Management of Construction Wastes

constuction-wastesA wide variety of wastes are generated during construction projects which may be classified into four categories – excavated wastes, demolition wastes, construction wastes and mixed wastes. Construction wastes are also known Construction and Demolition (C&D) wastes. Excavated materials is made up of soil, sand, gravel, rock, asphalt, etc. while demolition wastes is comprised by  concrete, metal, roofing sheets, asbestos, brick, briquette, stone gypsum, wood material. Waste materials generated from construction activities are concrete, dry wall, plastics, ceramics tiles, metals, paper, cardboards, plastics, glass etc. In addition, mixed wastes, such as trash and organic wastes, are also produced in construction projects.

Almost 90 percent of construction wastes are inert or non-hazardous, and can be reused, reclaimed and recycled and reused. The non-recyclable, non-hazardous and hazardous waste materials constitute the remaining 10 percent. The non-inert materials include trees, green vegetation, trash and other organic materials while and the hazardous construction waste materials include contaminated soil, left over paints, solvent, aerosol cans, asbestos, paint thinners, striping paint, contaminated empty containers.

Sustainable management of construction wastes uses number of strategies and is based on the typical waste hierarchy: Avoid/ eliminate, reduce, reuse, recycle, treat and dispose.

Avoidance / Source Reduction

Avoidance or source reduction is considered as the best strategy for waste management and is the most economic way to reduce waste and minimise the environmental impacts of construction wastes. This can be done by avoiding use of hazardous materials such as asbestos-containing materials or chromated copper arsenate treated timber or through green purchasing of materials. This includes purchasing of non-toxic materials, pre-cut timbers and ordering materials of desired dimensions.

Reuse

Although source reduction and elimination are preferred options in the waste management hierarchy, it is always not possible to do so. In this case consider reuse, donation and salvage options to companies or people who need those. Reuse option lengthens the life of a material. Reuse strategy can be used in two ways.

Building Reuse – It includes reusing materials from existing buildings and maintaining certain percentages of building structural and non-structural elements  such as interior walls, doors floor covering and ceilings.

Material Reuse – This is one of the most effective strategies for minimising environmental impacts which can be done by salvaging, refurbishing and reusing materials within the same building or in another building. Many of the exterior and interior materials can be recovered from existing buildings and reused in new ones. Such materials will include steel, walls, floor coverings, concrete, beams and posts, door frames, cabinetry and furniture, brick, and decorative items. Reuse of materials and products will help to reduce the demand for virgin materials and reduce wastes.

Recycle

There is very good potential to recycle many elements of construction waste. Recycling involves collecting, reprocessing and/ or recovering certain waste materials to make new materials or products. Often roll-off containers are used to transport the waste. Rubble can be crushed and reused in construction projects. Waste wood can also be recovered and recycled. Many construction waste materials that are still usable can be donated to non-profit organizations. This keeps the material out of the landfill and supports a good cause.

Treat and Dispose

This option should be considered after all other options are exhausted. The disposal of construction materials should be carried out in appropriate manner through an approved contractor. For examples, certain components of construction waste such as plasterboard are hazardous once landfilled. Plasterboard is broken down in landfill conditions releasing hydrogen sulfide, a toxic gas.

Plastic Wastes and its Management

Plastic seems all pervasive and unavoidable. Since the 1960s our use of plastic has increased dramatically, and subsequently, the portion of our garbage that is made up of plastic has also increased from 1% of the total municipal solid waste stream (household garbage) to approximately 13% (US Environmental Protection Agency). Plastic products range from things like containers and packaging (soft drink bottles, lids, shampoo bottles) to durable goods (think appliances, furniture and cars) and non-durable goods including things from a plastic party tray to medical devices. Sometimes marked with a number and a chasing arrow, there is an illusion that all plastics are recyclable, and therefore recycled. But there are a number of problems with this assumption.

While use and consumption of plastic is increasingly high, doubts about viable options for reuse, recycling and disposal are also on the rise. Complications such as the increasing number of additives used alter the strength, texture, flexibility, colour, resistance to microbes, and other characteristics of plastics, make plastics less recyclable. Additionally, there is very little market value in some plastics, leading municipalities to landfill or incinerate plastics as waste. Based on figures from the EPA (2011 data) only 8% of plastic materials are recovered through recycling.

Another major concern about plastics in the waste stream is their longevity and whether or not they are truly biodegrade. It is estimated that most plastics would take 500-1000 years to break down into organic components. Because of this longevity and the low rate of recycling, much of our plastic waste ends up in landfills or as litter. Some of this plastic waste makes its way via rivers and wind to the ocean. Garbage barges, and the trans-continental transport of recyclable materials also lead to an increasing amount of plastics in our oceans and waterways.

Plastic waste directly and indirectly affects living organisms throughout the ecosystem, including an increasingly high impact on marine life at a macro and micro scale. According to United Nations, almost 80% of marine debris is plastic. Policy enforcement remains weak, global manufacture of plastics continues to increase, and the quantity of plastic debris in the oceans, as well as on land, is likely to increase.

With limited sustainable recovery of plastics, there is a growing global movement to reduce the generation of plastic. Certain types of plastic may be ’safer‘ for the environment than others, however, there are troubling issues associated with all of them, leading to the conclusion that action is needed to remove plastic waste, and stricter controls are required to limit new sources of plastic pollution. Efforts such as light weighting of packaging and shifts to compostable plastics are options. Policies limiting the use of plastics such as bottle bills and bag bans are other ways to decrease the production and consumption of plastics.

