Waste Management in Sweden: Perspectives

Sweden is considered as a global leader in sustainable waste management and in the reduction of per capita carbon footprint. The country consistently works to lower its greenhouse gas emissions, improve energy efficiency and increase public awareness. Over the past 10 years, Sweden developed methods of repurposing waste, so less than one percent of the total waste generated in the country makes it to landfills. To accomplish this, the country changed their perspective of garbage.

Increase Recycling

Recycling is a part of Swedish culture. Residents regularly sort recyclable materials and food scraps from other waste in their homes before disposal. This streamlines the recycling process and reduces the effort required to sort large volumes of waste at larger recycling centers. As another way to promote recycling, the Swedish government created legislation stating recycling centers must be within 1,000 feet of residential areas. Conveniently located facilities encourage citizens to properly dispose of their waste.

Repurpose Materials

Citizens are also encouraged to reuse or repurpose materials before recycling or disposing of them. Repurposing and reusing products requires less energy when compared to the recycling or waste disposal process. As Swedes use more repurposed products, they reduce the volume of new products they consume which are created from fresh materials. In turn, the country preserves more of its resources.

Invest in Waste to Energy

Over 50 percent of the waste generated in Sweden is burned in waste-to-energy facilities. The energy produced by these facilities heats homes across the country during the long winter months. Localized heating — known as district heating — has improved air quality throughout the nation. It’s easier and more economical to control the emissions from several locations as opposed to multiple, smaller non-point sources.

Another benefit of waste-to-energy facilities is that ash and other byproducts of the burning process can be used for road construction materials. As a whole, Sweden doesn’t create enough waste to fuel its waste to energy plants — the country imports waste from its neighbors to keep its facilities going.

Sweden is one of the best proponents of waste-to-energy in the world

In the early 1990’s, the Swedish government shifted the responsibility for waste management from cities to the industries producing materials which would eventually turn to waste. To promote burning waste for energy, the government provides tax incentives to companies which make more economically attractive.

Impact of Waste-to-Energy

Although Sweden has eliminated the volume of trash entering landfills, they have increased their environmental impacts in other ways. Waste-to-energy facilities are relatively clean in that most harmful byproducts are filtered out before entering the environment, though they still release carbon-dioxide and water as their primary outputs. On average, waste-to-energy plants generate nearly 20 percent more carbon-dioxide when compared to coal plants.

Coal plants burn and release carbon which is otherwise sequestered in the ground and unable to react with the earth’s atmosphere. Waste-to-energy facilities consume and release carbon from products made of organic materials, which naturally release their carbon over time. The downside to this process is that it frees the carbon from these materials at a much faster rate than it would be naturally.

The reliance on the waste-to-energy process to generate heat and the tax incentives may lower Swedish motivation to recycle and reuse materials. The country already needs to import trash to keep their waste-to-energy plants running regularly. Another disadvantage of this process is the removal and destruction of finite materials from the environment.

Even though Sweden continues to make strides in lowering their environmental impact as a whole, they should reevaluate their reliance on waste to energy facilities.

A Blackout, Big Oil, and Wind Energy

During the first quarter of 2017, workers installed a wind turbine somewhere in the US every 2.4 hours. Wind provided 5.6% of all the electricity produced in the US in 2016. That’s more than double the amount of wind power in 2010. The whole world is seeing similar growth.  The wind industry isn’t without controversy. Critics blame it for the scope of a blackout in Australia. On the other hand, international oil companies have begun to build off-shore wind farms.

Critics’ case against wind energy

According to its critics, wind power is unreliable. The wind doesn’t blow all the time. It doesn’t blow on any predictable pattern. Wind turbines require some minimum wind speed for them to work at all. And if the wind is too strong, they can’t operate safely and must shut down.

Wind can cross one or the other of these thresholds multiple times a day. They operate at full capacity for only a few hours a year. So the theoretical capacity of a wind farm greatly exceeds its actual output.

The times turbines can generate electricity do not coincide with rising and falling demand for electricity. This variability creates problems for stabilizing the grid. Critics further claim that the wind industry can’t operate without massive government subsidies.

Wind power and South Australia blackout of 2016?

South Australia depends on wind energy for about 40% of its electricity. It suffered seven tornados on September 28, 2016. Two of them, with winds almost as fast as Hurricane Katrina, destroyed twenty towers that held three different transmission lines. Nine wind farms shut down.  Within minutes, the entire state suffered a massive blackout.

What contributed the most to the blackout? South Australia’s high dependence on wind power? The weather? Or something else?

Renewable energy skeptics quickly claimed the blackout justified their position. The wind farms simply failed to provide enough electricity in the emergency. Wind and solar energy, they say, are inherently unreliable. South Australia’s heavy reliance demonstrates an irresponsible policy based on ideology more than technological reality.

Certainly, the weather would have caused a disturbance in electrical service no matter what source of electricity. People near the downed transmission lines could not have avoided loss of power. But prompt action by grid operators makes it possible to bypass problem areas and limit the extent of the outage.

On closer examination, however, the correct answer to the multiple-choice question above is C: something else.

Wind turbines have “low voltage ride through” settings to keep operating for brief periods when voltage dips below the threshold at which they can operate correctly. If low-voltage conditions occur too frequently, the turbines have a protection mechanism that turns them off.

  • Ten wind farms experienced between three and six low-voltage events within two minutes. But the turbines were operating on factory settings. No one performed any testing to determine good settings under local conditions.
  • The agency that regulates the Australian electricity market knew nothing about the protection feature. It blamed the wind farms, but surely someone on staff should have been familiar with the default operation of the turbines. After all, the agency approved purchase and installation of the turbines. It had all the documentation.
  • Two gas generating plants that should have supplied backup power failed to come online.

