Progress of Waste-to-Energy in the USA

Rising rates of consumption necessitate an improved approach to resource management. Around the world, from Europe to Asia, governments have adapted their practices and policies to reflect renewability. They’ve invested in facilities that repurpose waste as source of energy, affording them a reliable and cheap source of energy.

This seems like progress, given the impracticality of older methods. Traditional sources of energy like fossil fuels are no longer a realistic option moving forward, not only for their finite nature but also within the context of the planet’s continued health. That said, the waste-to-energy sector is subject to scrutiny.

We’ll detail the reasons for this scrutiny, the waste-to-energy sector’s current status within the United States and speculations for the future. Through a concise analysis of obstacles and opportunities, we’ll provide a holistic perspective of the waste-to-energy progress, with a summation of its positive and negative attributes.

Status of Waste-to-Energy Sector

The U.S. currently employs 86 municipal waste-to-energy facilities across 25 states for the purpose of energy recovery. While several have expanded to manage additional waste, the last new facility opened in 1995. To understand this apparent lack of progress in the area of thermochemical treatment of MSW, budget represents a serious barrier.

One of the primary reasons behind the shortage of waste-to-energy facilities in the USA is their cost. The cost of construction on a new plant often exceeds $100 million, and larger plants require double or triple that figure to build. In addition to that, the economic benefits of the investment aren’t immediately noticeable.

The Palm Beach County Renewable Energy Facility is a RDF-based waste-to-energy (WTE) facility.

The U.S. also has a surplus of available land. Where smaller countries like Japan have limited space to work within, the U.S. can choose to pursue more financially viable options such as landfills. The expenses associated with a landfill are far less significant than those associated with a waste-to-energy facility.

Presently, the U.S. processes 14 percent of its trash in waste-to-energy (WTE) plants, which is still a substantial amount of refuse given today’s rate of consumption. On a larger scale, North America ranks third in the world in the waste-to-energy movement, behind the European nations and the Asia Pacific region.

Future of WTE Sector

Certain factors influence the framework of an energy policy. Government officials have to consider the projected increase in energy demand, concentrations of CO2 in the atmosphere, space-constrained or preferred land use, fuel availability and potential disruptions to the supply chain.

A waste-to-energy facility accounts for several of these factors, such as space constraints and fuel availability, but pollution remains an issue. Many argue that the incineration of trash isn’t an effective means of reducing waste or protecting the environment, and they have evidence to support this.

The waste-to-energy sector extends beyond MSW facilities, however. It also encompasses biofuel, which has seen an increase in popularity. The aviation industry has shown a growing dedication to biofuel, with United Airlines investing $30 million in the largest producer of aviation biofuel.

If the interest of United Airlines and other companies is any indication, the waste-to-energy sector will continue to expand. Though negative press and the high cost of waste-to-energy facilities may impede its progress, advances in technology promise to improve efficiency and reduce expenses.

Positives and Negatives

The waste-to-energy sector provides many benefits, allowing communities a method of repurposing their waste. It has negative aspects that are also important to note, like the potential for pollution. While the sector offers solutions, some of them come at a cost.

It’s true that resource management is essential, and adapting practices to meet high standards of renewability is critical to the planet’s health. However, it’s also necessary to recognize risk, and the waste-to-energy sector is not without its flaws. How those flaws will affect the sector moving forward is critical to consider.

5 Interesting Facts About Waste-to-Energy Projects

Waste-to-energy (also known as energy-from-waste) is a complicated technology in the realm of renewable energy. There are a lot of hidden truths and myths about this technology that people need to be aware of. Renewable energy technologies, like solar and wind, have much more simple processes and gain most of the attention from media outlets.

On the converse, renewable energy sources that are highly complex like nuclear energy have a bunch of media attention as well.

So, why don’t we discuss a bit more about this relatively unknown technology and asset class? Here I’ll discuss a number of the most important facts about waste-to-energy (abbreviated as WTE).

Interesting Facts About Waste-to-Energy

Let’s get into our facts about waste-to-energy that you need to know.

  1. Waste-to-Energy Can Provide Baseload Power

The most familiar renewable energy resources such as wind and solar can only provide power if the sun is shining or the wind is blowing. WTE projects can actually provide baseload power that is used to serve consumers and the grid no matter the time of day or if the sun is shining or not.

Baseload power is essentially when intermittent resources like solar and wind become more prevalent.

  1. Not All WTE Projects are Clean and Green

While waste-to-energy projects would seem to be green and clean because they turn trash into power or gas. However, some projects require long hauling of trash to bring to the actual incineration facility. This actually ends up require much more emissions from the trash haulers than alternatives.

One solution to this would be to help promote the use of electric vehicles and electric vehicle technology to be installed in trucking, like waste hauling.

  1. WTE Projects Are Crucial to Help Reduce Landfills

Landfills have increased at an exponential pace the in last 100 years. Waste-to-energy projects are an awesome alternative to landfills as the trash is used to provide electricity or fuel.

WTE projects reduce waste volumes by approximately 90%, which results in fewer landfills that are needed to process ash. This ends up protecting our natural resources and land in a dramatic fashion.

