Why You Should Work Towards an Energy-Efficient Home

An energy-efficient home is something we should all work towards. It will save you money, decrease your carbon footprint, and make your home and lifestyle more environmentally friendly. Most of us think that achieving an energy-efficient home is difficult, expensive, and time-consuming, but it doesn’t have to be. There are so many little things we can do to decrease the amount of energy we waste and to reduce the amount of money we spend on running our homes. Today, we will be taking a look at what you can do to improve the energy efficiency of your home and why this will benefit you in the long run.

Upgrade Appliances

If your home appliances are old, chances are they are not very energy efficient and will be costing you more than they should to run. When you purchase any new appliance, you should look for one that comes with a stamp of approval, also known as an ‘Energy Star’ rating. This means the new appliance is classed as energy-efficient, which means you will save money on energy bills in the future.

Check Boiler Efficiency

In most UK households, the cost of running a boiler will be more than all of the other home appliances combined. To ensure that you aren’t spending too much on your boiler, you should assess its efficiency levels. There are simple tools you can use to do this. If you are spending too much, replacing a boiler is an option, but it’s expensive. Instead, you can look into cheaper ways of improving its efficiency.

Install Insulation

Energy that should be heating your home will be lost through your windows and ceilings when your home is poorly insulated. If your home is properly insulated, you will pay less to heat your home because the building will retain the heat more efficiently. It doesn’t cost too much to do and the money you spend on it will be made back over a couple of years through reduced energy costs.

Switch Energy Supplier

Some energy suppliers are greener than others, and many of the more sustainable ones also offer surprisingly cheap tariffs. By using an energy comparison website you should be able to find a new supplier that can improve your household’s carbon footprint while also lowering your household bills.

Use Renewables

Renewable energy comes from a resource that is naturally replaced on a human timescale. This includes wind, sunlight, waves, tides, rain, and geothermal heat. Using renewable energy is a great way to help the environment and to save money on energy bills. It can be expensive to install, but it comes with many benefits for you, your home, and the environment.

As you can see, the main reason many of us should choose to have a more energy-efficient home is to save us money, but it helps the environment too. We are all aware of the changes taking place in our environment, so protecting it and saving money while doing so is an offer we shouldn’t refuse.

Renewable Energy Production in Australia: The Plan to Reduce Coal Use

Recently there has been a lot of talk in how a country can improve their ecological footstep. One way of doing so is definitely changing the way the respective country produces its energy. Australia has recently been headlining the news in regard to the renewable energy situation. Australia’s energy production is looking towards a new future with a specific aim on solar and wind power.

If Australia plans on keeping its water resource at a steady level, it has got to go from its use of coal to renewable sources. Thanks to its abundance in both solar and wind energy, Australia has quite the advantage when it comes to green energy production possibilities.

Unfortunately though due to their geographic position, the water supply is limited for the country. So much so, that the coal industry was taking a toll on the water supply due to the large quantities of water needed when producing energy from coal. As a result, moving over to wind and solar energy fueled productions is a viable option seeing how both respective energy productions do not require water.

The news that Australia was listed as a “water-stressed company” was released by the World Resource Institute; a non-profit organization based in Washington D.C. Moreover, on this past May 13th The Sydney Morning Herald also wrote that 73% of Australia’s electricity needs were met by the use of coal. In respect to these findings and Australia’s continuous growth, it is imperative that new resources are used for energy production.

Australia has been making headlines in renewable energy sector.

Fortunately, Australia’s geography is a big resource as well when it comes to studying the possibilities of implementing the new energy productions. It was in fact calculated that the dimensions of the solar power farm needed to meet the country’s demands would result in occupying only 0.1% of Australia’s total land mass; I think we can all agree on the fact that that land could be spared for a solar farm.

And on that note, the government is taking the matter seriously, and has called upon everybody to try and better the situation. The incentives call upon small businesses and households as well by reminding them that there are the possibilities of installing their own solar panels, heat pumps, solar water heaters, and more.