Mining the debris fields in our oceans and turning plastic waste into usable materials, from socks made of fishing line to fuel made from a variety of plastic debris, is one way to mitigate the current situation.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Pet Waste Management in UK – Prospects and Challenges

pet-wastesPet waste is a growing public health and environmental risk. According to a report commissioned by the Pet Food Manufacturers’ Association, 13 million UK households (45%) keep pets of some kind.  Cats and dogs are each kept by 8.5 million households (these numbers are not additive, as some will of course keep both).

Can those of us who want both the joys of animal companionship and waste minimisation, find ways to cut down, or better manage, the huge amount of pet waste generated in the UK every year? With so many cats and dogs in the UK, pet waste must represent a significant mass of organic matter within the residual waste stream.

Does this waste represent a floater in the residual waste stream by necessity—due to inherently unpleasant and possibly dangerous characteristics of the waste—or is it only there out of convention and squeamishness?

I’ve written before about the relationship between waste management and squeamishness, and talking about faeces really brings the point home. There are some undoubtedly nasty pathogens present in pet faeces, notably the parasites Toxocariasis and Toxoplasmosis. But might these be safely killed off by the temperatures reached in anaerobic digestion (AD)? If so, provided any litter and bags were made of organic matter, might pet waste be collected along with food waste?

I began by contacting a local authority waste officer, but was told that no one had asked this question before, and that I might be better off talking to AD plant operators. This I did, but most seemed similarly baffled by my query.  However, one mentioned that AD digestate goes through a pasteurisation process, where it is heated to a temperature of 70oC for one hour, in order to make it safe for land application. I also attempted to contact some technical specialists in the field, but to no avail.

There are some theoretical indications that this pasteurisation should be sufficient. Hanna Mizgajska-Wiktor and Shoji Uga’s  essay Exposure and Environmental Contamination states: “Anaerobic waste treatment kills Toxocara spp. eggs at temperatures in excess of 45oC”, well below the 70oC mentioned by my operator. The susceptibility of Toxoplasma to heat is less clear, although numerous internet sources suggest this can be killed in meat by cooking at 66oC. So far, then, I haven’t confirmed or falsified my initial inkling, and so the collection of pet waste in the municipal organic stream remains a theoretical possibility.

Motivated dog owners  can already turn their pet’s waste into a resource within their own home. The website London Worms explains how you can turn your dog’s poo into rich and useful vermicompost, although it warns that the results will only be suitable for use on non-edible plants.

Foul Pay

Household pet droppings may still be largely fated for disposal, but even when binned this waste is at least moving through proper waste management channels.  Unfortunately, not all pet poo is binned, and we have real data measuring public perceptions of the disamenity resulting from dog fouling. For most, the presence of this unwelcome waste in our streets, parks and footpaths is of much higher concern than its diversion from landfill.

A 2011 Defra-funded study on local residents’ willingness-to-pay — via an increase in council tax — for improvements across a range of environmental factors found that dog fouling was the third most important issue out of the presented range (with litter and fly-tipping taking first and second place). Surveys were conducted in inner-city, suburban and rural/semi-rural areas around London, Manchester and Coventry.

In order to move from the current level of dog fouling to the best possible scenario, it was found that inner-city residents would on average be willing to pay £8.87 per month, suburban residents £7.79 per month, and rural residents £2.72. Combining these figures with population statistics allows us to place a disamenity value on dog fouling. National statistics only allow for an urban-rural split, but based on a 2012 Defra rurality study which found that 18.9% of the population lives in rural areas, we can calculate that across England we would collectively be willing to pay £462m per year to achieve best case scenario improvements in dog fouling.

This somewhat crude calculation gives an indication of the perceived disamenity of dog fouling. Presenting the matter in terms such as these may allow economically minded policy makers a means of engaging with this important street scene issue and evaluating the costs and benefits of interventions.

Food for Thought

Let’s wash our hands of poo (with plenty of soap and warm water) and look to the other end of the pet waste problem. According to a report published by WRAP, the UK uses around 75,000 tonnes of primary packaging annually. This holds 1,263,000 tonnes of wet and dry cat and dog food, of which 9,000 uneaten tonnes are thrown away. Although this wasted food constitutes less than 1% of the total sold (if only we were as careful with food for human consumption) the estimated cost to the consumer is still £21m a year.

WRAP examined a number of designs intended to cut to down on the amounts of both pet food and packaging thrown away. A major problem with packaging design is the need to account for portion sizes, which vary from animal to animal and change depending on age and level of activity. Single serve packaging may actually lead to regular food wastage if the portion provided is too big for a particular pet; indeed, this is a problem I am experiencing with my own cat, whose appetite seems to fluctuate wildly. Re-sealable packaging that allows owners to dish out meals in accordance with the changing appetites of their pets is therefore preferable.

The material that packaging is made of is also significant: for example, relatively heavy tins are recyclable, whereas lightweight plasticised plastic foil packets are not. Pet food and its packaging can be pushed up the waste hierarchy by simply choosing a recyclable and resealable container which will allow them to adequately provide for the appetite of their pet. However, these issues are likely to be given less weight compared with health, convenience and cost in the minds of most householders. The onus has to be on manufacturers to develop packaging which is both low cost and easily recyclable.

Love pets, hate waste?

People love animals, but are rather less keen to engage with pets as an environmental issue. Leaving aside questions of whether it is sustainable for so many of us to have pets at all, there are clearly ways in which we can reduce their impact. The convenience of single serving pouches of pet food seems to win out over more recyclable and waste-avoiding alternatives, although pet owners might be willing to change their choices if presented with a better option.

