A Glance at Biggest Dumpsites in Nigeria

Waste dumping is the predominant method for solid waste disposal in developing countries worldwide, and Nigeria is no exception. Nigeria is home to six of the biggest dumpsites in Africa, according to Waste Atlas 2014 report on World’s 50 Biggest Dumpsites published by D-Waste. These dumpsites are located in three most important cities in Nigeria namely, Lagos, Port Harcourt and Ibadan.

Let us have a quick look at these notorious waste dumps:

Olusosun

Olusosun is the largest dumpsite not only in Lagos but in Nigeria and receives about 2.1 million tonnes of waste annually comprising mostly of municipal solid waste, construction waste, and electronic waste (e-waste). The dumpsite covers an area of about 43 hectares and it is 18 meters deep.

The dumpsite has been in existence since 1992 and has housed about 24.5 million tonnes of waste since then. A population of about 5 million people lives around 10km radius from the site and numerous health problems like skin irritation, dysentery, water-related diseases, nausea etc. have been reported by residents living around 3km radius from the site.

Solous 2

It is located in Lagos and occupies around 8 hectares of land along Lasu-Iba road. The dumpsite receives about 820,000 tonnes of waste annually and has since its existence in 2006 accepted around 5.8 million tonnes of MSW.

Solous is just 200 meters away from the nearest dwellings and almost 4 million people live within 10km radius from the site. Due to the vulnerable sand formation of the area, leachate produced at the dumpsite flows into groundwater causing its contamination.

Epe

Epe dumpsite also in Lagos occupies about 80 hectares of land. The dumpsite was opened in 2010 and has an annual input of 12,000 tonnes of MSW. Epe is the dumpsite which the Lagos State government is planning to upgrade to an engineered landfill and set to replace Olusosun dumpsite after its closure.

Since its existence, it has received about 47,000 tonnes of waste and it is just 500 meters away from the nearest settlement. The dumpsite is also just 2km away from Osogbo River and 7km away from Lekki Lagoon.

Awotan (Apete)

The dumpsite is located in Ibadan and has been in existence since 1998 receiving 36,000 tonnes of MSW annually. It covers an area of 14 hectares and already has in place almost 525,000 tonnes of waste.

The dumpsite is close to Eleyele Lake (2.5km away) and IITA Forest Reserve (4.5km away). The nearest settlement to the dumpsite is just 200 meters away and groundwater contamination has been reported by nearby residents.

Lapite

Lapite dumpsite is also located in Ibadan occupies an area of 20 hectares receiving around 9,000 tonnes of MSW yearly. Since its existence in 1998, it has housed almost 137,000 tonnes of MSW. It is 9km away from IITA Forest Reserve and surrounded by vegetations on both sides of the road since the dumpsite is directly opposite a major road.

Olusosun is the largest dumpsite in Nigeria

The nearest settlement is about 2km away but due to the heavy metals present in the leachate produced in the waste dump, its leakage poses a great threat to groundwater and biodiversity in the area.

Eneka

It is located in Port Harcourt, the commercial hub of South-South, Nigeria along Igwuruta/Eneka road and 9km from Okpoka River and Otamiri River. It receives around 45,600 tonnes of MSW annually and already has about 12 million tonnes of waste in place.

The site lies in an area of 5 hectares and it is flooded almost all year round as rainfall in the area exceeds 2,500mm per annum. Due to this and the resultant flow of the flood which would have mixed with dumpsite leachate; groundwater, surface water, and soil contamination affect the 1.2 million people living around 10km radius from the site as the nearest building is just 200 meters away.

Note: Note: The original version of the article was published on Waste Watch Africa website at this link.

E-Waste Management in the GCC: Perspectives

The growing amount of e-waste is gaining more and more attention on the global agenda. In 2017, e-waste production is expected to reach up to 48 million metric tons worldwide. The biggest contributors to this volume are highly developed nations, with the top three places of this inglorious ranking going to Norway, Switzerland and Iceland.

In Norway, each inhabitant produces a massive 28.3 kg of e-waste every year. Not far behind the top ten of this ranking lie GCC member states, with both Kuwait and UAE producing each 17.2 kg e-waste per capita per year. Saudi Arabia with its many times larger population produces least e-waste per capita among all GCC countries, with 12.5 kg a year.

Link between Development and E-Waste

Recent research suggests that there is evidence of a strong link between economic development and the generation of e-waste.  Due to rapid urbanization growth rates along with a substantial increase in the standard of living, more people develop a consumerist culture. With rising disposable income, people replace their technology more frequently, as soon there are upgraded gadgets on the market. This development is aggravated by technological progress, which renders shorter life spans of products.