Thanks to the various incentives, the Green Energy Council has stated that there is a lot of activity in the sector, including at least 58 different projects focused on implementing the renewable energy sources. As a consequence of these projects, the council has also stated that there would be an income of $10 billion in investments, 6,141 new jobs, and 5,482 megawatts of renewable energy capacity. Definitely great numbers to look forward to!

5 Ways The Oil Industry Helps To Keep The Environment Clean

When you think of oil companies, it’s likely you don’t also think of “environmentally-friendly”. We see news about spilled oil, burning tankers, and other issues, and assume that all oil companies are disregarding the health of our planet. This simply isn’t the case, and you’ll be happy to know that the oil industry is actually working to keep the environment clean.

Here are five ways the industry is helping out with Mother Earth.

1. Information

The first step to improving anything is realizing there’s a problem to begin with, then gathering necessary information on the problem. Every time a spill, accident, or fire occurs, the oil industry is gathering precious data to use to combat future problems.

When a spill occurs, it can be devastating for the local ecosystems. Flora and fauna alike are affected by the viscous liquid, often restricting their ability to move, breathe, or perform daily functions. The Deepwater Horizon Rig that caused a massive spill in the Gulf of Mexico in 2010 was much more than just an industrial and environmental disaster; it was a learning experience for the oil industry.

Scientists and researchers from all over the world descended on the Gulf after the spill, and though we’re still learning from it a decade later, the information that was collected has been incredibly beneficial to the industry and has helped pave the way for new containment processes.

2. Better Pipe Maintenance

Maintaining pipelines is a crucial component of keeping the environment clean. Pipes can rupture, leaking oil or natural gas into the environment or even causing explosions and fires under the right conditions. The oil and natural gas industries have focused heavily on creating better maintenance processes and safety standards for pipelines across the country in recent years.

Not only do faulty pipelines put the environment at risk, but they also put thousands of workers at risk as well. Keeping workers and the environment safe not only shows care for the Earth and the industry’s employees but also helps potentially save millions in cleanup dollars.

3. Decreasing Freshwater Usage

Certain processes, such as fracking or separating oil from sands, use millions of gallons of fresh water. This is incredibly damaging to the environment not only because there’s already a shortage of freshwater on a global scale, but also because the wastewater that’s produced is stored in man-made containment units that aren’t always good at containing it.

Fracking wastewater is laced with chemicals that are both harmful to the environment directly and can contaminate other freshwater sources. The oil industry is working hard to minimize the use of freshwater in fracking and separation processes, as well as reducing the amount of wastewater and improving containment.

There’s also some promise in the area of recycling the water itself for use in future processes. In the US, produced water from fracking is being used in certain applications and even some water treatment plants are focusing on better treatment processes to make the water drinkable.

4. Investing In Renewable Energy

Renewable energy is on the horizon, and with the continued focus on wind, solar, hydro, and even tidal energy, the oil industry is starting to take notice. These energy sources offer a promising future, but as of yet, they’re not able to meet the world’s energy demands in an affordable way.

Right now, gasoline, natural gas, and crude oil are much cheaper and more profitable to source, acquire, and sell to the public. Pipelines can transport natural gas thousands of miles away, serving isolated regions and maintaining a constant flow of raw resources throughout the country.

Not to mention, the Canadian economy is highly invested in oil and natural gas, being the 5th and 6th largest producer of each respectively. However, the oil industry isn’t ignoring renewables. With continued investments, we could see a partial or full transition to renewable energy within our lifetime.

5. Using Technology For Better Planning

As technology improves, so too do the processes by which pipelines are planned and built. With new software, engineers can better plan a pipe’s path through an ecosystem in order to minimize the environmental impact. Better diagnostic software can identify issues long before they become spills or ruptures, and even AI tech is playing a role in the oil industry.

Moving Forward

Believe it or not, the oil industry is committed to a safer and more sustainable world. By using technology and data, the industry is improving its processes and ensuring that renewable energy remains an option for the future of energy production.