The weather caused a problem that became a crisis not because of technical limitations of renewable energy, but because of too many different organizations’ incompetence.

If the wind is too strong, wind turbines can’t operate safely and must shut down.

One homeowner in South Australia didn’t suffer from the outage. He didn’t even know about the blackout till he saw it on the news. He had to test the accuracy of the news reports by opening his oven and noting that the light didn’t come on.

It turns out he had installed solar panels just a few weeks earlier. And since power outages in his part of South Australia occur almost every month, he decided to install a Tesla Powerwall as well.

He can’t use it to power his entire house, but it takes care of the lights and the television. It stores enough electricity for 10 hours of off-grid power.

Big oil and wind power

International oil companies have not joined the chorus of wind-industry skeptics. Several of them, including Royal Dutch Shell, have begun to invest heavily in off-shore wind farms. Especially in the North Sea. Oil production there has steadily declined for about 15 years.

Exploring for new oil fields has become too risky and expensive. These oil companies have decided that investing in wind energy helps their cash flow and makes it more predictable.

Oil companies have more expertise in working on offshore platforms than do companies that specialize in wind energy. Instead of building a foundation for turbines on the ocean floor, at least one oil company has begun to explore how to mount them on floating platforms.

Traditional wind energy firms have been operating turbines in the North Sea for years, but the oil companies have begun to outbid them. Their off-shore expertise has helped them drive down their costs.

So far, American oil companies have shown less interest in wind farms. If they decide they’re in the oil business, they will eventually lose market share to renewable energy companies. If they decide they’re in the energy business, they’ll have to start investing in renewable energy. And if any decide to invest heavily in solar power besides or instead of wind, they will still be following the lead of Total, a French oil company.

For that matter, the coal business is dying. Perhaps some of them will have enough sense to invest in renewables to improve their cash flow.

Tackling China’s Smog Problem with Renewable Energy

smog-chinaChina is currently facing serious environmental problems, with potentially few solutions. Currently, this is mostly taking the form of serious smog issues plaguing North China, with more than 24 cities on red alert. However, with airports being shut down due to lacking visibility and the economy of China being heavily disrupted, action needs to be taken to solve this serious smog problem.

While limited action has been taken, perhaps renewable energy is the key to cutting down China’s smog.

How Bad Is the Problem?

The smog problem in China has become increasing worse from 2015 to 2017, with more than 90 micrograms of pollution per meter squared. These levels of air pollution are similar to the levels recorded previous to 2014, when the Chinese premier declared a war on pollution due to the health dangers posed by rising air pollution levels.

However, since 2015, levels of air pollution have risen once again. This pollution has had hard hitting effects on urban areas, especially the Chinese capital Beijing, and has caused widespread disruption to the lives of Chinese citizens and economy of the country.

The air pollution leads to the cities becoming hotter than ever. Urban Heat Island effect, which refers to buildings absorbing the sun’s heat well, is exacerbated by the smog. In fact, a car in the heat can reach temperatures of 114 degrees Fahrenheit after just 20 minutes, making travelling on hot days nearly unbearable for any living creature. In order to decrease the heated condition of China, it is essential to decrease the amount of smog covering the cities.

What Has the Chinese Government Done?

The Chinese government has taken limited action in an attempt to minimize the air pollution being created in the country. This includes the Atmospheric Pollution Prevention Plan, which acknowledged the danger posed by air pollution levels and aimed to reduce coal usage in urban areas like Beijing.

However, this is not representative of the main action the government has taken. Primarily, the Chinese government has focused on individual areas and attempting to reduce local pollution levels through efficient coal burning and banning the burning of waste materials, especially on farms. These solutions, while effective on a short-term basis, are not all that is needed, though.

Investment in renewables can reduce China's dependence on coal for power generation

Investment in renewables can reduce China’s dependence on coal for power generation

China needs to reduce its overall usage of coal produced energy, which currently stands at 64 percent of total energy consumption. While this has already been happening in China, the further introduction of renewable energy could be of great help to China’s pollution levels.

How Could Renewable Energy Help?

Many people believe renewable energy to be a small affair, something undertaken by the Western world in a vain attempt to reduce our collective guilt concerning climate change and wastage levels. This is simply not the case. Renewable energy is a $120 billion industry that receives investment and application across the world. This includes solar energy, waste-to-energy technology, wind energy, hydroelectric energy and many more attempts to reduce overall energy usage.

Through investment in renewable energy, China could reduce its dependence on coal and increase the efficiency of its energy production and economy. Smog is directly created by China’s use of coal for its energy production, and by investing in other renewable means, China can simultaneously improve its health situation.

In fact, the obviously positive nature of investment in renewable energy can be clearly seen through the Chinese government’s already existing plans to further incorporate it into the economy. In the five-year plan announced in 2016, the Chinese government explicitly stated it would decrease air pollution levels through investment in wind, solar and biomass energy production technologies.

While the plans additionally included investment in making the coal industry more efficient and reducing emissions on an industrial and commercial level, clearly renewable energy is believed to be a valid alternative energy source.

Overall, it is clear that renewable energy can certainly help with China’s serious smog problem. Whether this should be in tangent with further investment in the coal industry or necessitate the end of widespread coal usage in China is still a question for debate.

About the Author

Emily Folk is freelance writer and blogger on topics of renewable energy and conservation. To get her latest posts, check out her blog Conservation Folks, or follow her on Twitter.