  1. Most WTE Projects have Multiple Revenue Streams

Waste-to-energy projects are extremely complicated and expensive to build. Most of the investor economic interest is driven by financial incentives, renewable identification numbers, tax credits, etc. to help these projects get financed.

Beyond these other financial incentives, some of the waste-to-energy projects produce a byproduct, named biochar, which has multiple applications and fetches good prices. The biochar can usually end up providing the most value in the revenue stream or investability of the project itself.

In addition to other economic streams, waste-to-energy projects usually require high tipping fees. A tipping fee is what the trash hauler has to pay in order to dump the trash at the facility. With WTE projects, the tipping fee can end up being 50-60% of the overall revenue stack.

  1. WTE Facilities are Net Greenhouse Gas Reducers

Methane has more than 20 times the potency of carbon dioxide and is ranked as a very dangerous contributor to climate change and warming of our planet. WTE facilities avoid the productions of methane and end up producing up to 10 times more the electricity than landfill gas projects. If you didn’t know, landfills can actually end up producing electricity by capture the methane gas and compressing it into a consumable natural gas for power.

Sysav–WTE-plant-Sweden

Sweden is one of the best proponents of waste-to-energy in the world

WTE projects will usually have much more capacity than any landfill gas projects.

Conclusions

You can’t use waste-to-energy projects at your home similar to solar or even wind to get free electricity. However, knowing about projects in your area and the relevant suppliers will help you understand whether or not the technology is a perfect fit for your community. If you see a project coming online in your surrounding area, you should know how to ask the right questions.

At the end of the day, WTE projects are green and clean. They just need to have the right systems in place to make them more efficient and less risky to appeal new investor appetite. What fact was your favorite about waste-to-energy?

Do you know much about waste-to-energy projects? Let us know in the comments below. We’d love to hear from you.

Waste-to-Energy Prospects in the Middle East

wastetoenergy-plant-qatarA combination of high fuel prices and a search for alternative technologies, combined with massive waste generation has led to countries in the Middle East region to consider Waste to Energy (or WtE) as a sustainable waste management strategy and cost-effective fuel source for the future. We look at the current state of the WtE market in the region.

It is estimated that each person in the United Arab Emirates produces 2 kg of municipal solid waste per day – that puts the total waste production figure somewhere in the region of 150 million tonnes every year. Given that the population currently stands at over 9.4 million (2013) and is projected to see an annual average growth figure of 2.3% over the next six years, over three times the global average, it’s clear that this is a lot of waste to be disposed of. In addition, the GCC nations in general rank in the bottom 10% of the sustainable nations in the world and are also amongst the top per capita carbon-releasers.

When we also consider that UAE are actively pursuing alternative energy technologies to supplement rapidly-decreasing and increasingly-costly traditional fossil fuels, mitigate the harmful effects of landfill, and reduce an ever-increasing carbon footprint, it becomes apparent that high on their list of proposed solutions is Waste to Energy (WtE). It could be an ideal solution to the problem.

What is WtE

Waste-to-Energy works on the simple principle of taking waste and turning it into a form of energy. This can be electricity, heat or transport fuels, and can be achieved in a variety of ways – the most common of which is incineration. MSW is taken to a WtE plant, incinerated at high temperatures and the resultant heat is used to boil water which creates steam to turn turbines, in the same way that burning gas or coal produces power. Gasification and anaerobic digestion are two further WtE methods which are also used.

However, WtE has several advantages over burning fossil fuels. Primarily amongst them are the potential to minimise landfill sites which have caused serious concern for many years. They are not only unsightly, but can also be contaminated, biologically or chemically. Toxic waste can leach into the ground beneath them and enter the water table.

Landfill sites also continuously emit carbon dioxide and methane, both harmful greenhouse gases – in addition methane is potentially explosive. Sending MSW to landfill also discourages recycling and necessitates more demand for raw materials. Finally, landfill sites are unpleasant places which attract vermin and flies and give off offensive odours.

WtE has been used successfully in many countries around the world for a long time now. Europe is the most enthusiastic proponent of WtE, with around 450 facilities; the Asia-Pacific region has just over 300; the USA has almost 100. In the rest of the world there are less than 30 facilities but this number is growing. Globally, it is estimated that the WtE industry is growing at approximately US $2 billion per annum and will be valued at around US $80 billion by the year 2022.

The USA ranks third in the world for the percentage of waste which is incinerated for energy production. Around 16% of the rubbish that America produces every day is burned in its WtE plants. Advocates claims the advantages are clear: reducing the amount of greenhouse gas emitted into the environment (estimates say that burning one ton of waste in a WtE plant saves between one half and one ton of greenhouse gases compared to landfill emissions, or the burning of conventional fuels), freeing up land which would normally be used for landfill (and, therefore, extending the life of existing landfill sites), encouraging recycling (some facilities have managed to reduce the amount of waste they process by up to 90% and the recycling of ferrous and non-ferrous metals provides an additional income source), and, perhaps most importantly, producing a revenue stream from the sale of the electricity generated.

In one small county alone, Lancaster, Pennsylvania, with a population of just over half-a-million people, more than 4.4 billion kWh of electricity has been produced through WtE in the last 20 years. This has generated over USD $256 million through its sale to local residents.