While worrying about recovery options for cat poo might seem somewhat academic, it may be easier to tackle than dog fouling. It might even help to tackle the common psycho-social root of both issues. Cultural distaste perhaps lies behind the lack of information available on dealing with household pet waste, and the persistence of dog fouling as a street scene issue. Things were very different in Victorian London when “pure finders” earned a living by seeking out doggie doo to supply the tanning trade. But for us this kind of waste is a disagreeable fact of life which we deal with as simply and with as little thought as possible. But as a nation of animal lovers, it’s our responsibility to engage with the waste management issues our pets present.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be viewed at this link

Recycling and Waste-to-Energy Prospects in Saudi Arabia

recycling-Saudi-ArabiaThe Kingdom of Saudi Arabia produces around 15 million tons of municipal solid waste (MSW) each year with average daily rate of 1.4 kg per person. With the current growing population (3.4% yearly rate), urbanization (1.5% yearly rate) and economic development (3.5% yearly GDP rate), the generation rate of MSW will become double (30 million tons per year) by 2033. The major ingredients of Saudi Arabian garbage are food waste (40-51 %), paper (12-28 %), cardboard (7 %), plastics (5-17 %), glass (3-5 %), wood (2-8 %), textile (2-6 %), metals (2-8 %) etc. depending on the population density and urban activities of that area.

In Saudi Arabia, MSW is collected and sent to landfills or dumpsites after partial segregation and recycling. The major portion of collected waste is ends up in landfills untreated. The landfill requirement is very high, about 28 million m3 per year. The problems of leachate, waste sludge, and methane and odor emissions are occurring in the landfills and its surrounding areas due to mostly non-sanitary or un-engineered landfills. However, in many cities the plans of new sanitary landfills are in place, or even they are being built by municipalities with capturing facilities of methane and leachate.

Recycling Prospects in Saudi Arabia

The recycling of metals and cardboard is the main waste recycling practice in Saudi Arabia, which covers 10-15% of the total waste. This recycling practice is mostly carried out by informal sector. The waste pickers or waste scavengers take the recyclables from the waste bins and containers throughout the cities. The waste recycling rate often becomes high (upto 30% of total waste) by waste scavengers in some areas of same cities. The recycling is further carried out at some landfill sites, which covers upto 40% of total waste by the involvement of formal and informal sectors.

The recycled products are glass bottles, aluminum cans, steel cans, plastic bottles, paper, cardboard, waste tire, etc. depending on the area, available facilities and involved stakeholders. It is estimated that 45 thousand TJ of energy can be saved by recycling only glass and metals from MSW stream. This estimation is based on the energy conservation concept, which means xyz amount of energy would be used to produce the same amount of recyclable material.

Waste-to-Energy Potential in Saudi Arabia

The possibilities of converting municipal wastes to renewable energy are plentiful. The choice of conversion technology depends on the type and quantity of waste (waste characterization), capital and operational cost, labor skill requirements, end-uses of products, geographical location and infrastructure. Several waste to energy technologies such as pyrolysis, anaerobic digestion (AD), trans-esterification, fermentation, gasification, incineration, etc. have been developed. WTE provides the cost-effective and eco-friendly solutions to both energy demand and MSW disposal problems.

As per conservative estimates, electricity potential of 3 TWh per year can be generated, if all of the KSA food waste is utilized in biogas plants. Similarly, 1 and 1.6 TWh per year electricity can be generated if all the plastics and other mixed waste (i.e. paper, cardboard, wood, textile, leather, etc.) of KSA are processed in the pyrolysis, and refuse derived fuel (RDF) technologies respectively.

Conclusion

Waste management issues in Saudi Arabia are not only related to water, but also to land, air and the marine resources. The sustainable integrated solid waste management (SWM) is still at the infancy level. There have been many studies in identifying the waste related environmental issues in KSA. The current SWM activities of KSA require a sustainable and integrated approach with implementation of waste segregation at source, waste recycling, WTE and value-added product (VAP) recovery. By 2032, Saudi government is aiming to generate about half of its energy requirements (about 72 GW) from renewable sources such as solar, nuclear, wind, geothermal and waste-to-energy systems.

Waste Management Progress in Nigeria’s Delta State

waste-nigeriaWaste management is a serious problem in Nigeria, and Delta State is no exception. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern, and you often see people disposing of their household waste in the streets at night. Once the waste gets out into the streets, it’s perceived as the duty of the government to handle it.

However, I have never yet heard of any Nigerian politician making waste management a feature of his or her manifesto during the election campaign process. Having said that, a few of Nigeria’s political leaders deserve to be commended for coming to terms with the fact that waste has to be managed properly, even if such issues were far from their minds when they entered political office.

Legislation and Framework

Nigeria does have a waste legislation framework in place. Its focus has been on the most toxic and hazardous waste: partly in response to some major pollution incidents in the 1980s, the government took powers in relation to Hazardous Waste in 1988. In the same year, the Federal Environmental Protection Agency was established – and was subsequently strengthened by the addition of an inspectorate and enforcement department arm in 1991, with divisions for standard regulation, chemical tracking and compliance monitoring. These laws have since given rise to regulations and guidelines pertaining to environmental and waste management issues.

Under our laws, waste management in each state is the duty of the local governments that fall within it, but few are taking an active approach to implementing and enforcing the sensible measures that the regulations require. A small number of states have taken over this task from local government, and Delta State’s decision to do this has led to significant new investment in waste management.