Green SMEs: Catalyst for Green Economy

With ‘green’ being the buzzword across all industries, greening of the business sector and development of green skills has assumed greater importance all over the world. SMEs, startups and ecopreneurs are playing a vital role in the transition to a low-carbon economy by developing new green business models for different industrial sectors. Infact, young and small firms are emerging as main drivers of radical eco-innovation in the industrial and services sectors.

Green SMEs

What are Green SMEs

Green SMEs adopt green processes and/or those producing green goods using green production inputs. A judicious exploitation of techno-commercial opportunities and redevelopment of business models, often neglected by established companies, have been the major hallmarks of green SMEs.

For example, SMEs operating in eco-design, green architecture, renewable energy, energy efficiency and sustainability are spearheading the transition to green economy across a wide range of industries. The path to green economy is achieved by making use of production, technology and management practices of green SMEs. Impact investment platforms, such as Swell Investing, allows individuals to invest in environmentally sustainable companies.

Categories of Green Industries

Environmental Protection Resource Management
Protection of ambient air Water management
Protection of climate Management of forest resources
Wastewater management Management of flora and fauna
Waste management Energy management
Noise and vibration abatement Management of minerals
Protection of biodiversity and landscape Eco-construction
Protection against radiation Natural resource management activities
Protection of soil, groundwater and surface water Eco-tourism
Environmental Monitoring and Instrumentation Organic agriculture
Research and Development Research and Development

Key Drivers

The key motivations for a green entrepreneur are to exploit the market opportunity and to promote environmental sustainability. A green business help in the implementation of innovative solutions, competes with established markets and creates new market niches. Green entrepreneurs are a role model for one and all as they combine environmental performance with market targets and profit outcomes, thus contributing to the expansion of green markets.

Some of the popular areas in which small green businesses have been historically successful are renewable energy production (solar, wind and biomass), smart metering, building retrofitting, hybrid cars and waste recycling.

As far as established green industries (such as waste management and wastewater treatment) are concerned, large companies tend to dominate, however SMEs and start-ups can make a mark if they can introduce innovative processes and systems. Eco-friendly transformation of existing practices is another attractive pathway for SMEs to participate in the green economy.

The Way Forward

Policy interventions for supporting green SMEs, especially in developing nations, are urgently required to overcome major barriers, including knowledge-sharing, raising environmental awareness, enhancing financial support, supporting skill development and skill formation, improving market access and implementing green taxation.

In recent decades, entrepreneurship in developing world has been increasing at a rapid pace which should be channeled towards addressing water, energy, environment and waste management challenges, thereby converting environmental constraints into business opportunities.

Your Choices for Alternative Energy

While using alternative sources of energy is a right way for you to save money on your heating and cooling bills, it also allows you to contribute in vital ways to both the environment and the economy.  Alternative energy sources are renewable, environmentally sustainable sources that do not create any by-products that are released into the atmosphere like coal and fossil fuels do.

Burning coal to produce electricity releases particulates and substances such as mercury, arsenic, sulfur and carbon monoxide into the air, all of which can cause health problems in humans.

Other by-products from burning coal are acid rain, sludge run-off and heated water that is released back into the rivers and lakes nearby the coal-fired plants.  While efforts are being made to create “clean coal,” businesses have been reluctant to use the technology due to the high costs associated with changing their plants.

If you are considering taking the plunge and switching to a renewable energy source to save money on your electric and heating bills or to help the environment, you have a lot of decisions to make. The first decision you need to make is which energy source to use in your home or business.  Do you want to switch to solar energy, wind power, biomass energy or geothermal energy?

Emissions from homes using heating oil, vehicles, and electricity produced from fossil fuels also pollute the air and contribute to the number of greenhouse gases that are in the atmosphere and depleting the ozone layer.  Carbon dioxide is one of the gases that is released into the air by the burning of fossil fuels to create energy and in the use of motor vehicles.  Neither coal nor fossil fuels are sources of renewable energy.

