Bioenergy Developments in Malaysia

Malaysia is blessed with abundant renewable sources of energy, especially biomass and solar. Under the Eighth Malaysian Plan, renewable energy was added in the energy mix to unveil a Five-Fuel Strategy to achieve 5 percent contribution by 2005.

Among the various sources of renewable energy, bioenergy seems to be the most promising option for Malaysia. The National Biofuel Policy, launched in 2006 encourages the use of environmentally friendly, sustainable and viable sources of biomass energy. Under the Five Fuel Policy, the government of Malaysia has identified biomass as one of the potential renewable energy. Malaysia produces atleast 168 million tonnes of biomass, including timber and oil palm waste, rice husks, coconut trunk fibres, municipal waste and sugar cane waste annually. Being a major agricultural commodity producer in the region Malaysia is well positioned amongst the ASEAN countries to promote the use of biomass as a renewable energy source.

Malaysia has been one of the world’s largest producers and exporters of palm oil for the last forty years. The Palm Oil industry, besides producing Crude Palm Oil (CPO) and Palm Kernel Oil, produces Palm Shell, Press Fibre, Empty Fruit Bunches (EFB), Palm Oil Mill Effluent (POME), Palm Trunk (during replanting) and Palm Fronds (during pruning).

Malaysia has approximately 4 million hectares of land under oil palm plantation. Over 75% of total area planted is located in just four states, Sabah, Johor, Pahang and Sarawak, each of which has over half a million hectares under cultivation. The total amount of processed FFB (Fresh Fruit Bunches) was estimated to be 75 million tons while the total amount of EFB produced was estimated to be 16.6 million tons. Around 58 million tons of POME is produced in Malaysia annually, which has the potential to produce an estimated 15 billion m3 of biogas can be produced each year.

Malaysia is the world’s second largest producer of crude palm oil. Almost 70% of the volume from the processing of fresh fruit bunch is removed as wastes in the form of empty fruit bunches, palm kernel shells, palm oil mill effluent etc. With more than 423 mills in Malaysia, this palm oil industry generated around 80 million dry tonnes of biomass in 2010. Malaysia has more than 2400 MW of biomass and 410 MW of biogas potential, out of which only 773MW has been harnessed until 2011.

Rice husk is another important agricultural biomass resource in Malaysia with good potential for power cogeneration. An example of its attractive energy potential is biomass power plant in the state of Perlis which uses rice husk as the main source of fuel and generates 10 MW power to meet the requirements of 30,000 households. The US$15 million project has been undertaken by Bio-Renewable Power Sdn Bhd in collaboration with the Perlis state government, while technology provider is Finland’s Foster Wheeler Energia Oy.

Under the EC-ASEAN Cogeneration Program, there are three ongoing Full Scale Demonstration Projects (FSDPs) – Titi Serong, Sungai Dingin Palm Oil Mill and TSH Bioenergy – to promote biomass energy systems in Malaysia. The 1.5MW Titi Serong power plant, located at Parit Buntar (Perak), is based on rice husk while the 2MW Sungai Dingin Palm Oil Mill project make use of palm kernel shell and fibre to generate steam and electricity. The 14MW TSH Bioenergy Sdn Bhd, located at Tawau (Sabah), is the biggest biomass power plant in Malaysia and utilizes empty fruit bunches, palm oil fibre and palm kernel shell as fuel resources.

Agricultural Wastes in the Philippines

The Philippines is mainly an agricultural country with a land area of 30 million hectares, 47 percent of which is agricultural. The total area devoted to agricultural crops is 13 million hectares distributed among food grains, food crops and non-food crops. Among the crops grown, rice, coconut and sugarcane are major contributors to biomass energy resources.

The most common agricultural wastes in the Philippines are rice husk, rice straw, coconut husk, coconut shell and bagasse. The country has good potential for biomass power plants as one-third of the country’s agricultural land produces rice, and consequently large volumes of rice straw and hulls are generated.