WtE in the Middle East

Given WtE’s potential to not only reduce greenhouse gas emissions and pollution on a local scale, but also to produce much-needed electricity in the region, what is the current state of affairs in the Middle East. There are several WtE initiatives already underway in the region. Qatar was the first GCC country to implement a waste-to-energy programme and currently generates over 30MW of electricity from its Domestic Solid Waste Management Center (DSWMC) located at Messeid (Doha). Saudi Arabia and the UAE have both stated that they have WtE production capacity targets of 100MW. Bahrain, Kuwait and Oman are also seriously considering waste-to-energy as a means to tackle the worsening waste management problem.

Abu Dhabi’s government is currently spending around US $850 million to build a 100 MW plant which is expected to be operational by 2017 and which will supply around 20,000 households with electricity. In Sharjah, the world’s largest household waste gasification plant, costing in excess of US $480 million, is due to be open in 2015.

However, not all the GCC members are as enthusiastic about WtE. Dubai’s government has recently scrapped plans for a US $2 billion project which would have made use of the 7,800 tonnes of domestic waste which is produced in Dubai every single day.

We asked Salman Zafar, Founder of Doha-based EcoMENA, a popular sustainability advocacy, why given the sheer scale of the waste in the Gulf region, the production of this form of energy is still in its infancy. “The main deterrent in the implementation of WtE projects in the Middle East is the current availability of cheap sources of energy already available, especially in the GCC,” he commented.

Salman Zafar further says, “WtE projects demand a good deal of investment, heavy government subsidies, tipping fees, power purchase agreements etc, which are hard to obtain for such projects in the region.” “The absence of a sustainable waste management strategy in Middle East nations is also a vital factor behind the very slow pace of growth of the WtE sector in the region. Regional governments, municipalities and local SWM companies find it easier and cost-effective to dump untreated municipal waste in landfills,” he added.

So, how can WtE contribute towards the region’s growing power demand in the future?

“Modern WtE technologies, such as RDF-based incineration, gasification, pyrolysis, anaerobic digestion etc, all have the ability to transform power demand as well as the waste management scenario in the region,” he continued. “A typical 250 – 300 tons per day WtE plant can produce around 3 – 4 MW of electricity and a network of such plants in cities across the region can make a real difference in the energy sector as well as augmenting energy reserves in the Middle East. In fact, WtE plants also produce a tremendous about of heat energy which can be utilised in process industries, further maximising their usefulness,” Salman Zafar concluded.

New technologies naturally take time to become established as their efficiency versus cost ratios are analysed. However, it is becoming increasingly clearer that waste-to-energy is a viable and efficient method for solid waste management and generation of alternative energy in the Middle East.

Obstacles in Implementation of Waste-to-Energy

The biggest obstacle to the implementation of Waste-to-Energy (or WTE) lies not in the technology itself but in the acceptance of citizens. Citizens who are environmentally minded but lack awareness of the current status of waste-to-energy bring up concerns of environmental justice and organize around this. They view WTE as ‘dumping’ of pollutants on lower strata of society and their emotional critique rooted in the hope for environmental justice tends to move democracy.

An advocate of public understanding of science, Shawn Lawrence Otto regrets that the facts are not able to hold the same sway. Some US liberal groups such as the Center for American Progress are beginning to realize that the times and science have changed. It will take more consensus on the science and the go ahead from environmental groups before the conversation moves forward, seemingly improbable but not without precedent.

Spittelau Waste-to-Energy Plant

The Spittelau waste-to-energy plant is an example of opposition coming together in consensus over WTE. It was built in Vienna in 1971 with the purpose of addressing district heating and waste management issues. Much later awareness of the risks of dioxins emitted by such plants grew and the people’s faith in the technology was called into question. It also became a political issue whereby opposition parties challenged the mayor on the suitability of the plant. The economic interests of landfill owners also lay in the shutting down of the WTE facility. The alternative was to retrofit the same plant with advanced technology that would remove the dioxins through Selective Catalytic Reduction (SCR).

Through public discussions it appeared that the majority of the people were against the plant altogether though thorough studies by informed researchers showed that the science backs WTE. The mayor, Helmut Zilk eventually consulted Green Party members on how to make this technology better perceived in the eyes of the people, and asked the famous Austrian artist Freidensreich Hundertwasser, who was a green party member to design the look of the plant. Freidensreich Hundertwasser after carefully studying the subject wrote a letter of support, stating his belief as to why WTE was needed and accepted Mayor Helmut Zilk’s request. Later public opinion polls showed that there were a majority of people who were either in favor of or not opinionated about the plant, with only 3% in outright opposition of the plant.

Polarized Discussion

Waste-to-Energy or recycling has kept public discourse from questioning whether there may not be intermediate or case specific solutions. This polarization serves to move the conversation nowhere. For now it can be agreed that landfills are devastating in their contribution to Climate Change and must be done away with. The choice then, of treatment processes for municipal solid waste are plentiful. If after recovery of recyclable materials there remains a sizeable waste stream the option of waste-to-energy can be explored.

