WTE Prospects in the Middle East

A combination of high fuel prices and a search for alternative technologies, combined with massive waste generation has led to countries in the Middle East region to consider Waste to Energy (or WtE) as a sustainable waste management strategy and cost-effective fuel source for the future. We look at the current state of the WtE market in the Middle East.

wastetoenergy-plant-qatar

It is estimated that each person in the United Arab Emirates produces 2 kg of municipal solid waste per day – that puts the total waste production figure somewhere in the region of 150 million tonnes every year. Given that the population currently stands at over 9.4 million (2013) and is projected to see an annual average growth figure of 2.3% over the next six years, over three times the global average, it’s clear that this is a lot of waste to be disposed of.

In addition, the GCC nations in general rank in the bottom 10% of the sustainable nations in the world and are also amongst the top per capita carbon-releasers.

When we also consider that UAE are actively pursuing alternative energy technologies to supplement rapidly-decreasing and increasingly-costly traditional fossil fuels, mitigate the harmful effects of landfill, and reduce an ever-increasing carbon footprint, it becomes apparent that high on their list of proposed solutions is Waste to Energy (WtE). It could be an ideal solution to the problem.

What is WtE

Waste-to-Energy works on the simple principle of taking waste and turning it into a form of energy. This can be electricity, heat or transport fuels, and can be achieved in a variety of ways – the most common of which is incineration. MSW is taken to a WtE plant, incinerated at high temperatures and the resultant heat is used to boil water which creates steam to turn turbines, in the same way that burning gas or coal produces power. Gasification and anaerobic digestion are two further WtE methods which are also used.

However, WtE has several advantages over burning fossil fuels. Primarily amongst them are the potential to minimise landfill sites which have caused serious concern for many years. They are not only unsightly, but can also be contaminated, biologically or chemically. Toxic waste can leach into the ground beneath them and enter the water table.

Landfill sites also continuously emit carbon dioxide and methane, both harmful greenhouse gases – in addition methane is potentially explosive. Sending MSW to landfill also discourages recycling and necessitates more demand for raw materials. Finally, landfill sites are unpleasant places which attract vermin and flies and give off offensive odours.

Waste to Energy Around the World

WtE has been used successfully in many countries around the world for a long time now. Europe is the most enthusiastic proponent of WtE, with around 450 facilities; the Asia-Pacific region has just over 300; the USA has almost 100. In the rest of the world there are less than 30 facilities but this number is growing. Globally, it is estimated that the WtE industry is growing at approximately US $2 billion per annum and will be valued at around US $80 billion by the year 2022.

WTE_Plant_Belgium

Waste-to-Energy is now widely accepted as a part of sustainable waste management strategy.

The USA ranks third in the world for the percentage of waste which is incinerated for energy production. Around 16% of the rubbish that America produces every day is burned in its WtE plants. Advocates claims the advantages are clear:

  • reducing the amount of greenhouse gas emitted into the environment (estimates say that burning one ton of waste in a WtE plant saves between one half and one ton of greenhouse gases compared to landfill emissions, or the burning of conventional fuels),
  • freeing up land which would normally be used for landfill (and, therefore, extending the life of existing landfill sites),
  • encouraging recycling (some facilities have managed to reduce the amount of waste they process by up to 90% and the recycling of ferrous and non-ferrous metals provides an additional income source), and,
  • most importantly, producing a revenue stream from the sale of the electricity generated.

In one small county alone, Lancaster, Pennsylvania, with a population of just over half-a-million people, more than 4.4 billion kWh of electricity has been produced through WtE in the last 20 years. This has generated over USD $256 million through its sale to local residents.

Waste-to-Energy in the Middle East

Given WtE’s potential to not only reduce greenhouse gas emissions and pollution on a local scale, but also to produce much-needed electricity in the region, what is the current state of affairs in the Middle East. There are several WtE initiatives already underway in the Middle East.

Qatar was the first GCC country to implement a waste-to-energy programme and currently generates over 30MW of electricity from its Domestic Solid Waste Management Center (DSWMC) located at Messeid (Doha). Saudi Arabia and the UAE have both stated that they have WtE production capacity targets of 100MW. Bahrain, Kuwait and Oman are also seriously considering waste-to-energy as a means to tackle the worsening waste management problem.

Abu Dhabi’s government is currently spending around US $850 million to build a 100 MW plant which will supply around 20,000 households with electricity. In Sharjah, the world’s largest household waste gasification plant, costing in excess of US $480 million, is due to be open soon.

However, not all the GCC members are as enthusiastic about WtE. Dubai’s government has recently scrapped plans for a US $2 billion project which would have made use of the 7,800 tonnes of domestic waste which is produced in Dubai every single day.