Rice is the staple food in the Philippines. The Filipinos are among the world’s biggest rice consumers. The average Filipino consumes about 100 kilograms per year of rice.  Though rice is produced throughout the country, the Central Luzon and Cagayan Valley are the major rice growing regions. With more than 1.2 million hectares of rain-fed rice-producing areas, the country produced around 16 million tons of rice in 2007. The estimated production of rice hull in the Philippines is more than 2 million tons per annum which is equivalent to approximately 5 million BOE (barrels of oil equivalent) in terms of energy. Rice straw is another important biomass resource with potential availability exceeding 5 million tons per year across the country.

With the passing of Biofuels Act of 2006, the sugar industry in the Philippines which is the major source of ethanol and domestic sugar will become a major thriving industry. Around 380,000 hectares of land is devoted to sugarcane cultivation. It is estimated that 1.17 million tonnes of sugarcane trash is recoverable as a biomass resource in the Philippines. In addition, 6.4 million tonnes of surplus bagasse is available from sugar mills. There are 29 operating sugar mills in the country with an average capacity of 6,900 tonnes of cane per day. Majority is located in Negros Island which provides about 46% of the country’s annual sugar production.

The Philippines has the largest number of coconut trees in the world as it produces most of the world market for coconut oil and copra meal. The major coconut wastes include coconut shell, coconut husks and coconut coir dust. Coconut shell is the most widely utilized but the reported utilization rate is very low.  Approximately 500 million coconut trees in the Philippines produce tremendous amounts of biomass as husk (4.1 million tonnes), shell (1.8 million tonnes), and frond (4.5 million tonnes annually).

Maize is a major crop in the Philippines that generates large amounts of agricultural residues. It is estimated that 4 million tonnes of grain maize and 0.96 million tonnes of maize cobs produced yearly in the Philippines. Maize cob burning is the main energy application of the crop, and is widely practiced by small farmers to supplement fuelwood for cooking.

Biomass Energy in Thailand

Thailand’s annual energy consumption has risen sharply during the past decade and will continue its upward trend in the years to come. While energy demand has risen sharply, domestic sources of supply are limited, thus forcing a significant reliance on imports.

To face this increasing demand, Thailand needs to produce more energy from its own renewable resources, particularly biomass wastes derived from agro-industry, such as bagasse, rice husk, wood chips, livestock and municipal wastes.

In 2005, total installed power capacity in Thailand was 26,430 MW. Renewable energy accounted for about 2 percent of the total installed capacity. In 2007, Thailand had about 777 MW of electricity from renewable energy that was sold to the grid.

Several studies have projected that biomass wastes can cover up to 15 % of the energy demand in Thailand. These estimations are primarily made from biomass waste from the extraction part of agricultural activities, and for large scale agricultural processing of crops etc. – as for instance saw and palm oil mills – and do not include biomass wastes from SMEs in Thailand. Thus, the energy potential of biomass waste can be much larger if these resources are included. The major biomass resources in Thailand include the following:

  • Woody biomass residues from forest plantations
  • Agricultural residues (rice husk, bagasse, corn cobs, etc.)
  • Wood residues from wood and furniture industries    (bark, sawdust, etc.)
  • Biomass for ethanol production (cassava, sugar cane, etc.)
  • Biomass for biodiesel production (palm oil, jatropha oil, etc.)
  • Industrial wastewater from agro-industry
  • Livestock manure
  • Municipal solid wastes and sewage

Thailand’s vast biomass potential has been partially exploited through the use of traditional as well as more advanced conversion technologies for biogas, power generation, and biofuels. Rice, sugar, palm oil, and wood-related industries are the major potential biomass energy sources. The country has a fairly large biomass resource base of about 60 million tons generated each year that could be utilized for energy purposes, such as rice, sugarcane, rubber sheets, palm oil and cassava.

Biomass has been a primary source of energy for many years, used for domestic heating and industrial cogeneration. For example, paddy husks are burned to produce steam for turbine operation in rice mills; bagasse and palm residues are used to produce steam and electricity for on-site manufacturing process; and rubber wood chips are burned to produce hot air for rubber wood seasoning.

In addition to biomass residues, wastewater containing organic matters from livestock farms and industries has increasingly been used as a potential source of biomass energy. Thailand’s primary biogas sources are pig farms and residues from food processing. The production potential of biogas from industrial wastewater from palm oil industries, tapioca starch industries, food processing industries, and slaughter industries is also significant. The energy-recovery and environmental benefits that the KWTE waste to energy project has already delivered is attracting keen interest from a wide range of food processing industries around the world.