One of the fruits of that investment is the Delta State Integrated Waste Management Facility at Asaba for treating both household and clinical waste generated locally. It was developed when the Delta State government decided to put an end to the non-sustainable dumping of waste in Asaba, the state capital.

Integrated Waste Management Facility at Asaba

It is described as an integrated waste management facility because it includes a composting department, a recycling department and a (non-WTE) incineration department. Trucks carrying waste are weighed in as they come into the facility. From the weigh bridge, they move to the relevant reception bay – there are separate ones for household and clinical wastes – to tip their load, and are then weighed again on the way out.

Medical waste is taken directly for incineration, but household wastes are sent along conveyors for sorting. Recyclables and compostable materials are, so far as possible, separated both from other waste and from one another. Each recyclable stream ends up in a chamber where it can be prepared for sale. The compostable materials are moved to the composting section, which uses aerated static pile composting.

The remaining waste is conveyed into the three incinerators – moving grate, rotary kiln and fixed end– for combustion. The resulting ash is recycled by mixing it with cement and sharp sand and moulding it into interlocking tiles. The stacks of the three incinerators are fitted with smoke cleaning systems to reduce emissions. The process produces wastewater, which is channelled to a pit where it is treated and reused. Overall, 30% of the waste is composted, 15% recycled and 55% incinerated.

There are many examples of sophisticated waste infrastructure being built in developing countries, but failing because the necessary collection systems were not in place to support them. To ensure that this problem is avoided at Asaba, the Delta State government is working with a group known as the Private Sector Participants (PSP).

Each member of this group has trucks assigned to them and has been directed to collect household waste from different parts of the city, for delivery to the facility for treatment. The arrangements made by each PSP are different: some collect from outside individual properties, and some from communal sites; most collect waste that is found in the streets; and while each is subsidised by the state, households also have to pay towards the cost.

Before the Asaba facility was developed, most of the wastes generated in Asaba were disposed of at a dumpsite just adjacent to the Delta State Airport. This created a pungent odour, as well as visual disamenity for people nearby. A great deal of remediation work is now taking place at the dumpsite, which is vastly improving the local environmental quality.

War on Waste

Of course, although this is an improvement there remains more to do. First on the list is education. People do not know how sustainable waste management can impact positively in their lives, reducing their exposure to toxins as well as improving their surroundings. Nor do they understand that recycling a beverage can or a plastic bottle will cost less than producing one from virgin materials and will have a lesser environmental impact. There remains a good deal of cultural change and environmental education that is needed before people will stop throwing waste and litter on the streets – but there are few countries where, to some extent, the same would not be true.

Next is the lack of infrastructure. Nigeria has 36 states and a federal capital, yet the facility in Asaba is the first publicly commissioned one of its kind in the country; there are also some privately owned incinerators that a few companies in Port Harcourt use to treat wastes from vessels (ships), hospitals and industries. Lagos state and Abuja are relatively advanced, simply by virtue of having put in place a few managed landfills, but they are still far from having the level of facility that Asaba can now boast.

The backbone of Asaba’s progress is the state government’s commitment to put a proper waste management solution in place. We’ve seen the impact in the form of infrastructure, collections and remediation, and law enforcement work is starting to change people’s perception about waste management in Delta State. At the moment, plans are being concluded to setup another facility in Warri, Delta State’s industrial hub, which will be twice the size of the Asaba facility.?

My hope is that the progress made by Delta State will be a beacon for other states’ governments. The example we are providing of cleaner, hygienic, more environmentally responsible waste management, and the positive changes that is bringing about, should inspire new development elsewhere in the country, which could equal or even exceed Delta State’s results. So whilst Nigeria’s track record on waste may leave a lot to be desired, the path ahead could be a great deal more promising.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be found at this link.

Waste Minimisation – Role of Public, Private and Community Sector

waste-minisationWhen it comes to waste minimisation and moving material up the waste hierarchy you will find partisan advocates for the roles of the public, private and community sectors. Each will tell you the reasons why their sector’s approach is the best. The private sector will extol their virtues as the only ones capable of efficiently and effectively doing the job.  They rightly note that they are the providers on the front lines who actually recover the vast majority of material, that the private sector approach drives innovation and efficiency, and that if waste minimisation is to be sustainable this must include economic sustainability.

The community sector on the other hand will make a strong case to say that their model, because it commonly encompasses social, environmental, and economic outcomes, is able to leverage value from recovered materials to dig deeper into the waste stream, to optimise recovered material quality, and to maximise employment and local economic benefit.

Before recycling and composting were economically viable prospects, community sector organisations led the way, developing many of the techniques now widely used. They remain the leaders in marginal areas such as furniture reuse, running projects that deliver environmental outcomes while providing wider community benefits such as rehabilitation and training for marginalised groups.

Finally, in the public sector corner, advocates will point out that the profit-driven private sector will only ever recover those materials that are able to generate positive revenues, and so cannot maximise waste minimisation, while social outcomes are strictly a secondary consideration. The community sector, on the other hand, while encompassing non-monetary values and capable of effective action on a local scale, is not set up to deliver these benefits on a larger scale and can sometimes struggle to deliver consistent, professional levels of service.

The public sector can point to government’s role in legislating to promote consistent environmental and social outcomes, while councils are major providers and commissioners of recycling services and instrumental in shaping public perceptions around waste issues. The public sector often leads in directing activity towards non-monetary but otherwise valuable outcomes, and provides the framework and funding for equity of service levels.

