How to Beat Plastic Pollution – Guide to Recycle Plastic for Further Usage

According to GenFollower, around 8.3 billion metric tons (9.1 billion US tons) of plastic have been produced worldwide, and it is found that 9.1% of plastic waste is not recycled, and this is an alarming figure which is contaminating our natural environment. Although plastic is a very useful material that’s rigid, flexible and robust, they become waste right after their use, and they contaminate the environment.


In order to protect our environmental surroundings as well as to make the most of plastic material, recycling procedure is the best solution. Plastic is actually a common material that’s now frequently used by everyone on this planet. Plastic is used in several ways because it is compact and lightweight.

The continues maintenance required is little.

Typical plastic items that usually used are bottles, food packages, bags, and containers. When you buy grocery, food items or any other product from any store or shop, you’ll use plastic bags for carrying them.

Uses of Plastic

Plastics are commonly used in:

  • Construction industry
  • Packaging industry
  • Storage
  • Disposable cutlery, etc.

Where does the Problem Lie?

The big problem with plastic is its disposal.

Plastic is made of polymer-bonded substances and isn’t biodegradable which means plastic won’t break down when it is buried. When plastic is burnt, it discharges detrimental chemical substances in smoke. Most of these chemical substances in smoke have negative effects on our ecosystem. Therefore, the necessity of recycling arises.

Straight into Something New

Recycling means making new items out of waste material.

Almost all types of plastic materials can’t be reprocessed. If we recycle those that can be reprocessed, the earth will be saved to a certain degree. Plastic recycling requires the process of recovering discard plastic, and this particular waste is then reprocessed to make new materials that could be more advanced than their original state.

When compared with many other materials such as metal and glass, recycling of plastic is complex and expensive. It’s because of the high molecular body weight of the large polymer-bonded chains that make the plastic material.

Heating plastic does not melt the polymer-bonded chains, and therefore, a tiresome and complicated procedure is required. Several types of plastic-type material can’t be mixed since they recycle separately.

Benefits of Recycling

Recycling plastic has many positive aspects.

  • Use of non-renewable fuels is usually reduced by recycling as the production of new plastic materials requires more of these fuels.
  • Use of electrical power is also reduced because already prepared plastic material is reused.
  • Amount of plastic-type material that reaches the garbage dump sites are reduced. This may eradicate land pollution to some extent.
  • Carbon pollutants are reduced because manufacturing units discharge more carbon.

Inverse Polymerization Procedure

The most popular procedure that is used for polymers recycle is the inverse polymerization procedure in which the polymers in the plastic material are transformed into monomers that are used in the manufacturing process.


Recycling has unending benefits

Most of these chemical substances are then synthesized and purified to form new materials. Different polymers are usually transformed into oil in another process. The main advantage of this particular process is that any mixture of polymers can easily be used.

Steps Involved in Recycling

The standard steps which are involved in the particular recycling of plastic material are;

  • Step 1: Accumulating plastic waste from industries and households.
  • Step 2: Separating the plastic waste materials in different categories such as bags, containers, pet bottles, etc.
  • Step 3: The plastic is cut into small pieces.
  • Step 4: The small pieces are carefully cleaned for removing any unwanted particles or dirt contaminants on them.
  • Step 5: The cleaned pieces are dissolved and poured into storage containers for recycling.

In order to aid this process, plastics that have identification code should be identified with the different polymers that are usually used in the manufacturing of plastic. This process should be started at home. When you’ve used that plastic item, you can easily use the same item for something else entirely. For instance, if you purchase a fruit juice bottle, you can easily use the plastic bottle as a storage bottle for reusing the pet bottle.

Carbon Black: Promise and Potential

Carbon Black is a commercial form of solid carbon that is manufactured in highly controlled processes to produce specifically engineered aggregates of carbon particles that vary in particle size, aggregate size, shape, porosity and surface chemistry. Carbon Black typically contains more than 95 % pure carbon with minimal quantities of oxygen, hydrogen and nitrogen.

In the manufacturing process, Carbon Black particles range from 10 nm to approximately 500 nm in size. These fuse into chain-like aggregates, which define the structure of individual Carbon Black grades.

What is Carbon Black

Carbon Black is used in a diverse group of materials in order to enhance their physical, electrical and optical properties. Its largest volume use is as a reinforcement and performance additive in rubber products.

In rubber compounding, natural and synthetic elastomers are blended with Carbon Black, elemental sulphur, processing oils and various organic processing chemicals, and then heated to produce a wide range of vulcanized rubber products. In these applications, Carbon Black provides reinforcement and improves resilience, tear-strength, conductivity and other physical properties.

Carbon Black is the most widely used and cost effective rubber reinforcing agent (typically called Rubber Carbon Black) in tire components (such as treads, sidewalls and inner liners), in mechanical rubber goods (“MRG”), including industrial rubber goods, membrane roofing, automotive rubber parts (such as sealing systems, hoses and anti-vibration parts) and in general rubber goods (such as hoses, belts, gaskets and seals).

Applications of Carbon Black

Besides rubber reinforcement, Carbon Black is used as black pigment and as an additive to enhance material performance, including conductivity, viscosity, static charge control and UV protection. This type of Carbon Black (typically called Specialty Carbon Black) is used in a variety of applications in the coatings, polymers and printing industries, as well as in various other special applications.