Primary Considerations

  • Environmental implications (i.e. CO2 emissions vis-à-vis the next best fuel source) given the composition of the local waste stream. If the waste stream consists of a high percentage of recyclables the more sustainable waste strategy would be to ramp up recycling efforts rather than to adopt WTE,
  • Likely composition and variation of the waste stream and the feasibility of the technology to handle such a waste stream,
  • Financial considerations with regards to the revenue stream from the WTE facility and its long term viability,
  • Efforts at making citizens aware of the high standards achieved by this technology in order to secure their approval.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Insights into MSW-to-Energy

You know the saying: One person’s trash is another’s treasure. When it comes to recovering energy from municipal solid waste — commonly called garbage or trash— that treasure can be especially useful. Instead of taking up space in a landfill, we can process our trash to produce energy to power our homes, businesses and public buildings.

In 2015, the United States got about 14 billion kilowatt-hours of electricity from burning municipal solid waste, or MSW. Seventy-one waste-to-energy plants and four additional power plants burned around 29 million tons of MSW in the U.S. that year. However, just 13 percent of the country’s waste becomes energy. Around 35 percent is recycled or composted, and the rest ends up in landfills.

Recovering Energy Through Incineration

The predominant technology for MSW-to-energy plants is incineration, which involves burning the trash at high temperatures. Similarly to how some facilities use coal or natural gas as fuel sources, power plants can also burn MSW as fuel to heat water, which creates steam, turns a turbine and produces electricity.

Several methods and technologies can play a role in burning trash to create electricity. The most common type of incineration plant is what’s called a mass-burn facility. These units burn the trash in one large chamber. The facility might sort the MSW before sending it to the combustion chamber to remove non-combustible materials and recyclables.

These mass-burn systems use excess air to facilitate mixing, and ensure air gets to all the waste. Many of these units also burn the fuel on a sloped, moving grate to mix the waste even further. These steps are vital because solid waste is inconsistent, and its content varies. Some facilities also shred the MSW before moving it to the combustion chamber.

Gasification Plants

Another method for converting trash into electricity is gasification. This type of waste-to-energy plant doesn’t burn MSW directly, but instead uses it as feedstock for reactions that produce a fuel gas known as synthesis gas, or syngas. This gas typically contains carbon monoxide, carbon dioxide, methane, hydrogen and water vapor.

Approaches to gasification vary, but typically include high temperatures, high-pressure environments, very little oxygen and shredding MSW before the process begins. Common gasification methods include:

  • Pyrolysis, which involves little to no oxygen, partial pressure and temperatures between approximately 600 and 800 degrees Celsius.
  • Air-fed systems, which use air instead of pure oxygen and temperatures between 800 and 1,800 degrees Celsius.
  • Plasma or plasma arc gasification, which uses plasma torches to increase temperatures to 2,000 to 2,800 degrees Celsius.

Syngas can be burned to create electricity, but it can also be a component in the production of transportation fuels, fertilizers and chemicals. Proponents of gasification report that it is a more efficient waste-to-energy method than incineration, and can produce around 1,000 kilowatt-hours of electricity from one ton of MSW. Incineration, on average, produces 550 kilowatt-hours.

Challenges of MSW-to-Energy

Turning trash into energy seems like an ideal solution. We have a lot of trash to deal with, and we need to produce energy. MSW-to-energy plants solve both of those problems. However, a relatively small amount of waste becomes energy, especially in the U.S.

Typical layout of MSW-to-Energy Plant

This lack may be due largely to the upfront costs of building a waste-to-energy plant. It is much cheaper in the short term to send trash straight to a landfill. Some people believe these energy production processes are just too complicated and expensive. Gasification, especially, has a reputation for being too complex.

Environmental concerns also play a role, since burning waste can release greenhouse gases. Although modern technologies can make burning waste a cleaner process, its proponents still complain it is too dirty.

Despite these challenges, as trash piles up and we continue to look for new sources of energy, waste-to-energy plants may begin to play a more integral role in our energy production and waste management processes. If we handle it responsibly and efficiently, it could become a very viable solution to several of the issues our society faces.

Waste-to-Energy in India: An Interview with Salman Zafar

waste-mountainIndia’s waste-to-energy sector, which kicked off in 1987, is still searching for a successful role model, even after tens of millions of dollars of investment. In recent years, many ambitious waste-to-energy projects have been established or are being planned in different parts of the country, and it is hoped that things will brighten up in the coming years. Salman Zafar, CEO of BioEnergy Consult, talks to Power Today magazine on India’s tryst with waste-to-energy and highlights major challenges and obstacles in making waste-to-energy a success story in India.

Power Today: What are the challenges that the Waste to Energy sector faces in the current scenario where there is a rejuvenated interest in clean energy? Do you think the buzz around solar and wind power has relegated the Waste to Energy sector to the back benches?

Salman Zafar: India’s experience with waste-to-energy has been lackluster until now. The progress of waste-to-energy sector in India is hampered by multiples issues including

  1. poor quality of municipal waste,
  2. high capital and O&M costs of waste-to-energy systems,
  3. lack of indigenous technology,
  4. lack of successful projects and failure of several ambitious projects,
  5. lack of coordination between municipalities, state and central governments,
  6. heavy reliance on government subsidies,
  7. difficulties in obtaining long-term Power Purchase Agreements (PPAs) with state electricity boards (SEBs)
  8. lukewarm response of banks and financial institutions and (9) weak supply chain.

