the epoxy resin market is projected to witness a high demand and growth rate by 2022. Here are some of the sectors contributing to the production of clean energy and how they utilize epoxy resin for their functioning:

  • Solar Energy

The harnessing of solar energy dates back to 700 B.C, when people used a magnifying glass to focus the sun’s rays to produce fire. Today solar power is a vigorously developing energy source around the globe. It not only caters to the rising energy requirements but also the need to protect the environment from the exploitation of exhaustible energy resources.

A piece of average solar equipment endures intense environmental conditions such as scorching heat, UV radiations, bitter cold,  pouring rain, hail, storms, and turbulent winds. To withstand such conditions, the sealing and mounting application of epoxy resins increase the environmental tolerance of the solar equipment.

With their high mechanical strength, impressive dimensional stability and excellent adhesion properties, they are used to protect the solar panels from a wide range of temperatures. Epoxies are cheap, less labor-intensive and easy to apply.

  • Wind Energy

The global wind industry has quickly emerged as one of the largest sources of renewable energy around the world. The wind energy in the U.S. alone grew by 9% in 2017 and today is the largest source for generating clean energy in the country. With such a tremendous demand for wind power, the need for fabricating bigger and better wind turbine blades is also rising. The industry is in a dearth of long-lasting blades, that endure the harsh climatic conditions and wear tear and are able to collect more wind energy at a time.

Sealing and mounting application of epoxy resins increase the environmental tolerance of the solar equipment

Epoxy thermosets are used for making the blades more durable because of their high tensile strength and high creep resistance. Mixing of epoxy resins with various toughening agents and using them on the blades have shown positive results towards making the blades corrosion resistant and fatigue-proof.

  • Hydropower

Hydropower is an essential source of renewable and clean energy. As the hydropower industry is developing rapidly, the solution for protecting the hydropower concrete surfaces against low temperatures and lashing water flow has also been looked into.

As a solution to this issue, epoxy mortar, a mixture of epoxy resins, binder, solvent, mineral fillers, and some additives has proven to be the most effective material used for surface protection. Owing to the properties like non-permeability, adhesive strength, anti-erosive nature, and non-abrasiveness, epoxy mortar paste has been used as a repairing paste in the hydropower industry.

Over the last few decades, epoxy resins have contributed immensely in the maintenance and protection of clean energy sources, helping them to become more efficient and productive.

Final Thoughts

While many argue that factors like a relatively high cost when compared to petroleum-based resins and conventional cement-mortar alternatives has affected the epoxy resin market growth, the fact remains that epoxy resin never fails to deliver top-notch and unmatchable results in the areas of application.

Global Trends in Solar Energy Sector

Many countries around the world have switched to solar power in order to supplement or provide an alternative source of energy that is cheaper, more reliable and efficient, and friendly to the environment. Generally speaking, to convert solar energy to electricity, there are two kinds of technologies used by the solar power plants – the PV (photovoltaic) systems which use solar panels to convert sunlight directly into electricity, and the CSP (Concentrated Solar Power) that indirectly uses the solar thermal energy to produce electricity.

The solar PV systems, which are either placed in ground-mounted solar farms or on rooftops are considered cheaper than CSP and constitutes the majority of solar installations, while CSP and large-scale PV accounts for the majority of the general solar electricity-generation-capacity, across the globe.

Global Trends in Solar Energy

In 2017, photovoltaic capacity increased by 95 GW, with a 34% growth year-on-year of new installations. Cumulative installed capacity exceeded 401 GW by the end of the year, sufficient to supply 2.1 percent of the world’s total electricity consumption. This growth was dramatic, and scientists viewed it as a crucial way to meet the world’s commitments to climate change.

“In most countries around the world there is still huge potential to dramatically increase the amount of energy we’re able to get from solar. The only way to achieve this is through a combination of both governance and individual responsibility.” Alastair Kay, Editor at Green Business Watch

Both CSP and PV systems are undergoing a considerable amount of growth and experts claim that by 2050, solar power will become the greatest source of electricity in the whole world. To achieve this goal, the capacity of PV systems should grow up to 4600 gigawatts, of which 50% or more would come from India or China. To date, the capacity of solar power is about 310 gigawatts, a drastic increase on the 50 gigawatts of power installed in 2010.