Actually, after oil removal and ash removal processing from tire pyrolysis, we can get high-purity commercial carbon black, which can be used to make color master batch, color paste, oil ink and as addictive in plastic and rubber products. Besides, after activation treatment, the carbon black will become good materials to produce activated carbon.

In the coatings industry, treated fine particle Carbon Black is the key to deep jet black paints. The automotive industry requires the highest black intensity of black pigments and a bluish undertones.

Carbon Black has got a wide array of applications in different industries

Small particle size Carbon Blacks fulfill these requirements. Coarser Carbon Blacks, which offer a more brownish undertone, are commonly used for tinting and are indispensable for obtaining a desired grey shade or color hue.

In the polymer industry, fine particle Carbon Black is used to obtain a deep jet black color. A major attribute of Carbon Black is its ability to absorb detrimental UV light and convert it into heat, thereby making polymers, such as polypropylene and polyethylene, more resistant to degradation by UV radiation from sunlight. Specialty Carbon Black is also used in polymer insulation for wires and cables. Specialty Carbon Black also improves the insulation properties of polystyrene, which is widely used in construction.

In the printing industry, Carbon Black is not only used as pigment but also to achieve the required viscosity for optimum print quality. Post-treating Carbon Black permits effective use of binding agents in ink for optimum system properties. New Specialty Carbon Blacks are being developed on an ongoing basis and contribute to the pace of innovation in non-impact printing.

How An Increase in Demand of Epoxy Resin Can Fuel the Need for Clean Energy

Epoxy resin is a kind of reactive prepolymer and polymer that contains epoxide groups. It is important to note that epoxy resin is different from other polyester resins in terms of curing. Unlike other resins, instead of using a catalyst as a curing agent, it is cured by an agent known as the hardener. It possesses many desirable properties such as high tensile strength, high adhesive strength, high corrosion resistance, and excellent moisture & chemical resistance. It is also resistant to fatigue, has a long shelf life, and has good electrical and insulating properties. The ability of epoxy resins to be used in various combinations and reinforcements makes it the foundation of a plethora of industries, including clean energy systems.

Applications of Epoxy Resins

Because of the versatile properties of epoxy resins, it is used widely in adhesives, potting, encapsulating electronics, and printed circuit boards. It is also used in the form of matrices for composites in the aerospace industries. Epoxy composite laminates are commonly used for repairing both composite as well as steel structures in marine applications.

Due to its high reactivity, epoxy resin is preferred in repairing boats that have been damaged by impact. Its low shrinking properties and ease of fabrication make it well suited for many tooling applications such as metal-shaping molds, vacuum-forming molds, jigs, patterns etc.

Use of Epoxy Resins in Clean Energy

A variety of industries have been actively trying to find a path that’s moving towards a society that puts less load on the the environment and also contributes towards reducing the carbon footprint. The accelerated use of epoxy resins in generating renewable energy has lead to a rise in its production demand. This is why the epoxy resin market is projected to witness a high demand and growth rate by 2022. Here are some of the sectors contributing to the production of clean energy and how they utilize epoxy resin for their functioning:

  • Solar Energy

The harnessing of solar energy dates back to 700 B.C, when people used a magnifying glass to focus the sun’s rays to produce fire. Today solar power is a vigorously developing energy source around the globe. It not only caters to the rising energy requirements but also the need to protect the environment from the exploitation of exhaustible energy resources.

A piece of average solar equipment endures intense environmental conditions such as scorching heat, UV radiations, bitter cold,  pouring rain, hail, storms, and turbulent winds. To withstand such conditions, the sealing and mounting application of epoxy resins increase the environmental tolerance of the solar equipment.

With their high mechanical strength, impressive dimensional stability and excellent adhesion properties, they are used to protect the solar panels from a wide range of temperatures. Epoxies are cheap, less labor-intensive and easy to apply.

  • Wind Energy

The global wind industry has quickly emerged as one of the largest sources of renewable energy around the world. The wind energy in the U.S. alone grew by 9% in 2017 and today is the largest source for generating clean energy in the country. With such a tremendous demand for wind power, the need for fabricating bigger and better wind turbine blades is also rising. The industry is in a dearth of long-lasting blades, that endure the harsh climatic conditions and wear tear and are able to collect more wind energy at a time.

Sealing and mounting application of epoxy resins increase the environmental tolerance of the solar equipment

Epoxy thermosets are used for making the blades more durable because of their high tensile strength and high creep resistance. Mixing of epoxy resins with various toughening agents and using them on the blades have shown positive results towards making the blades corrosion resistant and fatigue-proof.

  • Hydropower

Hydropower is an essential source of renewable and clean energy. As the hydropower industry is developing rapidly, the solution for protecting the hydropower concrete surfaces against low temperatures and lashing water flow has also been looked into.

As a solution to this issue, epoxy mortar, a mixture of epoxy resins, binder, solvent, mineral fillers, and some additives has proven to be the most effective material used for surface protection. Owing to the properties like non-permeability, adhesive strength, anti-erosive nature, and non-abrasiveness, epoxy mortar paste has been used as a repairing paste in the hydropower industry.

Over the last few decades, epoxy resins have contributed immensely in the maintenance and protection of clean energy sources, helping them to become more efficient and productive.

Final Thoughts

While many argue that factors like a relatively high cost when compared to petroleum-based resins and conventional cement-mortar alternatives has affected the epoxy resin market growth, the fact remains that epoxy resin never fails to deliver top-notch and unmatchable results in the areas of application.