Waste-to-energy is different from solar (or wind) as it essentially aims to reduce the colossal amount of solid wastes accumulating in cities and towns all over India. In addition to managing wastes, waste-to-energy has the added advantage of producing power which can be used to meet rapidly increasing energy requirements of urban India. In my opinion, waste-to-energy sector has attracted renewed interest in the last couple of years due to Swachch Bharat Mission, though government’s heavy focus on solar power has impacted the development of waste-to-energy as well as biomass energy sectors.

Power Today: India has a Waste to Energy potential of 17,000 MW, of which only around 1,365 MW has been realised so far. How much growth do you expect in the sector?

Salman Zafar: As per Energy Statistics 2015 (refer to http://mospi.nic.in/Mospi_New/upload/Energy_stats_2015_26mar15.pdf), waste-to-energy potential in India is estimated to be 2,556 MW, of which approximately 150 MW (around 6%) has been harnessed till March 2016.

The progress of waste-to-energy sector in India is dependent on resolution of MSW supply chain issues, better understanding of waste management practices, lowering of technology costs and flexible financial model. For the next two years, I am anticipating an increase of around 75-100 MW of installed capacity across India.

Power Today: On the technological front, what kinds of advancements are happening in the sector?

Salman Zafar: Nowadays, advanced thermal technologies like MBT, thermal depolymerisation, gasification, pyrolysis and plasma gasification are hogging limelight, mainly due to better energy efficiency, high conversion rates and less emissions. Incineration is still the most popular waste-to-energy technology, though there are serious emission concerns in developing countries as many project developers try to cut down costs by going for less efficient air pollution control system.

Power Today: What according to you, is the general sentiment towards setting up of Waste to Energy plants? Do you get enough cooperation from municipal bodies, since setting up of plants involves land acquisition and capital expenditure?

Salman Zafar: Waste-to-energy projects, be it in India or any other developing country, is plagued by NIMBY (not-in-my-backyard) effect. The general attitude towards waste-to-energy is that of indifference resulting in lukewarm public participation and community engagement in such projects.

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Lack of cooperation from municipalities is a major factor in sluggish growth of waste-to-energy sector in India. It has been observed that sometimes municipal officials connive with local politicians and ‘garbage mafia’ to create hurdles in waste collection and waste transport. Supply of poor quality feedstock to waste-to-energy plants by municipal bodies has led to failure of several high-profile projects, such as 6 MW MSW-to-biogas project in Lucknow, which was shut down within a year of commissioning due to waste quality issues.

Power Today: Do you think that government policies are in tandem when it comes to enabling this segment? What policies need to be changed, evolved or adopted to boost this sector?

Salman Zafar: A successful waste management strategy demands an integrated approach where recycling and waste-to-energy are given due importance in government policies. Government should strive to setup a dedicated waste-to-energy research centre to develop a lost-cost and low-tech solution to harness clean energy from millions of tons of waste generated in India.

The government is planning many waste-to-energy projects in different cities in the coming years which may help in easing the waste situation to a certain extent. However, government policies should be inclined towards inclusive waste management, whereby the informal recycling community is not robbed of its livelihood due to waste-to-energy projects.

Government should also try to create favourable policies for establishment of decentralized waste-to-energy plants as big projects are a logistical nightmare and more prone to failure than small-to-medium scale venture.

Note: This interview was originally published in June 2016 edition of Power Today magazine. The unabridged version is available at this link

Moving Grate Incineration: Preferred WTE Technology

Incineration is the most popular waste treatment method that transforms waste materials into useful energy. The incineration process converts waste into ash, flue gas, and heat. The type of thermal WTE technology most commonly used worldwide for municipal solid waste is the moving grate incineration. These moving grate incinerators are even sometimes referred to as as the Municipal Solid Waste Incinerators (MSWIs). As of August 2013, of more than 1000 of 1200 Waste-to-Energy plants (among 40 different countries) there is no pre-treatment of the MSW before it is combusted using a moving grate. The hot combustion gases are commonly used in boilers to create steam that can be utilized for electricity production. The excess energy that can’t be used for electricity can possibly be used for industrial purposes, such as desalination or district heating/cooling

Benefits of Moving Grate

The moving grate incineration technology is lenient in that it doesn’t need prior MSW sorting or shredding and can accommodate large quantities and variations of MSW composition and calorific value. With over 100 years of operation experience, the moving grate incineration system has a long track record of operation for mixed MSW treatment. Between 2003 and 2011, it was reported that at least 106 moving grate incineration plants were built worldwide for MSW treatment. Currently, it is the main thermal treatment used for mixed MSW.

Compared to other thermal treatment technologies, the unit capacity and plant capacity of the moving grate incineration system is the highest, ranging from 10 to 920 tpd and 20 to 4,300 tpd. This system is able to operate 8,000 hours per year with one scheduled stop for inspection and maintenance of a duration of roughly one month. Today, the moving grate incineration system is the only treatment type which has been proven to be capable of treating over 3,000 tpd of mixed MSW without requiring any pretreatment steps. Being composed of six lines of furnace, one of the world’s largest moving grate incineration plants has a capacity of 4,300 tpd and was installed in Singapore by Mitsubishi in 2000

Working Principle

Moving-grate incineration requires that the grate be able to move the waste from the combustion chamber to allow for an effective and complete combustion. A single incineration plant is able to process thirty-five metric tons of waste per hour of treatment.