Biomass Resources from Rice Industry

The cultivation of rice results in two major types of residues – Straw and Husk –having attractive potential in terms of energy. Although the technology for rice husk utilization is well-proven in industrialized countries of Europe and North America, such technologies are yet to be introduced in the developing world on commercial scale. The importance of Rice Husk and Rice Straw as an attractive source of energy can be gauged from the following statistics:

Rice Straw

  • 1 ton of Rice paddy produces 290 kg Rice Straw
  • 290 kg Rice Straw can produce 100 kWh of power
  • Calorific value = 2400 kcal/kg

Rice Husk

  • 1 ton of Rice paddy produces 220 kg Rice Husk
  • 1 ton Rice Husk is equivalent to 410- 570 kWh electricity
  • Calorific value = 3000 kcal/kg
  • Moisture content = 5 – 12%

Rice husk is the most prolific agricultural residue in rice producing countries around the world. It is one of the major by-products from the rice milling process and constitutes about 20% of paddy by weight. Rice husk, which consists mainly of lingo-cellulose and silica, is not utilized to any significant extent and has great potential as an energy source.

Rice husk can be used for power generation through either the steam or gasification route. For small scale power generation, the gasification route has attracted more attention as a small steam power plant is very inefficient and is very difficult to maintain due to the presence of a boiler. In addition for rice mills with diesel engines, the gas produced from rice husk can be used in the existing engine in a dual fuel operation.

The benefits of using rice husk technology are numerous. Primarily, it provides electricity and serves as a way to dispose of agricultural waste. In addition, steam, a byproduct of power generation, can be used for paddy drying applications, thereby increasing local incomes and reducing the need to import fossil fuels. Rice husk ash, the byproduct of rice husk power plants, can be used in the cement and steel industries further decreasing the need to import these materials.

Rice straw can either be used alone or mixed with other biomass materials in direct combustion. In this technology, combustion boilers are used in combination with steam turbines to produce electricity and heat. The energy content of rice straw is around 14 MJ per kg at 10 percent moisture content.  The by-products are fly ash and bottom ash, which have an economic value and could be used in cement and/or brick manufacturing, construction of roads and embankments, etc.

Straw fuels have proved to be extremely difficult to burn in most combustion furnaces, especially those designed for power generation. The primary issue concerning the use of rice straw and other herbaceous biomass for power generation is fouling, slagging, and corrosion of the boiler due to alkaline and chlorine components in the ash. Europe, and in particular, Denmark, currently has the greatest experience with straw fired power and CHP plants.

Biomass Energy in Vietnam

Vietnam is one of the few countries having a low level of energy consumption in the developing world with an estimated amount of 210 kg of oil equivalent per capita/year. Over half of the Vietnamese population does not have access to electricity. Vietnam is facing the difficult challenge of maintaining this growth in a sustainable manner, with no or minimal adverse impacts on society and the environment.

Being an agricultural country, Vietnam has very good biomass energy potential. Agricultural wastes are most abundant in the Mekong Delta region with approximately 50% of the amount of the whole country and Red River Delta with 15%. Major biomass resources includes rice husk from paddy milling stations, bagasse from sugar factories, coffee husk from coffee processing plants in the Central Highlands and wood chip from wood processing industries. Vietnam has set a target of having a combined capacity of 500 MW of biomass power by 2020, which is raised to 2,000 MW in 2030.

Rice husk and bagasse are the biomass resources with the greatest economic potential, estimated at 50 MW and 150 MW respectively. Biomass fuels sources that can also be developed include forest wood, rubber wood, logging residues, saw mill residues, sugar cane residues, bagasse, coffee husk and coconut residues. Currently biomass is generally treated as a non-commercial energy source, and collected and used locally. Nearly 40 bagasse-based biomass power plants have been developed with a total designed capacity of 150 MW but they are still unable to connect with the national grid due to current low power prices. Five cogeneration systems selling extra electricity to national grid at average price of 4UScents/kWh.