Replacing those energy sources with solar, biomass or wind-powered generators will allow homes and businesses to have an adequate source of energy always at hand.  While converting to these systems can sometimes be expensive, the costs are quickly coming down, and they pay for themselves in just a few short years because they supply energy that is virtually free.  In some cases, the excess energy they create can be bought from the business or the homeowner.

While there are more than these three alternative energy options, these are the easiest to implement on an individual basis.  Other sources of alternative energy, for instance, nuclear power, hydroelectric power, and natural gas require a primary power source for the heat so it can be fed to your home or business.  Solar, wind, biomass and geothermal energy can all have power sources in your home or business to supply your needs.

Solar Energy

Solar power is probably the most widely used source of these options.  While it can be expensive to convert your home or business over to solar energy, or to an alternative energy source for that matter, it is probably the most natural source to turn over to.  You can use the sun’s energy to power your home or business and heat water.  It can be used to passively heat or light up your rooms as well just by opening up your shades.

Wind Power

You need your wind turbine to power your home or office, but wind energy has been used for centuries to pump water or for commercial purposes, like grinding grain into flour.  While many countries have wind farms to produce energy on a full-scale basis, you can have your wind turbine at home or at your business to provide electricity for your purposes.

The cost of alternative energy systems has dropped sharply in recent years

Biomass Energy

Biomass energy has rapidly become a vital part of the global renewable energy mix and account for an ever-growing share of electric capacity added worldwide. Biomass is the material derived from plants that use sunlight to grow which include plant and animal material such as wood from forests, material left over from agricultural and forestry processes, and organic industrial, human and animal wastes. Biomass comes from a variety of sources which include wood from natural forests and woodlands, agricultural residues, agro-industrial wastes, animal wastes, industrial wastewater, municipal sewage and municipal solid wastes.

Geothermal Energy

A heat pump helps cool or heat your home or office using the earth’s heat to provide the power needed to heat the liquid that is run through the system to either heat your home in the winter or cool it off in the summer.  While many people use it, it doesn’t provide electricity, so you still need an energy source for that.

Applications of Epoxy Resin in Clean Energy Sector

Epoxy resin is a kind of reactive prepolymer and polymer that contains epoxide groups. It is important to note that epoxy resin is different from other polyester resins in terms of curing. Unlike other resins, instead of using a catalyst as a curing agent, it is cured by an agent known as the hardener. It possesses many desirable properties such as high tensile strength, high adhesive strength, high corrosion resistance, and excellent moisture & chemical resistance. It is also resistant to fatigue, has a long shelf life, and has good electrical and insulating properties. The ability of epoxy resins to be used in various combinations and reinforcements makes it the foundation of a plethora of industries, including clean energy systems.

Applications of Epoxy Resins

Because of the versatile properties of epoxy resins, it is used widely in adhesives, potting, encapsulating electronics, and printed circuit boards. It is also used in the form of matrices for composites in the aerospace industries. Epoxy composite laminates are commonly used for repairing both composite as well as steel structures in marine applications.

Due to its high reactivity, epoxy resin is preferred in repairing boats that have been damaged by impact. Its low shrinking properties and ease of fabrication make it well suited for many tooling applications such as metal-shaping molds, vacuum-forming molds, jigs, patterns etc.

Use of Epoxy Resins in Clean Energy

A variety of industries have been actively trying to find a path that’s moving towards a society that puts less load on the the environment and also contributes towards reducing the carbon footprint. The accelerated use of epoxy resins in generating renewable energy has lead to a rise in its production demand. This is why the epoxy resin market is projected to witness a high demand and growth rate by 2022. Here are some of the sectors contributing to the production of clean energy and how they utilize epoxy resin for their functioning:

  • Solar Energy

The harnessing of solar energy dates back to 700 B.C, when people used a magnifying glass to focus the sun’s rays to produce fire. Today solar power is a vigorously developing energy source around the globe. It not only caters to the rising energy requirements but also the need to protect the environment from the exploitation of exhaustible energy resources.