The MSW for a moving grate incinerator does not require pretreatment. For this reason, it is easier to process large variations and quantities. Most of these incineration plants have hydraulic feeders to feed as-received MSW to the combustion chamber (a moving grate that burns the material), a boiler to recover heat, an air pollution control system to clean toxins in the flus gas, and discharge units for the fly ash. The air or water-cooled moving grate is the central piece of the process and is made of special alloys that resist the high temperature and avoid erosion and corrosion.

Working principle of a grate incinerator

The waste is first dried on the grate and then burnt at a high temperature (850 to 950 degrees C) accompanied with a supply of air. With a crane, the waste itself is emptied into an opening in the grate. The waste then moves towards the ash pit and it is then treated with water, cleaning the ash out. Air then flows through the waste, cooling the grate. Sometimes grates can also be cooled with water instead. Air gets blown through the boiler once more (but faster this time) to complete the burning of the flue gases to improve the mixing and excess of oxygen.

Suitability for Developing Nations

For lower income and developing countries with overflowing landfills, the moving grate incinerator seems suitable and efficient. Moving grate incineration is the most efficient technology for a large-scale mixed MSW treatment because it is the only thermal technology that has been able to treat over 3,000 tons of mixed MSW per day. It also seems to be considerably cheaper than conventional technologies.

Compared to other types of Waste-to-Energy technologies, this type of system also shows the highest ability to handle variation of MSW characteristics. As for the other incineration technologies like gasification and pyrolysis technologies, these are either limited in small-scale, limited in material for industrial/hazardous waste treatment, requiring preprocessing of mixed MSW before feeding, which make them not suitable for large-scale mixed MSW treatment.

Conclusion

For the reduction of significant waste volume, treatment using a moving grate incinerator with energy recovery is the most commonly used form of waste-to-energy (WTE) technology. The moving grate’s ability to treat significant volumes of waste efficiently, while not requiring pre-treatment or sorting is a major advantage that makes this suitable for developing countries. This technology could provide many other benefits to such nations. Implementing moving grate incinerators is most suitable for developing nations because not only will it reduce waste volume, but it would also reduce the demand for landfills, and could recover energy for electricity.

References

 “A Rapidly Emerging WTE Technology: Circulating Fluid Bed Combustion”. Huang, Qunxing, Yong Chi1, and Nickolas J. Themelis. Proceedings of International Thermal Treatment Technologies (IT3), San Antonio, TX, October 2013. Columbia University. Available: http://www.seas.columbia.edu/earth/wtert/sofos/Rapid_Emerging_Tech_CFB.pdf accessed on 29 March 2016.
“Incineration.” Waste Management Resources. Waste Management Resources. Available: http://www.wrfound.org.uk/articles/incineration.html accessed on 29 March 2016.
Kamuk, Bettina, and Jørgen Haukohl. ISWA Guidelines: Waste to Energy in Low and Middle Income Countries. Rep. International Solid Waste Association, 2013. Print.
“Municipal Solid Waste Management and Waste-to-Energy in the United States, China and Japan.” Themelis, Nickolas J., and Charles Mussche. 2nd International Academic Symposium on Enhanced Landfill Mining, Houthalen and Helchteren, Belgium, 4-16 October 2013.  Enhanced Landfill Mining. Columbia University.
“Review of MSW Thermal Treatment Tecnologies.” Lai, K.C.K., I.M.C. Lo, and T.T.Z. Liu. Proceedings of the International Conference on Solid Waste 2011- Moving Towards Sustainable Resource Management, Hong Kong SAR, P.R. China, 2 – 6 May 2011. Hong Kong SAR, P.R. China. 2011. 317-321. Available: http://www.iswa.org/uploads/tx_iswaknowledgebase/10_Thermal_Technology.pdf. accessed on 14 April 2016.
UN-HABITAT, 2010. Collection of Municipal Solid Waste in Developing Countries. United Nations Human Settlements Programme (UN-HABITAT), Nairobi. Available:
http://www.eawag.ch/fileadmin/Domain1/Abteilungen/sandec/E-Learning/Moocs/Solid_Waste/W1/Collection_MSW_2010.pdf.
World Bank, 2012. What a Waste: A Global Review of Solid Waste Management. Urban Development Series Knowledge Papers. Available: http://documents.worldbank.org/curated/en/2012/03/16537275/waste-global-review-solid-wastemanagement. accessed on 14 April 2016.

Trends in Waste-to-Energy Industry

The increasing clamor for energy and satisfying it with a combination of conventional and renewable resources is a big challenge. Accompanying energy problems in almost all parts of the world, another problem that is assuming critical proportions is that of urban waste accumulation. The quantity of waste produced all over the world amounted to more than 12 billion tonnes in 2006, with estimates of up to 13 billion tonnes in 2011. The rapid increase in population coupled with changing lifestyle and consumption patterns is expected to result in an exponential increase in waste generation of up to 18 billion tonnes by year 2020. Ironically, most of the wastes are disposed of in open fields, along highways or burnt wantonly.