Biogas energy potential is approximately 10 billion m3/year, which can be collected from landfills, animal excrements, agricultural residues, industrial wastewater etc. The biogas potential in the country is large due to livestock population of more than 30 million, mostly pigs, cattle, and water buffalo. Although most livestock dung already is used in feeding fish and fertilizing fields and gardens, there is potential for higher-value utilization through biogas production. It is estimated that more than 25,000 household biogas digesters with 1 to 50 m3, have been installed in rural areas. The Dutch-funded Biogas Program operated by SNV Vietnam constructed some 18,000 biogas facilities in 12 provinces between 2003 and 2005, with a second phase (2007-2010) target of 150,000 biogas tanks in both rural and semi-urban settings.

Municipal solid waste is also a good biomass resource as the amount of solid waste generated in Vietnam has been increasing steadily over the last few decades. In 1996, the average amount of waste produced per year was 5.9 million tons per annum which rose to 28 million tons per in 2008 and expected to reach 44 million tons per year by 2015.

Energy Value of Agricultural Wastes

Large quantities of agricultural wastes, resulting from crop cultivation activities, are a promising source of energy supply for production, processing and domestic activities in rural areas of the concerned region. The available agricultural residues are either being used inefficiently or burnt in the open to clear the fields for subsequent crop cultivation.

On an average 1.5 tons of crop residue are generated for processing 1 ton of the main product. In addition, substantial quantities of secondary residues are produced in agro-industries processing farm produce such as paddy, sugarcane, coconut, fruits and vegetables.

Agricultural crop residues often have a disposal cost associated with them. Therefore, the “waste-to-energy” conversion processes for heat and power generation, and even in some cases for transport fuel production, can have good economic and market potential. They have value particularly in rural community applications, and are used widely in countries such as Sweden, Denmark, Netherlands, USA, Canada, Austria and Finland.

The energy density and physical properties of agricultural biomass wastes are critical factors for feedstock considerations and need to be understood in order to match a feedstock and processing technology.

There are six generic biomass processing technologies based on direct combustion (for power), anaerobic digestion (for methane-rich biogas), fermentation (of sugars for alcohols), oil exaction (for biodiesel), pyrolysis (for biochar, gas and oils) and gasification (for carbon monoxide and hydrogen-rich syngas). These technologies can then be followed by an array of secondary treatments (stabilization, dewatering, upgrading, refining) depending on specific final products.

It is well-known that power plants based on baled agricultural residues are efficient and cost-effective energy generators. Residues such as Rice Husks, Wheat Straw and Maize Cobs are already concentrated at a point where it is an easily exploitable source of energy, particularly if it can be utilized on-site to provide combined heat and power.

The selection of processing technologies needs to be aligned to the nature and structure of the biomass feedstock and the desired project outputs. It can be seen that direct combustion or gasification of biomass are appropriate when heat and power are required.

Anaerobic digestion, fermentation and oil extraction are suitable when specific biomass wastes are available that have easily extractable oils and sugars or high water contents. On the other hand, only thermal processing of biomass by pyrolysis can provide the platform for all of the above forms of product.

Many thermal processing technologies for agricultural wastes require the water content of biomass to be low (<15 per cent) for proper operation. For these technologies the energy cost of drying can represent a significant reduction in process efficiency.

Moisture content is of important interest since it corresponds to one of the main criteria for the selection of energy conversion process technology. Thermal conversion technology requires biomass fuels with low moisture content, while those with high moisture content are more appropriate for biological-based process such as fermentation or anaerobic digestion.

The ash content of biomass influences the expenses related to handling and processing to be included in the overall conversion cost. On the other hand, the chemical composition of ash is a determinant parameter in the consideration of a thermal conversion unit, since it gives rise to problems of slagging, fouling, sintering and corrosion.

Biomass Energy in Indonesia

With Indonesia’s recovery from the Asian financial crisis of 1998, energy consumption has grown rapidly in past decade. The priority of the Indonesian energy policy is to reduce oil consumption and to use renewable energy. For power generation, it is important to increase electricity power in order to meet national demand and to change fossil fuel consumption by utilization of biomass wastes. The development of renewable energy is one of priority targets in Indonesia.