A piece of average solar equipment endures intense environmental conditions such as scorching heat, UV radiations, bitter cold,  pouring rain, hail, storms, and turbulent winds. To withstand such conditions, the sealing and mounting application of epoxy resins increase the environmental tolerance of the solar equipment.

With their high mechanical strength, impressive dimensional stability and excellent adhesion properties, they are used to protect the solar panels from a wide range of temperatures. Epoxies are cheap, less labor-intensive and easy to apply.

  • Wind Energy

The global wind industry has quickly emerged as one of the largest sources of renewable energy around the world. The wind energy in the U.S. alone grew by 9% in 2017 and today is the largest source for generating clean energy in the country. With such a tremendous demand for wind power, the need for fabricating bigger and better wind turbine blades is also rising. The industry is in a dearth of long-lasting blades, that endure the harsh climatic conditions and wear tear and are able to collect more wind energy at a time.

Sealing and mounting application of epoxy resins increase the environmental tolerance of the solar equipment

Epoxy thermosets are used for making the blades more durable because of their high tensile strength and high creep resistance. Mixing of epoxy resins with various toughening agents and using them on the blades have shown positive results towards making the blades corrosion resistant and fatigue-proof.

  • Hydropower

Hydropower is an essential source of renewable and clean energy. As the hydropower industry is developing rapidly, the solution for protecting the hydropower concrete surfaces against low temperatures and lashing water flow has also been looked into.

As a solution to this issue, epoxy mortar, a mixture of epoxy resins, binder, solvent, mineral fillers, and some additives has proven to be the most effective material used for surface protection. Owing to the properties like non-permeability, adhesive strength, anti-erosive nature, and non-abrasiveness, epoxy mortar paste has been used as a repairing paste in the hydropower industry.

Over the last few decades, epoxy resins have contributed immensely in the maintenance and protection of clean energy sources, helping them to become more efficient and productive.

Final Thoughts

While many argue that factors like a relatively high cost when compared to petroleum-based resins and conventional cement-mortar alternatives has affected the epoxy resin market growth, the fact remains that epoxy resin never fails to deliver top-notch and unmatchable results in the areas of application.

Salient Features of Sugar Industry in Mauritius

Sugar industry has always occupied a prominent position in the Mauritian economy since the introduction of sugarcane around three centuries ago. Mauritius has been a world pioneer in establishing sales of bagasse-based energy to the public grid, and is currently viewed as a model for other sugarcane producing countries, especially the developing ones.

Sugar factories in Mauritius produce about 600,000 tons of sugar from around 5.8 million tons of sugarcane which is cultivated on an agricultural area of about 72,000 hectares. Of the total sugarcane production, around 35 percent is contributed by nearly 30,000 small growers. There are more than 11 sugar factories presently operating in Mauritius having crushing capacities ranging from 75 to 310 tons cane per hour.

During the sugar extraction process, about 1.8 million tons of Bagasse is produced as a by-product, or about one third of the sugarcane weight. Traditionally, 50 percent of the dry matter is harvested as cane stalk to recover the sugar with the fibrous fraction, i.e. Bagasse being burned to power the process in cogeneration plant. Most factories in Mauritius have been upgraded and now export electricity to the grid during crop season, with some using coal to extend production during the intercrop season.

Surplus electricity is generated in almost all the sugar mills. The total installed capacity within the sugar industry is 243 MW out of which 140 MW is from firm power producers. Around 1.6 – 1.8 million tons of bagasse (wet basis) is generated on an annually renewable basis and an average of around 60 kWh per ton sugarcane is generated for the grid throughout the island.

The surplus exportable electricity in Mauritian power plants has been based on a fibre content ranging from 13- 16% of sugarcane, 48% moisture content in Bagasse, process steam consumption of 350–450 kg steam per ton sugarcane and a power consumption of 27-32 kWh per ton sugarcane.

In Mauritius, the sugarcane industry is gradually increasing its competitiveness in electricity generation. It has revamped its boiler houses by installing high pressure boilers and condensing extraction steam turbine. All the power plants are privately owned, and the programme has been a landmark to show how all the stakeholders (government, corporate and small planters) can co-operate. The approach is being recommended to other sugarcane producing countries worldwide to harness the untapped renewable energy potential of biomass wastes from the sugar industry.