So who is right? Each sector has good arguments in its favour, and each has its weaknesses. Does one approach carry the day?  Should we just mix and match according to our personal taste or based on what is convenient?

Perhaps we are asking the wrong question. Maybe the issue is not “which approach is better?” but instead “how might the different models help us get to where we ultimately want to go?”

Smells Like Waste Minimisation

So where do we want to go?  What is the waste minimisation end game?

If we think about things from a zero waste perspective, the ideal is that we should move from linear processes of extraction, processing, consumption and disposal, to cyclical processes that mimic nature and that re-integrate materials into economic and natural systems.  This is the nirvana – where nothing is ‘thrown away’ because everything has a further beneficial use.  In other words what we have is not waste but resources.  Or to put it another way – everything has value.

Assuming that we continue to operate in an essentially capitalist system, value has to be translated into economic terms.  Imagine if every single thing that we now discard was worth enough money to motivate its recovery.  We would throw nothing away: why would we if there was money to be made from it?

So in a zero waste nirvana the private sector and the community sector would take care of recovery almost automatically.  There might evolve a community and private sector mix, with each occupying different niches depending on desired local outcomes. There would be no need for the public sector to intervene to promote waste minimisation.  All it would need to do would be to set some ground rules and monitor the industry to ensure a level playing field and appropriate health and safety.

Sectoral Healing

Returning to reality, we are a long way from that zero waste nirvana.  As things stand, a bunch of materials do have economic value, and are widely recycled. Another layer of materials have marginal value, and the remainder have no value in practical terms (or even a negative value in the case of hazardous wastes).

The suggested shift in perspective is most obvious in terms of how we think about the role of the public sector. To bring us closer to our goal, the public sector needs to intervene in the market to support those materials of marginal value so that they join the group that has genuine value.

Kerbside (or curbside) collection of certain materials, such as glass and lower value plastics, is an example of an activity that is in effect subsidised by public money. These subsidies enable the private sector to achieve environmental outcomes that we deem sufficiently worthwhile to fund.

However, the public sector should not just be plugging a gap in the market (as it largely does now), but be working towards largely doing itself out of a job. If we are to progress towards a cyclical economy, the role of the public sector should not be to subsidise marginal materials in perpetuity, but to progressively move them from marginal to genuinely economic, so that they no longer require support.

At the same time new materials would be progressively targeted and brought through so that the range and quantity requiring disposal constantly shrinks.  This suggests a vital role for the public sector that encompasses research, funding for development of new technologies and processes, and setting appropriate policy and price structures (such as through taxes, levies, or product stewardship programmes).

Similarly, the community sector, because it is able to ‘dig deeper’ into the waste stream, has a unique and ongoing role to play in terms of being able to more effectively address those materials of marginal value as they begin to move up the hierarchy.  The community sector’s unique value is its ability to work at the frontiers.

Meanwhile, the private sector’s resources and creativity will be needed to enable efficient systems to be developed to manage collection, processing and recycling of materials that reach the threshold of economic viability – and to create new, more sustainable products that fit more readily into a waste minimising world.

In the end, then, perhaps the answer is to stop seeing the three models as being in competition. Instead, we should consciously be utilising the unique characteristics of each so that we can evolve our practices towards a future that is more functional and capable of delivering the circular economy that must eventuate if we are to sustain ourselves on this planet.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be viewed at this link

Foam Packaging: Take the Bull by the Horns

foam-packaging-wasteNew York City and Oxford are two prominent examples of local authorities that have tried to restrict the use of foam packaging for takeaway food and drink, arguing that doing so would reduce the environmental impact of waste in a way that alternative approaches could not. In both cases, the intervention of packaging manufacturers has lifted or watered down the rules. Other administrations might well be put off the idea of similar measures – but the argument for cracking down on foam packaging that almost unavoidably gives rise to regional waste management problems, as well as wider environmental degradation through its contribution to litter, remains hard to ignore. Bans, however, may not be the only option.

Menace of Foam Packaging

A particular target for action has been expanded polystyrene (EPS). It’s rigid and a good insulator, and yet a great deal of it is air, making it very lightweight: it’s little wonder that EPS trays, cups and ‘clamshells’ are staples of the industry. It’s also widely used in pre-moulded form in the packaging of electronics, and as loose fill packaging in the form of ‘peanuts’.

While no-one would deny its convenience, for waste managers, EPS is a challenge, for many of the same reasons that it is popular. It’s light and difficult to compact, so it fills up bins and collection vehicles quickly; and takes up a great deal of space if you try to bulk and haul it for recycling.

It’s easy to see, then, why in 2013 New York City’s council voted unanimously to prohibit the use of EPS by all restaurants, food carts, and stores. Yet from the outset, the ban proposal faced stiff opposition from retailers and manufacturers, with packaging giant Dart Container Corp. and the American Chemistry Council reportedly organising a million dollars’ worth of lobbying against the legislation. Once it took effect, the industry quickly managed to overturn it in the courts last month.

Ban on the Run

The city had found that the recycling of EPS was not, in fact, environmentally effective, economically feasible and safe, and NYC was declared EPS-free in July 2015. But in a widely reported ruling, Justice Margaret Chan deemed the decision “arbitrary and capricious”: the complex case turned on the question of whether there was a recycling market for EPS, and the judge decided that Commissioner Kathryn Garcia of the city’s Department of Sanitation had failed to take account of evidence supplied by the industry that such a market did exist.