It is estimated that Indonesia produces 146.7 million tons of biomass per year, equivalent to about 470 GJ/y. Sources of biomass energy in Indonesia are scattered all over the country, but the biggest potential in concentrated scale can be found in the Island of Kalimantan, Sumatera, Irian Jaya and Sulawesi. Studies estimate the electricity generation potential from the roughly 150 Mt of biomass residues produced per year to be about 50 GW or equivalent to roughly 470 GJ/year. These studies assume that the main source of biomass energy in Indonesia will be rice residues with a technical energy potential of 150 GJ/year. Other potential biomass sources are rubber wood residues (120 GJ/year), sugar mill residues (78 GJ/year), palm oil residues (67 GJ/year), and less than 20 GJ/year in total from plywood and veneer residues, logging residues, sawn timber residues, coconut residues, and other agricultural wastes.

Sustainable and renewable natural resources such as biomass can supply potential raw materials for energy conversion. In Indonesia, they comprise variable-sized wood from forests (i.e. natural forests, plantations and community forests that commonly produce small-diameter logs used as firewood by local people), woody residues from logging and wood industries, oil-palm shell waste from crude palm oil factories, coconut shell wastes from coconut plantations, as well as skimmed coconut oil and straw from rice cultivation.

The major crop residues to be considered for power generation in Indonesia are palm oil sugar processing and rice processing residues. Currently, 67 sugar mills are in operation in Indonesia and eight more are under construction or planned. The mills range in size of milling capacity from less than 1,000 tons of cane per day to 12,000 tons of cane per day. Current sugar processing in Indonesia produces 8 millions MT bagasse and 11.5 millions MT canes top and leaves. There are 39 palm oil plantations and mills currently operating in Indonesia, and at least eight new plantations are under construction. Most palm oil mills generate combined heat and power from fibres and shells, making the operations energy self –efficient. However, the use of palm oil residues can still be optimized in more energy efficient systems.

Other potential source of biomass energy can also come from municipal wastes. The quantity of city or municipal wastes in Indonesia is comparable with other big cities of the world. Most of these wastes are originated from household in the form of organic wastes from the kitchen. At present the wastes are either burned at each household or collected by the municipalities and later to be dumped into a designated dumping ground or landfill. Although the government is providing facilities to collect and clean all these wastes, however, due to the increasing number of populations coupled with inadequate number of waste treatment facilities in addition to inadequate amount of allocated budget for waste management, most of big cities in Indonesia had been suffering from the increasing problem of waste disposals.

The current pressure for cost savings and competitiveness in Indonesia’s most important biomass-based industries, along with the continually growing power demands of the country signal opportunities for increased exploitation of biomass wastes for power generation.

Biomass Resources in Malaysia

Malaysia is gifted with conventional energy resources such as oil and gas as well as renewables like hydro, biomass and solar energy. As far as biomass resources in Malaysia are concerned, Malaysia has tremendous agricultural biomass and wood waste resources available for immediate exploitation. This energy potential of biomass resource is yet to be exploited properly in the country.

Taking into account the growing energy consumption and domestic energy supply constraints, Malaysia has set sustainable development and diversification of energy sources, as the economy’s main energy policy goals. The Five-Fuel Strategy recognises renewable energy resources as the economy’s fifth fuel after oil, coal, natural gas and hydro. Being a major agricultural commodity producer in the region Malaysia is well positioned amongst the ASEAN countries to promote the use of biomass as a source of renewable energy.

Major Biomass Resources

Palm Oil Biomass

Malaysia is the world’s leading exporter of palm oil, exporting more than 19.9 million tonnes of palm oil in 2017. The extraction of palm oil from palm fruits results in a large quantity of waste in the form of palm kernel shells, empty fruit bunches and mesocarp fibres. In 2011, more than 80 million tons of oil palm biomass was generated across the country.

13MW biomass power plant at a palm oil mill in Sandakan, Sabah (Malaysia)

Processing crude palm oil generates a foul-smelling effluent, called Palm Oil Mill Effluent or POME, which when treated using anaerobic processes, releases biogas. Around 58 million tons of POME is produced in Malaysia annually, which has the potential to produce an estimated 15 billion m3 of biogas.