Complexity of E-Waste

E-waste is not only a fast-growing waste stream but also complex, as it contains a large variety of different products. This makes it extremely difficult to manage. The rapid technology development and the emergence of items such as smart clothes will render e-waste management even more difficult in the future. Dealing with e-waste is not only toxic for workers with direct contact to it, but also the dumpsites on which e-waste is stored can have severe environmental impacts on the surrounding areas. Many developed countries export the bulk of their e-waste to developing countries, where it is recovered using extremely harmful methods for both human and the environment.

Out of the total e-waste produced world-wide, only about 15% are collected by official take-back schemes. The European Union is one of the few regions in the world with uniform legislation regarding the collection and processing of e-waste. The WEEE (Waste Electrical and Electronic Equipment) Directive took effect in 2003 and was designed to make manufacturers of appliances responsible for their equipment at the end of its life, a system known as extended producer responsibility (EPR).

An Untapped Opportunity

However, e-waste should not only be seen as a problem which more and more developed countries have to face. According to statistics, the intrinsic material value of global e-waste is estimated to be 48 billion euros in 2014. Even though the large part of e-waste constitutes of iron and steel, precious metals such as gold, copper, palladium, silver, platinum, cobalt, and more provide economic incentive for recycling.  In addition to the intrinsic material value, there are more benefits to e-waste recycling, such as job and employment creation.

In addition to these economic benefits, the recycling of electronic waste products also ensures to reduce environmental pollution by conserving virgin resources, whose extraction goes along with severe damages to entire ecosystems.

Situation in GCC Countries

In almost all GCC countries, there is minimal to zero legislation on e-waste, with minor differences between the respective counties. Kuwait as one of the biggest per capita e-waste producers among the GCC nations uses the same landfills for both conventional and e-waste. Bahrain operates only one landfill for the entire country, but there are several recycling initiatives in place, aiming at separating plastics, metals and paper. Still, there is no comprehensive law on e-waste management. Saudi Arabia possesses the biggest total amount of e-waste among the GCC countries. There are private companies, initiatives and Non-Profit-Organizations currently working on e-waste recycling, but there is no regulated system in place.

Oman does not have regulations or facilities to deal with e-waste, but the country has recently stated the realization of a need for it. Qatar has also recognized the need to address the waste management issue, but no concrete actions have been taken. The most advanced momentum regarding e-waste of all GCC countries can be found in the UAE. In some waste management centers, there are facilities where e-waste is classified and sorted out specifically. The UAE government is currently developing regulation and facilities to for sound e-waste recycling.

The Way Forward

As we have seen, in many GCC countries the need for e-waste legislation is widely recognized. E-waste management provides an opportunity and a huge potential in the entire Middle East, primarily due to four reasons. First, e-waste management is a source of employment for both highly skilled and unskilled workers. This could help to transfer employment from the public to the private sector, which is a goal of many Gulf countries. Second, e-waste recycling can also minimize costs, as less landfill space is being used. In Bahrain, the only existing landfill is expected to reach its capacity in the next years, and poses furthermore a health risks for the population as it is close to urban areas.

The most advanced momentum regarding e-waste in the GCC can be found in the UAE.

Third, the intrinsic value of e-waste with its precious metals provide economic incentive for recycling. As reserves for many metals decrease drastically, the economic value of these resources is expected to increase. And fourth, developments in e-waste management provide opportunities for industry and environmental research. Innovative and efficient recycling processes could be developed and transferred to other countries.

In order to fulfill this potential for e-waste management in GCC countries, the first step is to develop a sound regulatory framework in order to ensure private sector participation. Additionally, programs to increase public awareness for waste and in specific e-waste need to be developed, which is necessary for an integrated e-waste management system.

References

Kusch, S. & Hills, C.D. (2017). The Link between e-Waste and GDP—New Insights from Data from the Pan-European Region. Resources 6 (15); doi:10.3390/resources6020015

Baldé, C.P., Wang, F., Kuehr, R. & Huisman, J. (2015). The global e-waste monitor – 2014. United Nations University, IAS – SCYCLE. Bonn, Germany

Morgan, K. (2015). Is there a future for e-waste recycling? Yes, and it’s worth billions.

Cucchiella, F., D’Adamo, I., Lenny Koh, S.C. & Rosa, P. (2015). Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renewable and Sustainable Energy Reviews (51); doi:10.1016/j.rser.2015.06.010

Alghazo, J. & Ouda, O. (2016). Electronic Waste Management and security in GCC Countries: A Growing Challenge. Conference Paper.

Debusmann, B. (2015). New regulations are coming up to deal with e-waste.