Easy Ways to be Greener in Your Marine Business

Do you run a marine-oriented business? If so, then you may have a unique opportunity to practice environmental conservation. Water, as you know, plays a major role in sustaining life on Earth. Anything you can do to preserve and protect water goes a long way in helping to combat climate change. Here are a few easy ways to make your marine business greener. Marine work covers a wide range of fields, but we found a few tips and tricks that may be applicable to most relevant businesses.

Use Less Chemicals in Pools

Here’s a tip for those who work in pool maintenance: use less chemicals. You can use fewer chemicals and also maintain a clean and healthy pool. This may take some strategic planning on your part, but it’s possible.

There are two main chemicals that are used to kill bacteria in pools: chlorine and bromine. Chlorine is more commonly used because it’s cheaper. But bromine is a longer-lasting chemical. Chlorine requires weekly doses because it’s neutralized quickly. You don’t need to dose the pull with bromine every week because bromine is more resilient. When you use bromine, you’re using less chemicals, which is better for the environment.

The downside to bromine is that it’s much more expensive than chlorine. If you have clients who are passionate about the environment, you could explain this to them and ask if they’d be willing to pay a slightly higher fee for bromine chemicals. Remember that you might be able to reduce the number of visits to that pool if you use bromine on it, which could reduce your operational costs.

Use Pool Covers

Water naturally evaporates from pools, and pool owners spend a lot of money having to top-off the pool with water every month. It’s a bigger problem in warmer areas, like in Nevada or Southern California. Water is a resource that’s taken for granted, and some of those aforementioned regions experience severe water shortages in times of drought. You should try and limit how often your clients’ pools are re-filled.

Convince your clients to use pool covers during months when they don’t use the pool as frequently. Covers reduce the amount of water that evaporates from the pool. You may be able to charge clients for having your employees cover and uncover the pool. You can use pathos to argue your case; pool covers also prevent young children and small animals from drowning.

Practice Eco-Friendly Boating

Do you run a business that involves boating? Be careful about which chemicals you use when you’re cleaning and maintaining your boat. Some chemicals contribute to harmful emissions, while others can pollute the ocean or lakes and kill marine life.

You should use marine foam and marine paint when you’re doing maintenance on the hull and exterior features. Those materials are eco-friendly. You should avoid using antifouling paint, which is very dangerous for marine life. You should also limit your use of household cleaners. You don’t want these chemicals spilling into the ocean. Try and use natural cleaners instead, like vinegar, lemon, and baking soda.

It’s illegal to dump sewage in any body of navigable water because sewage is bad for the ocean. Always properly dispose of sewage at a pumpout facility. Be proactive in fixing leaks, and always have absorbent towels on hand to clean oil off the bilge.

SCUBA Conservation

If you run a dive shop, be vigilant in protecting the reefs where you take divers. Educate divers—especially new divers—about not touching coral reefs, and about being careful where they kick their fins. Most scuba divers are respectful of the underwater ecosystems, but there’s a bad apple in every bunch. If you have to, threaten to end dives short if any diver knowingly disobeys your environmental rules.


Last, but certainly not least, recycle! Recycling is one of the easiest and most simple ways to make your marine business more eco-friendly. Regardless of whether you’re a contractor or if you work on a boat, you should always have recycling bins where you can toss used plastics and glass. Take these materials to recycling facilities so that they can be properly re-made into new items. Some recycling facilities even pay you for bringing in materials.

If you run a marine-based business, you have the potential to protect the environment in a huge number of ways. Practice eco-friendly cleaning methods and sustainability, and educate your clients on how they can contribute.

Rice Straw As Bioenergy Resource

The cultivation of rice results in two types of biomass residues – straw and husk – having attractive potential in terms of energy. Rice husk, the main by-product from rice milling, accounts for roughly 22% of paddy weight, while rice straw to paddy ratio ranges from 1.0 to 4.3. Although the technology for rice husk utilization is well-established worldwide, rice straw is sparingly used as a source of renewable energy. One of the main reasons for the preferred use of husk is its easy procurement. In case of rice straw, however, its collection is difficult and its availability is limited to harvest time.

Rice straw can either be used alone or mixed with other biomass materials in direct combustion, whereby combustion boilers are used in combination with steam turbines to produce electricity and heat. The energy content of rice straw is around 14 MJ per kg at 10 percent moisture content.  The by-products are fly ash and bottom ash, which have an economic value and could be used in cement and/or brick manufacturing, construction of roads and embankments, etc.

Straw fuels have proved to be extremely difficult to burn in most combustion furnaces, especially those designed for power generation. The primary issue concerning the use of rice straw and other herbaceous biomass for power generation is fouling, slagging, and corrosion of the boiler due to alkaline and chlorine components in the ash. Europe, and in particular, Denmark, currently has the greatest experience with straw-fired power and CHP plants.

Because of the large amount of cereal grains (wheat and oats) grown in Denmark, the surplus straw plays a large role in the country’s renewable energy strategy. Technology developed includes combustion furnaces, boilers, and superheat concepts purportedly capable of operating with high alkali fuels and having handling systems which minimize fuel preparation.

A variety of methods are employed by the European plants to prepare straw for combustion. Most use automated truck unloading bridge cranes that clamp up to 12 bales at a time and stack them 4-5 bales high in covered storage. Some systems feed whole bales into the boiler. Probably the best known whole bale feeder is the “Vølund cigar feeding” concept, originally applied by Vølund (now Babcock and Wilcox-Vølund). Whole bales are pushed into the combustion chamber and the straw burned off the face of the bale.

However, the newer Danish plants have moved away from whole-bale systems to shredded straw feed for higher efficiency. For pulverized coal co-firing, the straw usually needs to be ground or cut to small sizes in order to burn completely within relatively short residence times (suspension fired systems) or to feed and mix upon injection with bed media in fluidized bed systems.

The chemical composition of feedstock has a major influence on the efficiency of biomass cogeneration. The low feedstock quality of rice straw is primarily determined by high ash content (10–17%) as compared with wheat straw (around 3%) and also high silica content in ash. On the other hand, rice straw as feedstock has the advantage of having a relatively low total alkali content, whereas wheat straw can typically have more than 25% alkali content in ash.

However, straw quality varies substantially within seasons as well as within regions. If straw is exposed to precipitation in the field, alkali and alkaline compounds are leached, improving the feedstock quality. In turn, moisture content should be less than 10% for combustion technology.

In straw combustion at high temperatures, potassium is transformed and combines with other alkali earth materials such as calcium. This in turn reacts with silicates, leading to the formation of tightly sintered structures on the grates and at the furnace wall. Alkali earths are also important in the formation of slag and deposits. This means that fuels with lower alkali content are less problematic when fired in a boiler.