The United Kingdom, followed by Germany and France led Europe in the 2016 general statistics for solar power growth with new solar installations of 29%, 21%, and 8.3% respectively. In early 2016, the amount of power across Europe was near 100 gigawatts but now stands at 105 gigawatts. This growth is regarded as slow and experts in the solar industry are calling upon the European Union to give more targets concerning the renewable source of energy. It is said that setting a target that is not less than 35% will revive the solar business in Europe.

Across the United States in places, such as Phoenix and Los Angeles, which are located in a sunny region, a common PV system can generate an average of 7500 kWh – similar to the electrical power in use in a typical US home.

In Africa, many nations especially those around the deserts such as Sahara receive a great deal of sunlight every day, creating an opportunity for the development of solar technology across the region. Distribution of PV systems is almost uniform in Africa with the majority of countries receiving about 2000 kWh/m2 in every year. A certain study shows that generating solar power in a facility covering about 0.3% of the area consisting of North Africa could provide all the energy needed by the European-Union.

Asia alone contributed to 66.66% of the global amount of solar power installed in 2016, with about 50% coming from China.

With these reports, it is clear that the development of solar energy technology is growing in each and every continent with just a few countries with little or no apparent growth.

The growth of solar power technology across every continent in the world is very fast and steady and in the near future, almost every country will have a history to tell about the numerous benefits of going solar. The adoption of solar power will help improve the development of other sectors of the economy, such as the electronics industry, hence creating a lot of employment opportunities.

Tips on Writing a Research Paper on Solar Energy

The share of energy received from the Sun is steadily increasing every year. Last year, the global solar market increased by 26%. According to forecasts, in 2018 for the first time, the mark of 100 gigawatts of new installed capacity per year will be passed all over the world. Writing a research paper on solar energy is not an easy assignment, as you will have to deal with lot’s of statistics, results of experiments, and, surprisingly, sociology — the usage of alternative sources of energy are strongly connected with the social issues and moods. In this article, you’ll receive some tips on how to write a stellar research paper on solar energy and impress your professor.

We are sure you know how to structure a research paper, and you won’t forget about an engaging thesis (problem) statement. Our tips will cover the latest trends you should mention and the discussions related to the usage of solar energy, pros, cons and exciting facts.

Pay Attention to the Latest Trends

Analysts have identified trends in the solar energy market in the near future.

  • An increasing number of countries are developing solar energy projects at the national level. In 2016, there were 32 such countries, at the end of last year already 53. Tenders for the development of solar energy are planned in 23 countries.
  • In the United States in the next 4 years, the number of states installing more than 1 gigawatt will reach 18. They will account for 80% of all US photovoltaic plants.
  • Reducing the cost of solar energy can be achieved through the use of more powerful modules, which will reduce the proportion of equipment and maintenance costs.
  • The role of electronics operating at the level of a single photovoltaic panel will grow. Now micro-inventors and current converters for one module are not used very widely.
  • Prices for stationary solar systems in the world are falling, but in the USA they remain at the same level (the cost of watts of power for US home systems is the highest in the world). The price for a “sunny” watt from state to state can vary by 68 cents, and companies will have to look for ways to reduce production costs.

Talk about the Future

Naturally, interest in renewable energy sources will continue to grow. The year 2050 will be the point of no return – it is by this time that most countries will completely switch to clean energy. And in 2018 serious steps will be made in this direction.

The first to be hit will be coal power plants in Europe. To date, 54% of them are not profitable, and there are only for the sake of peak load. In 2018, Finland will ban the use of coal to generate electricity and increase the tax on carbon dioxide emissions. By 2030, the country plans to abandon this fuel completely.