Size of the Industry

Around 130 million tonnes of municipal solid waste (MSW) are combusted annually in over 600 waste-to-energy (WTE) facilities globally that produce electricity and steam for district heating and recovered metals for recycling. The global market for biological and thermochemical waste-to-energy technologies is expected to reach USD 7.4 billion in 2013 and grow to USD 29.2 billion by 2022. Incineration, with energy recovery, is the most common waste-to-energy method employed worldwide. Since 1995, the global WTE industry increased by more than 16 million tonnes of MSW. Over the last five years, waste incineration in Europe has generated between an average of 4% to 8% of their countries’ electricity and between an average of 10% to 15% of the continent’s domestic heat.

Advanced thermal technologies, like pyrolysis, and anaerobic digestion systems are beginning to make deep inroads in the waste-to-energy sector and are expected to increase their respective market shares on account of global interest in integrated waste management framework in urban areas. Scarcity of waste disposal sites coupled with growing waste volumes and solid waste management challenges are generating high degree of interest in energy-from-waste systems among policy-makers, urban planners, entrepreneurs, utility companies etc.

Regional Trends

Currently, the European nations are recognized as global leaders of waste-to-energy movement. They are followed behind by the Asia Pacific region and North America respectively. In 2007 there are more than 600 WTE plants in 35 different countries, including large countries such as China and small ones such as Bermuda. Some of the newest plants are located in Asia. China is witnessing a surge in waste-to-energy installations and has plans to establish 125 new waste-to-energy plants during the twelfth five-year plan ending 2015.

Incineration is the most common waste-to-energy method used worldwide.

The United States processes 14 percent of its trash in WTE plants. Denmark, on the other hand, processes more than any other country – 54 percent of its waste materials. As at the end of 2008, Europe had more than 475 WTE plants across its regions – more than any other continent in the world – that processes an average of 59 million tonnes of waste per annum. In the same year, the European WTE industry as a whole had generated revenues of approximately US$4.5bn.

Legislative shifts by European governments have seen considerable progress made in the region’s WTE industry as well as in the implementation of advanced technology and innovative recycling solutions. The most important piece of WTE legislation pertaining to the region has been the European Union’s Landfill Directive, which was officially implemented in 2001 which has resulted in the planning and commissioning of an increasing number of WTE plants over the past five years.

Challenges in Hazardous Medical Waste Management

medical-waste-managementMedical waste management is a concern of healthcare facilities all over the world; about 10-20% of the facility’s budget every year is spent on waste disposal. According to the WHO, about 85% of the total amount of generated waste is non hazardous but the remaining 15% is considered infectious, toxic or radioactive. While non-hazardous medical waste poses less problems, the risks and challenges of hazardous medical waste management must be considered carefully, since incineration or open burning of hazardous medical waste can result in emissions of dangerous pollutants such as dioxins and furans.

For this reason, measures must be taken to ensure safe disposal of hazardous medical waste waste in order to prevent negative impact on the environment or biological hazards, especially in developing countries.

Health Risks

Biologically hazardous waste can be a source of infection due to the harmful microorganisms it contains; the most exposed are hospital patients, hospital staff, health workers. However, the situation is potentially harmful for the general public as well. The risks include chemical burns, air pollution, radiation burns and toxic exposure to harmful pharmaceutical products and substances, such as mercury or dioxins, especially during the process of waste incineration.

Other risks can also derive from the incorrect disposal of needles and syringes; worldwide, it is estimated that, every year, about 16 billion infections are administered. Unfortunately, not all needles are safely eliminated, creating risk of infection but also the possibility of unintentional reuse. Even though this risk has decreased in recent years, unsafe infections are still responsible for many new cases of HIV, hepatitis B and hepatitis C.

Environmental Impacts

Incorrect disposal of untreated healthcare waste can contaminate drinking and ground water in landfill, and also release dangerous chemical substances in the environment. Deficient waste incineration can also release hazardous pollutants in the air, and generate dioxins and furans, substances which have been linked to cancer and other adverse health conditions. Heavy metals, if incinerated, can lead to the diffusion of toxic metals in the environment.

The Way Forward

There is still a long way to go in order to ensure safe disposal of hazardous healthcare waste. A joint WHO/UNICEF assessment conducted in 2015 found that only 58% of analyzed facilities over 24 countries had appropriate medical waste disposal systems in place.

Strategies to improve healthcare waste segregation is an essential step in medical waste management

In the workplace, it is important to raise awareness and promote self-practices. Training in the areas of infection control and clinical waste management is important in order to maintain a clean, safe environment for patients and staff alike. Specialized industrial cleaning can also be effective in reducing risk of infection.

It is also essential to develop safe methods and technologies of treating hazardous medical waste, as opposed to waste incineration, which has already been shown to be ineffective and dangerous. Alternatives to incineration, such as microwaving or autoclaving, greatly reduce the release of hazardous emissions.

Finally, developing global strategies and systems to improve healthcare waste segregation is another essential step; since only about 15% of clinical waste is hazardous, treatment and disposal costs could be reduced significantly with proper segregation practices. Furthermore, these practices also reduce risks of infections for those workers who handle clinical waste.