Sustainable Environment in Singapore: An Attraction for Businesses and Investors

In addition to a robust economy, Singapore’s sustainable environment is another leading factor that has attracted numerous investors. Most cities in the world have failed to address environmental issues brought about by urbanization. Towns or urban areas cover over 2% of the Earth’s surface; they are responsible for about 80% of the greenhouse gases emitted while using up almost 75%  of nature’s resources.

However, a host of countries in Southeast Asia are leading the way to change this contrary notion about cities and urban regions. Research conducted by several world-leading environmental bodies and institutions determined that Singapore is indeed one of the most environmentally sustainable nations.

Singapore’s first prime minister kickstarted the dream of making Singapore a green city. His main agenda was to make Singapore stand out from the rest of the Asian countries and also attract investors from all over the world. The first step undertaken to achieve this dream was the eradication of the houseboats and overcrowded slums along the banks of Singapore River.

Incorporation services Singapore are offering entrepreneurs moving to Singapore a platform to incorporate their businesses in Singapore. This allows them to run their firms within the stipulated terms while also receive the government’s backing.

On the world’s Environmental Performance Ranking, Yale University and the U.N place Singapore at seventeenth globally and first position in Asia. Contrary to popular belief, Singapore’s efforts and strict green technology guidelines, which were set and backed up by the government, helped in making it an eco-friendly city.  

So how exactly does Singapore afford to provide suitable surroundings perfect for its citizens and also attract investors and entrepreneurs from overseas?

Government Support

As discussed before, adoption of green technology is one of the leading things that has made Singapore an eco-friendly city. Singapore has been able to morph into a modernized city-state without having a negative impact on nature.

The Singapore government’s Cleantech division, which is a subsidiary of the board tasked with economic growth, has offered continued support to companies in the clean technology business. This has led to the business sector growing tremendously in areas such as renewable energy, water conservation, green buildings, etc.

Growing ICT Center

Companies such as Hewlett Packard (HP) and International Business Machines Corporation have partnered with the Ministry of Environment and Water Resources. The main idea behind these partnerships is to ensure that Singapore’s ICT industry thrives. HP, for example, has been tasked with designing and manufacturing energy efficient systems that will cut power costs while still providing a working platform for businesses.

There is no shortage of green spaces in Singapore

Low Energy Costs and Environmental Remedies

Accommodating over 7000 companies from different nations across the globe is no mean feat. As such, Singapore’s government and other agencies know that a green environment is not the only requirement to attract more investors.

Through an alliance known as the Singapore Sustainability Alliance, an umbrella consisting of government groups, non-governmental organizations, and teaching institutions, Singapore has been able to come up with policies that create a sustainable environment. Other than this, the alliance has overseen the adoption of systems that include proper water use, renewable energy, energy efficiency, waste management, etc. which have significantly improved business growth.  

Renewable Energy from Food Residuals

Food residuals are an untapped renewable energy source that mostly ends up rotting in landfills, thereby releasing greenhouse gases into the atmosphere. Food residuals are difficult to treat or recycle since it contains high levels of sodium salt and moisture, and is mixed with other waste during collection. Major generators of food wastes include hotels, restaurants, supermarkets, residential blocks, cafeterias, airline caterers, food processing industries, etc.

In United States, food scraps is the third largest waste stream after paper and yard waste. Around 12.7 percent of the total municipal solid waste (MSW) generated in the year 2008 was food scraps that amounted to about 32 million tons. According to EPA, about 31 million tons of food waste was thrown away into landfills or incinerators in 2008. As far as United Kingdom is concerned, households throw away 8.3 million tons of food each year. These statistics are an indication of tremendous amount of food waste generated all over the world.