The Indian coal mining company Coal India also plans to close 37 coal mines in March 2018 – their development has become uneconomical due to the growth of renewable energy. The company will save about $ 124 million on this, after which it will switch to solar power and install at least 1 GW of new solar capacity in India.

Don’t Focus Solely on Content

It is a no-brainer that the content of your research paper is the most essential part of your work. However, if you forget about formatting, citations, plagiarism, using valid academic sources, etc., your research paper can fail despite having an amazing thesis statement or the project idea.

When you start doing research, note down every link you use or want to use, every quote you like, every piece of statistical information. At first, it seems very dull and unnecessary — you think you can find this information at any moment. However, days pass, and you fail to make proper references, which can be a reason of being accused of plagiarism. Proofread your research paper several times, use online sources to check grammar and spelling, don’t forget about plagiarism checkers to stay on the safe side.

If you find out that writing a proper research paper on solar energy is too complicated for you now, or you don’t have enough time energy to deal with it, it is a wise choice to get affordable research paper writing by experts who can help you immediately with your assignment. When writing a research paper on solar energy don’t forget to check on the latest numbers and analytical data worldwide. Good luck!

Renewable Energy Trends in Germany

Germany has been called “the world’s first major renewable energy economy” as the country is one of the world’s most prolific users of renewable energy for power, heating, and transport. Germany has rapidly expanded the use of clean energy which now contributes almost one-fourth to the national energy mix. Renewable energy contribute as much as one-fourth of the primary energy mix and the country has set a goal to producing 35 percent of electricity from renewable sources by 2020 and 100 percent by 2050.

Solar Energy

Germany is the world’s biggest solar market and largest PV installer with a solar PV capacity of more than 32.3 GW in December 2012. The German new solar PV installations increased by about 7.6 GW in 2012, with a record 1.3 million PV systems installed across the country. Germany has nearly as much installed solar power generation capacity as the rest of the world combined and gets about 5 percent of its overall annual electricity needs from solar power alone.

Wind Energy

Germany’s wind energy industry is one of the world’s largest, and it is at the forefront of technological development.  Over half of all wind turbines in Germany are owned by local residents, farmers and local authorities which have tremendously improved the acceptance of wind turbines among local communities as they directly profit.

Being Europe’s primary wind energy market, Germany represents around 30 percent of total installed capacity in Europe and 12 percent of global installed capacity. Total wind energy capacity in Germany was 31.32 GW at the end of year 2012. Currently Germany is ranked third worldwide in installed total wind capacity with its share of total domestic electricity production forecasted to reach 25 percent by 2025.

Biomass Energy

Biomass energy is making a significant contribution to renewable energy supply in Germany and accounts for about 5.5 percent of the total electricity production in the country. Germany is the market leader in biogas technology and is also Europe’s biggest biogas producer. Last year around 7,600 systems with a cumulative capacity of 3,200 MW generated 21.9 billion kWh in the country, thus consolidating Germany’s status as a pioneer in clean energy technologies.

Renewable Energy Investment

Germany’s plan to phase out all 17 of its nuclear power plants and shift to renewable energy by 2022 is the largest infrastructure investment program in Europe since World War II. The country’s transition from nuclear energy-based power network to renewable energy systems will require investments of much as $55 billion by 2030.

Germany is the world’s third largest market for renewable energy investment which totalled $31billion in 2011. Sixty-five percent of investment in Germany was directed toward solar, with 29 percent ($8.5 billion) directed to wind. In addition, 700 MW of biomass capacity was added in 2011

The country offers generous feed-in-tariffs for investors across all renewable energy segments which is attracting huge private capital in cleantech investments. In 2010, the majority ($29 billion) of cleantech investment came from corporate investors across all sectors of the economy, including farmers, energy utilities, and industrial and commercial enterprises.

In the first six months of 2012, the amount of electricity produced from renewable resource rose from 20% to 25%, bringing Germany closer to its targets of 35% by 2020 and 80% by 2050. According to figures released by the government agency Germany Trade and Invest, 38% of the electricity produced by renewable energy during that period was through wind power, and almost 16% from solar.