Rice Husk

Rice husk is another important agricultural biomass resource in Malaysia with very good energy potential for biomass cogeneration. An example of its attractive energy potential is biomass power plant in the state of Perlis which uses rice husk as the main source of fuel and generates 10 MW power to meet the requirements of 30,000 households.

Municipal Solid Wastes

The per capita generation of solid waste in Malaysia varies from 0.45 to 1.44kg/day depending on the economic status of an area. Malaysian solid wastes contain very high organic waste and consequently high moisture content and bulk density of above 200kg/m3. The high rate of population growth is the country has resulted in rapid increase in solid waste generation which is usually dumped in landfills.

Conclusion

Biomass resources have long been identified as sustainable source of renewable energy particularly in countries where there is abundant agricultural activities. Intensive use of biomass as renewable energy source in Malaysia could reduce dependency on fossil fuels and significant advantage lies in reduction of net carbon dioxide emissions to atmosphere leading to less greenhouse effect. However, increased competitiveness will require large-scale investment and advances in technologies for converting this biomass to energy efficiently and economically.

Biomass Energy Potential in Pakistan

Being an agricultural economy, biomass energy potential in Pakistan is highly promising. Pakistan is experiencing a severe energy crisis these days which is resulting in adverse long term economic and social problems. The electricity and gas shortages have directly impacted the common man, industry and commercial activities.

The high cost of energy mix is the main underlying reason behind the power crisis. The main fuel for the local power industry is natural gas however due to the continued depletion of this source and demands elsewhere the power generation companies are now dependent on furnace oil which is relatively expensive.

The way out of this crisis is to look for fuel sources which are cheap and abundantly available within the country. This description and requirement is fulfilled by biomass resources which have been largely ignored in the past and are also available in sufficient quantities to tackle the energy crisis prevailing in the country.

Biomass Energy in Pakistan

The potential to produce power from biomass resources is very promising in Pakistan. Being an agrarian economy, more than 60% of the population is involved in agricultural activities in the country. As per World Bank statistics, around 26,280,000 hectares of land is under cultivation in Pakistan. The major sources of biomass energy are crop residues, animal manure and municipal solid wastes

Agricultural Residues

Wheat straw, rice husk, rice straw, cane trash, bagasse, cotton sticks are some of the major crop residues in Pakistan. Sugar cane is a major crop in the country and grown on a wide scale throughout Pakistan. During 2010-2011, the area under sugarcane cultivation was 1,029,000 hectares which is 4% of the total cropped area.

Sugarcane trash which constitutes 10% of the sugar cane is currently burned in the fields. During the year 2010-11, around 63,920,000 metric tons of sugarcane was grown in Pakistan which resulted in trash generation of around 5,752,800 metric tons. As per conservation estimates, the bioenergy potential of cane trash is around 9,475 GWh per year.

Cotton is another major cash crop in Pakistan and is the main source of raw material to the local textile industry. Cotton is grown on around 11% of the total cropped area in the country. The major residue from cotton crop is cotton sticks which is he material left after cotton picking and constitute as much as 3 times of the cotton produced.

Majority of the cotton sticks are used as domestic fuel in rural areas so only one-fourth of the total may be considered as biomass energy resource. The production of cotton sticks during 2010-2011 was approximately 1,474,693 metric tons which is equivalent to power generation potential of around 3,071 GWh.

Cotton sticks constitute as much as 3 times of the cotton produced.

Animal Manure

Pakistan is the world’s fourth largest producer of milk. The cattle and dairy population is around 67,294,000 while the animal manure generation is estimated at 368,434,650 metric tons. Biogas generation from animal manure is a very good proposition for Pakistan as the country has the potential to produce electrical energy equivalent to 23,654 GWh

Municipal Solid Waste

The generation or solid wastes in 9 major urban centers is around 7.12 million tons per annum which is increasing by 2.5% per year due to rapid increase in population and high rate of industrialization. The average calorific value of MSW in Pakistan is 6.89 MJ/kg which implies power generation potential of around 13,900 GWh per annum.