The proportion of food residuals in municipal waste stream is gradually increasing and hence a proper food waste management strategy needs to be devised to ensure its eco-friendly and sustainable disposal. Currently, only about 3 percent of food waste is recycled throughout U.S., mainly through composting. Composting provides an alternative to landfill disposal of food waste, however it requires large areas of land, produces volatile organic compounds and consumes energy. Consequently, there is an urgent need to explore better recycling alternatives.

Anaerobic digestion has been successfully used in several European and Asian countries to stabilize food wastes, and to provide beneficial end-products. Sweden, Austria, Denmark, Germany and England have led the way in developing new advanced biogas technologies and setting up new projects for conversion of food waste into energy.

Anaerobic Digestion of Food Waste

Anaerobic digestion is the most important method for the treatment of organic waste, such as food residuals, because of its techno-economic viability and environmental sustainability. The use of anaerobic digestion technology generates biogas and preserves the nutrients which are recycled back to the agricultural land in the form of slurry or solid fertilizer.

The relevance of biogas technology lies in the fact that it makes the best possible use of various organic wastes as a renewable source of clean energy. A biogas plant is a decentralized energy system, which can lead to self-sufficiency in heat and power needs, and at the same time reduces environmental pollution. Thus, anaerobic digestion of food waste can lead to climate change mitigation, economic benefits and landfill diversion opportunities.

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be used as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, slaughterhouse wastes, etc.

A Typical Energy Conversion Plant

The feedstock for the food waste-to-energy plant includes leftover food, vegetable refuse, stale cooked and uncooked food, meat, teabags, napkins, extracted tea powder, milk products, etc. Raw waste is shredded to reduce to its particle size to less than 12 mm. The primary aim of shredding is to produce a uniform feed and reduce plant “down-time” due to pipe blockages by large food particles. It also improves mechanical action and digestibility and enables easy removal of any plastic bags or cling-film from waste.

Fresh waste and re-circulated digestate (or digested food waste) are mixed in a mixing tank. The digestate is added to adjust the solids content of the incoming waste stream from 20 to 25 percent (in the incoming waste) to the desired solids content of the waste stream entering the digestion system (10 to 12 percent total solids). The homogenized waste stream is pumped into the feeding tank, from which the anaerobic digestion system is continuously fed. Feeding tank also acts as a pre-digester and subjected to heat at 55º to 60º C to eliminate pathogens and to facilitate the growth of thermophilic microbes for faster degradation of waste.

From the predigestor tank, the slurry enters the main digester where it undergoes anaerobic degradation by a consortium of Archaebacteria belonging to Methanococcus group. The anaerobic digester is a CSTR reactor having average retention time of 15 to 20 days. The digester is operated in the mesophilic temperature range (33º to 38°C), with heating carried out within the digester. Food waste is highly biodegradable and has much higher volatile solids destruction rate (86 to 90 percent) than biosolids or livestock manure. As per conservative estimates, each ton of food waste produces 150 to 200 m3 of biogas, depending on reactor design, process conditions, waste composition, etc.

Biogas contains significant amount of hydrogen sulfide (H2S) gas that needs to be stripped off due to its corrosive nature. The removal of H2S takes place in a biological desulphurization unit in which a limited quantity of air is added to biogas in the presence of specialized aerobic bacteria that oxidizes H2S into elemental sulfur. The biogas produced as a result of anaerobic digestion of waste is sent to a gas holder for temporary storage. Biogas is eventually used in a combined heat and power (CHP) unit for its conversion into thermal and electrical energy in a co­generation power station of suitable capacity. The exhaust gases from the CHP unit are used for meeting process heat requirements.

The digested substrate leaving the reactor is rich in nutrients like nitrogen, potassium and phosphorus which are beneficial for plants as well as soil. The digested slurry is dewatered in a series of screw presses to remove the moisture from slurry. Solar drying and additives are used to enhance the market value and handling characteristics of the fertilizer.

Diverting Food from Landfills

Food residuals are one of the single largest constituents of municipal solid waste stream. Diversion of food waste from landfills can provide significant contribution towards climate change mitigation, apart from generating revenues and creating employment opportunities. Rising energy prices and increasing environmental pollution makes it more important to harness renewable energy from food scraps.