We asked Salman Zafar, Founder of Doha-based EcoMENA, a popular sustainability advocacy, why given the sheer scale of the waste in the Gulf region, the production of this form of energy is still in its infancy. “The main deterrent in the implementation of WtE projects in the Middle East is the current availability of cheap sources of energy already available, especially in the GCC,” he commented.

Salman Zafar further says, “WtE projects demand a good deal of investment, heavy government subsidies, tipping fees, power purchase agreements etc, which are hard to obtain for such projects in the region.” “The absence of a sustainable waste management strategy in Middle East nations is also a vital factor behind the very slow pace of growth of the WtE sector in the region. Regional governments, municipalities and local SWM companies find it easier and cost-effective to dump untreated municipal waste in landfills,” he added.

So, how can WtE contribute towards the region’s growing power demand in the future?

“Modern WtE technologies, such as RDF-based incineration, gasification, pyrolysis, anaerobic digestion etc, all have the ability to transform power demand as well as the waste management scenario in the region,” he continued. “A typical 250 – 300 tons per day WtE plant can produce around 3 – 4 MW of electricity and a network of such plants in cities across the region can make a real difference in the energy sector as well as augmenting energy reserves in the Middle East. In fact, WtE plants also produce a tremendous about of heat energy which can be utilised in process industries, further maximising their usefulness,” Salman Zafar concluded.

New technologies naturally take time to become established as their efficiency versus cost ratios are analysed. However, it is becoming increasingly clearer that waste-to-energy is a viable and efficient method for solid waste management and generation of alternative energy in the Middle East.

E-Waste Management in the GCC: Perspectives

The growing amount of e-waste is gaining more and more attention on the global agenda. In 2017, e-waste production is expected to reach up to 48 million metric tons worldwide. The biggest contributors to this volume are highly developed nations, with the top three places of this inglorious ranking going to Norway, Switzerland and Iceland.

In Norway, each inhabitant produces a massive 28.3 kg of e-waste every year. Not far behind the top ten of this ranking lie GCC member states, with both Kuwait and UAE producing each 17.2 kg e-waste per capita per year. Saudi Arabia with its many times larger population produces least e-waste per capita among all GCC countries, with 12.5 kg a year.

ewaste lifecycle

Link between Development and E-Waste

Recent research suggests that there is evidence of a strong link between economic development and the generation of e-waste.  Due to rapid urbanization growth rates along with a substantial increase in the standard of living, more people develop a consumerist culture. With rising disposable income, people replace their technology more frequently, as soon there are upgraded gadgets on the market. This development is aggravated by technological progress, which renders shorter life spans of products.

Complexity of E-Waste

E-waste is not only a fast-growing waste stream but also complex, as it contains a large variety of different products. This makes it extremely difficult to manage. The rapid technology development and the emergence of items such as smart clothes will render e-waste management even more difficult in the future. Dealing with e-waste is not only toxic for workers with direct contact to it, but also the dumpsites on which e-waste is stored can have severe environmental impacts on the surrounding areas. Many developed countries export the bulk of their e-waste to developing countries, where it is recovered using extremely harmful methods for both human and the environment.

Out of the total e-waste produced world-wide, only about 15% are collected by official take-back schemes. The European Union is one of the few regions in the world with uniform legislation regarding the collection and processing of e-waste. The WEEE (Waste Electrical and Electronic Equipment) Directive took effect in 2003 and was designed to make manufacturers of appliances responsible for their equipment at the end of its life, a system known as extended producer responsibility (EPR).

An Untapped Opportunity

However, e-waste should not only be seen as a problem which more and more developed countries have to face. According to statistics, the intrinsic material value of global e-waste is estimated to be 48 billion euros in 2014. Even though the large part of e-waste constitutes of iron and steel, precious metals such as gold, copper, palladium, silver, platinum, cobalt, and more provide economic incentive for recycling.  In addition to the intrinsic material value, there are more benefits to e-waste recycling, such as job and employment creation.

electrical-waste-uk

In addition to these economic benefits, the recycling of electronic products also ensures to reduce environmental pollution by conserving virgin resources, whose extraction goes along with severe damages to entire ecosystems.

Situation in GCC Countries

In almost all GCC countries, there is minimal to zero legislation on e-waste, with minor differences between the respective counties. Kuwait as one of the biggest per capita e-waste producers among the GCC nations uses the same landfills for both conventional and e-waste. Bahrain operates only one landfill for the entire country, but there are several recycling initiatives in place, aiming at separating plastics, metals and paper. Still, there is no comprehensive law on e-waste management. Saudi Arabia possesses the biggest total amount of e-waste among the GCC countries. There are private companies, initiatives and Non-Profit-Organizations currently working on e-waste recycling, but there is no regulated system in place.