Although it lacked the courtroom drama of the New York City case, a similar story played out in Oxford last year. The city council proposed to use its licensing powers to require street traders to use only “biodegradable and recyclable” packaging and utensils. The move was stymied by semantics: the Foodservice Packaging Association lobbied for the phrasing of the proposed licensing rule to be amended to ‘biodegradable or recyclable’. That tiny change allowed continued use of expanded polystyrene, as it is technically recyclable (though certainly not biodegradable).

Oxford’s traders are also required to arrange for the correct disposal of EPS takeaway packaging from their premises. This is an odd requirement given that take-away food is usually – well – taken away, and then disposed of in street bins, household bins, or in no bin at all. Unfortunately, Oxford City Council – like almost every other council in the country – isn’t currently able to send EPS for recycling, so the EPS it collects will in practice end up in the residual stream. The EPS litter that escapes will linger in the environment for centuries to come.

Foam Suit

It seems that both courts and councillors have been impressed by the manufacturers’ argument: ‘Why ban a highly efficient product when you can invest in recycling it instead?’ However, there are three important points that count against this contention.

The first is that, whilst EPS can technically be recycled, the economics of doing so remain tenuous. Zero Waste Scotland’s report on Plastic Recycling Business Opportunities found that polystyrene waste compacting and collection was the only one of five options considered that did not represent a viable business opportunity in Scotland.

In order to make the finances of collecting EPS for recycling stack up in New York, Dart Corporation and Plastics Recycling Inc. had to offer to provide the city with $500,000 of sorting technology; pay for four staff; and guarantee to buy the material at $160 per tonne for five years. Without this (time limited) largesse, New York’s ban would likely have stood.

They also provided a list of 21 buyers, who they claimed would purchase dirty EPS – although when the city did a market test, it could find no realistic market for the material. It’s hard to know whose view of the US market is correct; however, in the UK, the market is definitely weak.

Of the 34 EPS recyclers listed by the BPF Expanded Polystyrene Group, 12 only accept clean EPS – ruling out post-consumer fast food waste. Another dozen will only accept compacted EPS, creating an extra processing cost for anyone attempting to separate EPS for recycling. That leaves a maximum of ten UK outlets: not enough to handle the potential supply, and leaving large tracts of the country out of economic haulage range for such a bulky, lightweight material.

Foam fatale

The second is that it’s difficult to get a high percentage of takeaway food containers into the recycling stream. Food eaten on the go is likely, at best, to go into a litter bin. And if it’s littered, because it’s light, EPS can also easily be blown around the streets, contributing to urban, riverine and ultimately marine litter. It’s also very slow to break down in the natural environment. Polystyrene has been found to make up 8% of marine litter washed up on North East Atlantic beaches; in all, plastics account for three quarters of this litter. The cost, particularly for coastal and island nations, is only beginning to be recognised.

That leads on to the third argument: while EPS undoubtedly works, less damaging alternatives are clearly available. Vegware, for example, allows takeaway boxes to be moved up the waste hierarchy – from disposal to composting. Reducing impacts was clearly a consideration in Oxford: in the words of Councillor Colin Cooke:

“It is about making the waste that we do have to get rid of more user-friendly and sustainable.”

The economic and technical difficulty in recycling EPS, combined with the long-term impacts of its littering and disposal, led Michelle Rose Rubio to conclude, in an Isonomia article last year, that environmentally minded people – and perhaps governments – should perhaps avoid it altogether.

Silver Lining

Despite the discouraging events in New York and Oxford, there’s better news from elsewhere. Bans remain in place in Toronto and Paris (both dating from 2007), while Muntinlupa in the Philippines, and the coastal state of Malaka in Malaysia have imposed charges, fines, and biodegradable replacements for EPS food packaging, eventually leading to bans.

Scottish Environment Secretary Richard Lochhead has indicated that the Scottish Government is: “considering a number of options in line with the commitment in the national litter strategy to influence product design of frequently littered items to reduce their environmental impact… [W]e note a number of US cities have introduced bans on Styrofoam products, most recently New York City. We are keen to learn from these cities’ experience of introducing and implementing such bans.”

In Wales, a polystyrene ban petition lodged last year by Friends of Barry Beaches has been picking up support. The Foodservice Packaging Association’s pre-emptive opposition to the notion certainly suggests we haven’t heard the last of EPS food packaging bans in the UK.

However, bans are not the only way to deter the use of problem products. England has just joined the ranks of countries to impose a charge for single use plastic bags. Belgium has a tax on disposable cutlery, and Malta taxes numerous products on environmental grounds, including chewing gum and EPS clamshells. Whilst beyond the powers of local authorities, fiscal measures could drive change while being a bit less of a blunt instrument than a ban.

While EPS manufacturers may have scored some recent successes, they haven’t won the overarching argument. As we push towards a more circular economy, the pressure to reduce our reliance on materials that are inherently hard to recycle, which tend to escape into the environment, and which don’t decompose naturally, will grow. For EPS fast food packaging, the chips could soon be well and truly down.

Note: This article is being republished with the permission of our collaborative partner Isonomia. The original article can be found at this link.

