Palm Kernel Shells: An Attractive Biomass Fuel for Europe

palm-kernel-shellsEurope is targeting an ambitious renewable energy program aimed at 20% renewable energy in the energy mix by 2020 with biomass energy being key renewable energy resource across the continent. However, the lack of locally-available biomass resources has hampered the progress of biomass energy industry in Europe as compared with solar and wind energy industries. The European biomass industry is largely dependent on wood pellets and crop residues.

Europe is the largest producer of wood pellets, which is currently estimated at 13.5 million tons per year while its consumption is 18.8 million tons per year. The biggest wood pellet producing countries in Europe are Germany and Sweden. Europe relies on America and Canada to meet its wood pellet requirements and there is an urgent need to explore alternative biomass resources. In recent years, palm kernel shells (popularly known as PKS) from Southeast Asia has emerged has an attractive biomass resources which can replace wood pellets in biomass power plants across Europe.

What are Palm Kernel Shells

Palm kernel shells are the shell fractions left after the nut has been removed after crushing in the Palm Oil mill. Kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres.

Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%. Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content.

Press fibre and shell generated by the palm oil mills are traditionally used as solid fuels for steam boilers. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a palm oil mill.

Advantages of Palm Kernel Shells

PKS has almost the same combustion characteristics as wood pellets, abundantly available are and are cheap. Indonesia and Malaysia are the two main producers of PKS. Indonesian oil palm plantations cover 12 million hectares in Indonesia and 5 million hectares in Malaysia, the number of PKS produced from both countries has exceeded 15 million tons per year. Infact, the quantity of PKS generated in both countries exceeds the production of wood pellets from the United States and Canada, or the two largest producers of wood pellets today.

Interestingly, United States and Canada cannot produce PKS, because they do not have oil palm plantations, but Indonesia and Malaysia can also produce wood pellets because they have large forests. The production of wood pellets in Indonesia and Malaysia is still small today, which is less than 1 million tons per year, but the production of PKS is much higher which can power biomass power plants across Europe and protect forests which are being cut down to produce wood pellets in North America and other parts of the world.

PKS as a Boiler Fuel

Although most power plants currently use pulverized coal boiler technology which reaches around 50% of the world’s electricity generation, the use of grate combustion boiler technology and fluidized bed boilers is also increasing. Pulverized coal boiler is mainly used for very large capacity plants (> 100 MW), while for ordinary medium capacity uses fluidized bed technology (between 20-100 MW) and for smaller capacity with combustor grate (<20 MW). The advantage of boiler combustion and fluidized bed technology is fuel flexibility including tolerance to particle size.

When the pulverized coal boiler requires a small particle size (1-2 cm) like sawdust so that it can be atomized on the pulverizer nozzle, the combustor grate and fluidized bed the particle size of gravel (max. 8 cm) can be accepted. Based on these conditions, palm kernel shells has a great opportunity to be used as a boiler fuel in large-scale power plants.

Use of PKS in pulverized coal boiler

There are several things that need to be considered for the use of PKS in pulverized coal boilers. The first thing that can be done is to reduce PKS particle size to a maximum of 2 cm so that it can be atomized in a pulverized system. The second thing to note is the percentage of PKS in coal, or the term cofiring. Unlike a grate and a fluidized bed combustion that can be flexible with various types of fuel, pulverized coal boilers use coal only. There are specific things that distinguish biomass and coal fuels, namely ash content and ash chemistry, both of which greatly influence the combustion characteristics in the pulverized system.

PKS-biomass

PKS has emerged as an attractive biomass commodity in Japan

Coal ash content is generally greater than biomass, and coal ash chemistry is very different from biomass ash chemistry. Biomass ash has lower inorganic content than coal, but the alkali content in biomass can change the properties of coal ash, especially aluminosilicate ash.

Biomass cofiring with coal in small portions for example 3-5% does not require modification of the pulverized coal power plant. For example, Shinci in Japan with a capacity of 2 x 1,000 MW of supercritical pulverized fuel with 3% cofiring requires 16,000 tons per year of biomass and no modification. Similarly, Korea Southeast Power (KOSEP) 5,000 MW with 5% cofiring requires 600,000 tons per year of biomass without modification.

PKS cofiring in coal-based power plants

Pulverized coal-based power plants are the predominant method of large-scale electricity production worldwide including Europe. If pulverised fuel power plants make a switch to co-firing of biomass fuels, it will make a huge impact on reducing coal usage, reducing carbon emissions and making a transition to renewable energy. Additionally, the cheapest and most effective way for big coal-based power plants to enter renewable energy sector is biomass cofiring. Palm kernel shells can be pyrolyzed to produce charcoal while coal will produce coke if it is pyrolyzed. Charcoal can be used for fuel, briquette production and activated charcoal.

Energy Potential of Palm Kernel Shells

palm-kernel-shellsThe Palm Oil industry in Southeast Asia and Africa generates large quantity of biomass wastes whose disposal is a challenging task. Palm kernel shells (or PKS) are the shell fractions left after the nut has been removed after crushing in the Palm Oil mill. Kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres. Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%.

Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content. PKS can be readily co-fired with coal in grate fired -and fluidized bed boilers as well as cement kilns in order to diversify the fuel mix.

The primary use of palm kernel shells is as a boiler fuel supplementing the fibre which is used as primary fuel. In recent years kernel shells are sold as alternative fuel around the world. Besides selling shells in bulk, there are companies that produce fuel briquettes from shells which may include partial carbonisation of the material to improve the combustion characteristics. As a raw material for fuel briquettes, palm shells are reported to have the same calorific characteristics as coconut shells. The relatively smaller size makes it easier to carbonise for mass production, and its resulting palm shell charcoal can be pressed into a heat efficient biomass briquette.

Palm kernel shells have been traditionally used as solid fuels for steam boilers in palm oil mills across Southeast Asia. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a palm oil mill. Most palm oil mills in the region are self-sufficient in terms of energy by making use of kernel shells and mesocarp fibers in cogeneration. In recent years, the demand for palm kernel shells has increased considerably in Europe, Asia-Pacific, China etc resulting in price close to that of coal. Nowadays, cement industries and power producers are increasingly using palm kernel shells to replace coal. In grate-fired boiler systems, fluidized-bed boiler systems and cement kilns, palm kernel shells are an excellent fuel.

Cofiring of PKS yields added value for power plants and cement kilns, because the fuel significantly reduces carbon emissions – this added value can be expressed in the form of renewable energy certificates, carbon credits, etc. However, there is a great scope for introduction of high-efficiency cogeneration systems in the industry which will result in substantial supply of excess power to the public grid and supply of surplus PKS to other nations. Palm kernel shell is already extensively in demand domestically by local industries for meeting process heating requirements, thus creating supply shortages in the market.

Palm oil mills around the world may seize an opportunity to supply electricity for its surrounding plantation areas using palm kernel shells, empty fruit branches and palm oil mill effluent which have not been fully exploited yet. This new business will be beneficial for all parties, increase the profitability for palm oil industry, reduce greenhouse gas emissions and increase the electrification ratio in surrounding plantation regions.

Energy Potential of Empty Fruit Bunches

EFBA palm oil plantation yields huge amount of biomass wastes in the form of empty fruit bunches (EFB), palm oil mill effluent (POME) and palm kernel shell (PKS). In a typical palm oil mill, empty fruit bunches are available in abundance as fibrous material of purely biological origin. Energy potential of empty fruit bunches is attractive as it contains neither chemical nor mineral additives, and depending on proper handling operations at the mill, it is free from foreign elements such as gravel, nails, wood residues, waste etc.

However, EFB is saturated with water due to the biological growth combined with the steam sterilization at the mill. Since the moisture content in EFB is around 67%, pre-processing is necessary before EFB can be considered as a good fuel.

Unprocessed EFB is available as very wet whole empty fruit bunches each weighing several kilograms while processed EFB is a fibrous material with fiber length of 10-20 cm and reduced moisture content of 30-50%. Additional processing steps can reduce fiber length to around 5 cm and the material can also be processed into bales, pellets or pulverized form after drying.

There is a large potential of transforming EFB into renewable energy resource that could meet the existing energy demand of palm oil mills or other industries as well as to promote sustainability in the palm oil industry. Pre-treatment steps such as shredding/chipping and dewatering (screw pressing or drying) are necessary in order to improve the fuel property of EFB.

Pre-processing of EFB will greatly improve its handling properties and reduce the transportation cost to the end user i.e. power plant. Under such scenario, kernel shells and mesocarp fibres which are currently utilized for providing heat for mills can be relieved for other uses off-site with higher economic returns for palm oil millers.

The fuel could either be prepared by the mills before sell to the power plants, or handled by the end users based on their own requirements.  Besides, centralized EFB collection and pre-processing system could be considered as a component in EFB supply chain. It is evident that the mapping of available EFB resources would be useful for EFB resource supply chain improvement. This is particular important as there are many different competitive usages. With proper mapping, assessment of better logistics and EFB resource planning can lead to better cost effectiveness for both supplier and user of the EFB.

A covered yard is necessary to store and supply a constant amount of this biomass resource to the energy sector. Storage time should however be short, e.g. 5 days, as the product; even with 45% moisture is vulnerable to natural decay through fungi or bacterial processes. This gives handling and health problems due to fungi spores, but it also contributes through a loss of dry matter trough biological degradation. Transportation of EFB is recommended in open trucks with high sides which can be capable of carrying an acceptable tonnage of this low-density biomass waste.

For EFB utilization in power stations, the supply chain is characterized by size reduction, drying and pressing into bales. This may result in significantly higher processing costs but transport costs are reduced. For use in co-firing in power plants this would be the best solution, as equipment for fuel handling in the power plant could operate with very high reliability having eliminated all problems associated with the handling of a moist, fibrous fuel in bulk.