Oman does not have regulations or facilities to deal with e-waste, but the country has recently stated the realization of a need for it. Qatar has also recognized the need to address the waste management issue, but no concrete actions have been taken. The most advanced momentum regarding e-waste of all GCC countries can be found in the UAE. In some waste management centers, there are facilities where e-waste is classified and sorted out specifically. The UAE government is currently developing regulation and facilities to for sound e-waste recycling.

The Way Forward

As we have seen, in many GCC countries the need for e-waste legislation is widely recognized. E-waste management provides an opportunity and a huge potential in the entire Middle East, primarily due to four reasons.

First, e-waste management is a source of employment for both highly skilled and unskilled workers. This could help to transfer employment from the public to the private sector, which is a goal of many Gulf countries. Second, e-waste recycling can also minimize costs, as less landfill space is being used. In Bahrain, the only existing landfill is expected to reach its capacity in the next years, and poses furthermore a health risks for the population as it is close to urban areas.

The most advanced momentum regarding e-waste in the GCC can be found in the UAE.

Third, the intrinsic value of e-waste with its precious metals provide economic incentive for recycling. As reserves for many metals decrease drastically, the economic value of these resources is expected to increase. And fourth, developments in e-waste management provide opportunities for industry and environmental research. Innovative and efficient recycling processes could be developed and transferred to other countries.

In order to fulfill this potential for e-waste management in GCC countries, the first step is to develop a sound regulatory framework in order to ensure private sector participation. Additionally, programs to increase public awareness for waste and in specific e-waste need to be developed, which is necessary for an integrated e-waste management system.

References

Kusch, S. & Hills, C.D. (2017). The Link between e-Waste and GDP—New Insights from Data from the Pan-European Region. Resources 6 (15); doi:10.3390/resources6020015

Baldé, C.P., Wang, F., Kuehr, R. & Huisman, J. (2015). The global e-waste monitor – 2014. United Nations University, IAS – SCYCLE. Bonn, Germany

Cucchiella, F., D’Adamo, I., Lenny Koh, S.C. & Rosa, P. (2015). Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renewable and Sustainable Energy Reviews (51); doi:10.1016/j.rser.2015.06.010

Alghazo, J. & Ouda, O. (2016). Electronic Waste Management and security in GCC Countries: A Growing Challenge. Conference Paper.

Debusmann, B. (2015). New regulations are coming up to deal with e-waste.

Municipal Solid Wastes in Bahrain

Bahrain has the distinction of being one of the highest per capita municipal solid waste generators worldwide estimated to be more than 1.80 kg per person per day. Infact, Bahrain produces largest amount of waste per person among GCC countries despite being the smallest nation in the region. Rising population, high waste generation growth rate, limited land availability and scarcity of waste disposal sites has made solid waste management a highly challenging task for Bahrain’s policy-makers, urban planners and municipalities.

Bahrain_Wastes

Municipal Solid Wastes in Bahrain

Bahrain generates more than 1.2 million tons of solid wastes every year. Daily garbage production across the tiny Gulf nation exceeds 4,500 tons. Municipal solid waste is characterized by high percentage of organic material (around 60 percent) which is mainly composed of food wastes.

Presence of high percent of recyclables in the form of paper (13 percent), plastics (7 percent) and glass (4 percent) makes Bahrain’s MSW a good recycling feedstock, though informal sectors are currently responsible for collection of collection of recyclables and recycling activities

The Kingdom of Bahrain is divided into five governorates namely Manama, Muharraq, Middle, Southern and Northern. Waste collection and disposal operation in Bahrain is managed by a couple of private contractors. The prevalent solid waste management scenario is to collect solid waste and dump it at the municipal landfill site at Askar.

Askar, the only existing landfill/dumpsite in Bahrain, caters to municipal wastes, agricultural wastes and non-hazardous industrial wastes. Spread over an area of more than 700 acres, the landfill is expected to reach its capacity within the next few years. The proximity of Askar landfill to urban habitats has been a cause of major environmental concern. Waste accumulation is increasing at a rapid pace which is bound to have serious impacts on air, soil and groundwater quality in the surrounding areas.

Conclusions

The Kingdom of Bahrain is grappling with waste management problems arising out of high population growth rate, rapid industrialization, high per capita waste generation, unorganized SWM sector, limited land resources and poor public awareness.

The government is trying hard to improve waste management scenario by launching recycling initiatives, waste-to-energy project and public awareness campaign. However more efforts, in the form of effective legislation, large-scale investments, modern SWM technology deployment and environmental awareness, are required from all stake holders to implement a sustainable waste management system in Bahrain.