11 Ideas for Easier Recycling at Home

Going green isn’t just meant for Earth Day. Going green is a way of life. However, Earth Day is a day we pause and commemorate, acknowledge and support environmental programs and Earth-saving strategies. It is also a great day to commit or recommit to employ earth-friendly practices in your life, at home and in the office. There are countless things you can do to “go green.” Most of these things are ease to incorporate into your life. Recycling is one of the easiest ways to go green. Recycling is the process of obtaining or retaining waste and converting it into usable, new materials. Some things that can be used to recycle are:

Recycling is actually a great way to conserve raw resources into energy. Recycling at least one ton of paper can save 7,000 gallons of water and 17 trees, according to the Environmental Protection Agency.

As you see, recycling is an effective and simple way to help the environment. It is something the entire family can do too. Before recycling, call your local waste management services. Determine how to you need to sort and pack items for recycling. In addition, you want to know what day or days the waste management services collects recycling. Check with them to find out where you safely dispose of light bulbs, hazardous materials and batteries. These cannot be recycled or put in the trash.

Source: BSW Waste

Your local waste management service has different rules about how items must be sorted, cleaned and packaged. Metal, cardboard, plastics, aluminum, glass and paper can be recycled.

Source: Paddle Dive

It can be tricky to recycle plastics because some can break down easier than other plastics. The number located on the plastic item will determine if it can be recycled. It will also determine if the plastic can be picked up for recycling.

Source: Fix.com

Although plastics are trickier to sort and recycle, it’s important to dispose of them properly. One important factor to establishing a recycling a program at work, school or home is to create a system that works for everyone. Here are a few favorites we like:

Source: DIY Swank

Recycling is about convenience, convenience and more convenience! When incorporating a successful recycling program, make bins easily accessible. They should be in an area that is easily visible and used like the utility room or kitchen where they can be seen and used.

Source: Better Homes and Gardens

Now, if you need a simple recycling system everyone can follow (even kids), use caster and baskets. These are easy to access and use. They slide out of site when not in use.

Source: Family Handyman

Use space by going vertical. You can hook bins on walls to utilize space. It will be easy to sort and store.

Source: Sweet Haute

Another way to make a successful recycling program is to make it fun. Use stylish bins and trash cans to recycle items.

Source: Sweet Haute

Another way to make a successful recycling program is to make it fun. Use stylish bins and trash cans to recycle items.

Source: The Neighborhood

You may not have time to personally decorate trash cans by spray painting them. How about using printable labels. These labels can go generic bins to help separate recyclables.

Source: Lil Blue Boo

Batteries are not to be recycled. They cannot be put into a trash can for non-recycling either. Instead, they should be properly thrown away at a collection center or a participating auto part store. The same thing should be done with light bulbs.

Source: Sawdust Girl

Make a special area of your home or office to use as a personal sorting center. This is where you can sort and clean recyclables. You may want to look at some personal recycling centers to get an understand of what you need.

Source: I Should Be Mopping the Floor

Many people do not have an area they can keep bulky recycling or trash in the home or office. If this is the case for you, create a dedicated spot in the garage or other area. It won’t take long before your family or co-workers are pitching in to recycle.

Recycling is full of great ideas to help the environment. Find the ones you like. Used them in your successful recycling program.

Recycling of Polyvinyl Chloride

Polyvinyl chloride is one of the most widely used plastics worldwide. A major problem in the recycling of polyvinyl chloride is the high chlorine content in raw PVC and high levels of hazardous additives added to the polymer to achieve the desired material quality. As a result, PVC requires separation from other plastics before mechanical recycling. PVC products have an average lifetime of 30 years, with some reaching 50 or more years.  This means that more PVC products are reaching the end-of-life and entering the waste stream, and the amount is likely to increase significantly in the near future.

PVC Recycling Methods

Currently, PVC is being recycled by either one of the two ways:

  • Mechanical recycling – This involves mechanically treating the waste (e.g. grinding) to reduce it into smaller particles.  The resulting granules, called recyclate, can be melted and remolded into different products, usually the same product from which it came.
  • Feedstock recycling – Chemical processes such as pyrolysis, hydrolysis and heating are used to convert the waste into its chemical components.  The resulting products – sodium chloride, calcium chloride, hydrocarbon products and heavy metals to name a few – are used to produce new PVC, as feed for other manufacturing processes or as fuel for energy recovery.

In mechanical recycling, because no chemical reaction is involved, the recyclate retains its original composition. This poses a recycling challenge because PVC products, depending on their application, contain different additives.  For example, rigid PVC is unplasticized whereas flexible PVC is added plasticizers because this additive increases the plastic’s fluidity and thus, its flexibility. Even products used for the same application may still differ in composition if they have different manufacturers.

When different kinds of PVC waste are fed to a mechanical recycler, the resulting product’s composition is difficult to predict, which is problematic because most PVC products, even recycled ones, require a specific PVC content.  In order to produce a high-quality recylate, the feed ideally should not be mixed with other kinds of plastic and should have a uniform material composition.Material recycling is therefore more applicable for post-industrial waste than for post-consumer waste.

Feedstock recycling is seen to be complementary to conventional mechanical recycling as it is able to treat mixed or unsorted PVC waste and recover valuable materials.  However, a study showed that feedstock recycling (or at least the two that was considered) incurred higher costs than landfilling, primarily due to the low value of the recovered products. This provides little incentive for recyclers to pursue PVC recycling.  This may change in the future as more stringent regulations to protect the environment are enacted.  Some countries in Europe have already banned PVCs from landfills and PlasticsEurope is targeting a “zero plastic to landfill” in Europe by 2020.

Post-industrial waste is relatively pure and comes from PVC production and installation, such as cut-offs from laying of cables or scraps from the installation of window frames.  These are easily recycled since they can be collected directly from processors or installers or even recycled by producers themselves as raw material to manufacture the same product.