Anaerobic digestion technology is widely available worldwide and successful projects are already in place in several European as well as Asian countries that makes it imperative on waste generators and environmental agencies to root for a sustainable food waste management system.

Bagasse-Based Cogeneration in Pakistan: Challenges and Opportunities

Considering the fact that Pakistan is among the world’s top-10 sugarcane producers, the potential of generating electricity from bagasse is huge.  Almost all the sugar mills in Pakistan have in-house plants for cogeneration but they are inefficient in the consumption of bagasse. If instead, high pressure boilers are installed then the production capacity can be significantly improved with more efficient utilization of bagasse.

However, due to several reasons; mostly due to financing issues, the sugar mill owners were not able to set up these plants. Only recently, after financial incentives have been offered and a tariff rate agreed upon between the government and mill owners, are these projects moving ahead.

The sugar mill owners are more than willing to supply excess electricity generated form the in-house power plants to the national grid but were not able to before, because they couldn’t reach an agreement with the government over tariff. The demand for higher tariff was justified because of large investments in setting up new boilers. It would also have saved precious foreign exchange which is spent on imported oil.

By estimating the CDM potential of cogeneration (or CHP) projects based on biofuels, getting financing for these projects would be easier. Renewable energy projects can be developed through Carbon Development Mechanism or any other carbon credit scheme for additional revenue.

Since bagasse is a clean fuel which emits very little carbon emissions it can be financed through Carbon Development Mechanism. One of the reasons high cogeneration power plants are difficult to implement is because of the high amount of costs associated. The payback period for the power plants is unknown which makes the investors reluctant to invest in the high cogeneration project. CDM financing can help improve the rate of return of the project.

Bagasse power plants generate Carbon Emission Reductions in 2 ways; one by replacing electricity produced from fossil fuels.  Secondly if not used as a fuel, it would be otherwise disposed off in an unsafe manner and the methane emissions present in biomass would pollute the environment far more than CO2 does.

Currently there are around 83 sugar mills in Pakistan producing about 3.5 million metric tons of sugar per annum with total crushing capacity 597900 TCD, which can produce approximately 3000 MW during crop season Although it may seem far-fetched at the moment, if the government starts to give more attention to  sugar industry biomass rather than coal, Pakistan can fulfill its energy needs without negative repercussions or damage to the environment.

However some sugar mills are opting to use coal as a secondary fuel since the crushing period of sugarcane lasts only 4 months in Pakistan. The plants would be using coal as the main fuel during the non-crushing season. The CDM effect is reduced with the use of coal. If a high cogeneration plant is using even 80% bagasse and 20% of coal then the CERs are almost nullified. If more than 20% coal is used then the CDM potential is completely lost because the emissions are increased. However some sugar mills are not moving ahead with coal as a secondary fuel because separate tariff rates have to be obtained for electricity generation if coal is being used in the mix which is not easily obtained.

Pakistan has huge untapped potential for bagasse-based power generation

One of the incentives being offered by the State Bank of Pakistan is that if a project qualifies as a renewable project it is eligible to get loan at 6% instead of 12%. However ones drawback is that, in order to qualify as a renewable project, CDM registration of a project is not taken into account.

Although Pakistan is on the right track by setting up high cogeneration power plants, the use of coal as a secondary fuel remains debatable.  The issue that remains to be addressed is that with such huge amounts of investment on these plants, how to use these plants efficiently during non-crushing period when bagasse is not available. It seems almost counter-productive to use coal on plants which are supposed to be based on biofuels.

Conclusion

With the demand for energy in Pakistan growing, the country is finally exploring alternatives to expand its power production. Pakistan has to rely largely on fossils for their energy needs since electricity generation from biomass energy sources is considered to be an expensive option despite abundance of natural resources. However by focusing on growing its alternate energy options such as bagasse-based cogeneration, the country will not only mitigate climate change but also tap the unharnessed energy potential of sugar industry biomass.