Waste Management Progress in Nigeria’s Delta State

waste-nigeriaWaste management is a serious problem in Nigeria, and Delta State is no exception. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern, and you often see people disposing of their household waste in the streets at night. Once the waste gets out into the streets, it’s perceived as the duty of the government to handle it.

However, I have never yet heard of any Nigerian politician making waste management a feature of his or her manifesto during the election campaign process. Having said that, a few of Nigeria’s political leaders deserve to be commended for coming to terms with the fact that waste has to be managed properly, even if such issues were far from their minds when they entered political office.

Legislation and Framework

Nigeria does have a waste legislation framework in place. Its focus has been on the most toxic and hazardous waste: partly in response to some major pollution incidents in the 1980s, the government took powers in relation to Hazardous Waste in 1988. In the same year, the Federal Environmental Protection Agency was established – and was subsequently strengthened by the addition of an inspectorate and enforcement department arm in 1991, with divisions for standard regulation, chemical tracking and compliance monitoring. These laws have since given rise to regulations and guidelines pertaining to environmental and waste management issues.

Under our laws, waste management in each state is the duty of the local governments that fall within it, but few are taking an active approach to implementing and enforcing the sensible measures that the regulations require. A small number of states have taken over this task from local government, and Delta State’s decision to do this has led to significant new investment in waste management.

One of the fruits of that investment is the Delta State Integrated Waste Management Facility at Asaba for treating both household and clinical waste generated locally. It was developed when the Delta State government decided to put an end to the non-sustainable dumping of waste in Asaba, the state capital.

Integrated Waste Management Facility at Asaba

It is described as an integrated waste management facility because it includes a composting department, a recycling department and a (non-WTE) incineration department. Trucks carrying waste are weighed in as they come into the facility. From the weigh bridge, they move to the relevant reception bay – there are separate ones for household and clinical wastes – to tip their load, and are then weighed again on the way out.

Medical waste is taken directly for incineration, but household wastes are sent along conveyors for sorting. Recyclables and compostable materials are, so far as possible, separated both from other waste and from one another. Each recyclable stream ends up in a chamber where it can be prepared for sale. The compostable materials are moved to the composting section, which uses aerated static pile composting.

The remaining waste is conveyed into the three incinerators – moving grate, rotary kiln and fixed end– for combustion. The resulting ash is recycled by mixing it with cement and sharp sand and moulding it into interlocking tiles. The stacks of the three incinerators are fitted with smoke cleaning systems to reduce emissions. The process produces wastewater, which is channelled to a pit where it is treated and reused. Overall, 30% of the waste is composted, 15% recycled and 55% incinerated.

There are many examples of sophisticated waste infrastructure being built in developing countries, but failing because the necessary collection systems were not in place to support them. To ensure that this problem is avoided at Asaba, the Delta State government is working with a group known as the Private Sector Participants (PSP).

Each member of this group has trucks assigned to them and has been directed to collect household waste from different parts of the city, for delivery to the facility for treatment. The arrangements made by each PSP are different: some collect from outside individual properties, and some from communal sites; most collect waste that is found in the streets; and while each is subsidised by the state, households also have to pay towards the cost.

Before the Asaba facility was developed, most of the wastes generated in Asaba were disposed of at a dumpsite just adjacent to the Delta State Airport. This created a pungent odour, as well as visual disamenity for people nearby. A great deal of remediation work is now taking place at the dumpsite, which is vastly improving the local environmental quality.

War on Waste

Of course, although this is an improvement there remains more to do. First on the list is education. People do not know how sustainable waste management can impact positively in their lives, reducing their exposure to toxins as well as improving their surroundings. Nor do they understand that recycling a beverage can or a plastic bottle will cost less than producing one from virgin materials and will have a lesser environmental impact. There remains a good deal of cultural change and environmental education that is needed before people will stop throwing waste and litter on the streets – but there are few countries where, to some extent, the same would not be true.

Next is the lack of infrastructure. Nigeria has 36 states and a federal capital, yet the facility in Asaba is the first publicly commissioned one of its kind in the country; there are also some privately owned incinerators that a few companies in Port Harcourt use to treat wastes from vessels (ships), hospitals and industries. Lagos state and Abuja are relatively advanced, simply by virtue of having put in place a few managed landfills, but they are still far from having the level of facility that Asaba can now boast.

The backbone of Asaba’s progress is the state government’s commitment to put a proper waste management solution in place. We’ve seen the impact in the form of infrastructure, collections and remediation, and law enforcement work is starting to change people’s perception about waste management in Delta State. At the moment, plans are being concluded to setup another facility in Warri, Delta State’s industrial hub, which will be twice the size of the Asaba facility.?

My hope is that the progress made by Delta State will be a beacon for other states’ governments. The example we are providing of cleaner, hygienic, more environmentally responsible waste management, and the positive changes that is bringing about, should inspire new development elsewhere in the country, which could equal or even exceed Delta State’s results. So whilst Nigeria’s track record on waste may leave a lot to be desired, the path ahead could be a great deal more promising.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be found at this link.