Post-consumer waste contains mixed material and has been used for different applications.  These are products that have reached the end-of-life or are replaced due to damage, like pipes from underground, window frames being replaced for renovation and electric cables recovered from demolition. These would require further sorting and cleaning, adding cost to the recycling process.  The recyclate produced is usually of lower quality and consequently of decreased economic value.

Recent Developments

Europe is leading the way for a more sustainable use of PVC with programs, such as RecoVinyl and VinylPlus, where recycling is advanced as one of the ways to use resources more efficiently and to divert as much waste as possible from landfills. Recovinyl, created in 2003, is an initiative of the European PVC industry to advance the sustainable development of the PVC industry by improving production processes, minimise emissions, develop recycling technology and boost the collection and recycling of waste.

Having been successful in all of its goals, including an increase in recycling of PVC across Europe to over 240,000 tonnes a year, in 2011 the PVC industry redefined the role of Recovinyl as part of the ambitious new ten-year VinylPlus sustainable development programme. VinylPlus works in partnership with consumers, businesses, municipalities, waste management companies, recyclers and converter, as well as the European Commission and national and local governments. The goal is to certify those companies who recycle PVC waste and those accredited converting companies who purchase recyclate to manufacture new products and applications.

Even if some types of PVC recycling are not feasible or economically viable at present, it will likely be reversed in the future as governments, manufacturers, consumers and other stakeholders create programs that innovate and find ways to achieve a sustainable future for the PVC industry.

Composting in Qatar

compost-qatarQatar has one of the highest per capita waste generation rates worldwide. In 2012, Qatar generated 8,000 tons of solid waste daily (excluding construction and demolition waste which amounts to 20,000 tons additional waste per day).  This number is predicted to reach 19,000 tons/day in 2032, with an annual growth rate of roughly 4.2%.

Most of these wastes end up in landfills – in 2012, more than 90% of Qatar’s solid waste were sent to landfills although the government is intensifying its efforts to reduce this amount. This percentage is extremely high compared to many industrialized countries in Europe and Asia (e.g. Austria, Denmark, Netherlands and Japan) where less than 10% of solid waste are disposed of in landfills.  These countries have high recycling rates, have invested in technologies that convert waste into energy, and apply composting process to their organic waste, especially food wastes. In some of these nations, as much as 40% of their wastes are composted.

Composting in Qatar

Currently, composting in Qatar is mainly done at the Domestic Solid Waste Management Centre (DSWMC) in Mesaieed, which houses the largest composting facility in the country and one of the largest in the world.  The waste that enters the plant initially goes through anaerobic digestion, which produces biogas that can power the facility’s gas engine and generators, followed by aerobic treatment which yields the final product.

Two types of compost are generated: Grade A (compost that comes from green waste, such as yard/park trimmings, leftovers from kitchen or catering services, and wastes from markets) and Grade B (compost produced from MSW).  The plant started its operation in 2011 and when run at full capacity is able to process 750 tons of waste and produce 52 tons of Grade A compost, 377 tons of Grade B compost, liquid fertilizer which is composed of 51 tons of Grade A compost and 204 tons of Grade B compost, and 129 tons of biogas.

This is a significant and commendable development in Qatar’s implementation of its solid waste management plan, which is to reduce, reuse, recycle and recover from waste, and to avoid disposing in landfills as much as possible.  However, the large influx of workers to Qatar in the coming years as the country prepares to host the World Cup in 2022 is expected to substantially increase solid waste generation and apart from its investments in facilities like the composting plant and in DSWMC in general, the government may have to tap into the efforts of organizations and communities to implement its waste management strategy.

Future Outlook

Thankfully, several organizations recognize the importance of composting in waste management and are raising awareness on its benefits.  Qatar Green Building Council (QGBC) has been actively promoting composting through its Solid Waste Interest Group.  Last year, they were one of the implementers of the Baytna project, the first Passivhaus experiment in the country.

This project entails the construction of an energy-efficient villa and a comparative study will be performed as to how the carbon footprint of this structure would compare to a conventional villa.  The occupants of the Passivhaus villa will also be made to implement a sustainable waste management system which includes composting of food waste and garden waste, which is meant to lower greenhouse gas emissions compared to landfilling.

Qatar Foundation is also currently developing an integrated waste management system for the entire Education City and the Food Services group is pushing for composting to be included as a method to treat food and other organic waste.  And many may not know this but composting can be and has been done by individuals in their own backyard and can even be done indoors with the right equipment.

Katrin Scholz-Barth, previous president of SustainableQatar, a volunteer-based organization that fosters sustainable culture through awareness, skills and knowledge, is an advocate of composting and has some great resources on how to start and maintain your own composting bin as she has been doing it herself.  A simple internet search will also reveal that producing compost at home is a relatively simple process that can be achieved with minimal tools.  At present, very few families in Qatar are producing their own compost and Scholz-Barth believes there is much room for improvement.

As part of its solid waste management plan as stated in the National Development Strategy for 2011-2016, Qatar aims to maintain domestic waste generation at 1.6 kg per capita per day.  This will probably involve encouraging greater recycling and reuse efforts and the reduction of waste from its source.  It would also be worthwhile to include programs that will promote and boost composting efforts among institutions, organizations and individuals, encouraging them with the fact that apart from its capability of significant waste diversion from landfills, composting can also be an attractive source of income.

Note: The article is being republished with the permission of our collaborative partner EcoMENA. The original article can be viewed at this link.