Palm Kernel Shells: An Attractive Biomass Fuel for Europe

Europe is targeting an ambitious renewable energy program aimed at 20% renewable energy in the energy mix by 2020 with biomass energy being key renewable energy resource across the continent. However, the lack of locally-available biomass resources has hampered the progress of biomass energy industry in Europe as compared with solar and wind energy industries. The European biomass industry is largely dependent on wood pellets and crop residues.


Europe is the largest producer of wood pellets, which is currently estimated at 13.5 million tons per year while its consumption is 18.8 million tons per year. The biggest wood pellet producing countries in Europe are Germany and Sweden. Europe relies on America and Canada to meet its wood pellet requirements and there is an urgent need to explore alternative biomass resources. In recent years, palm kernel shells (popularly known as PKS) from Southeast Asia has emerged has an attractive biomass resources which can replace wood pellets in biomass power plants across Europe.

What are Palm Kernel Shells

Palm kernel shells are the shell fractions left after the nut has been removed after crushing in the Palm Oil mill. Kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres.

Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%. Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content.

Press fibre and shell generated by the palm oil mills are traditionally used as solid fuels for steam boilers. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a palm oil mill.

Advantages of Palm Kernel Shells

PKS has almost the same combustion characteristics as wood pellets, abundantly available are and are cheap. Indonesia and Malaysia are the two main producers of PKS. Indonesian oil palm plantations cover 12 million hectares in Indonesia and 5 million hectares in Malaysia, the number of PKS produced from both countries has exceeded 15 million tons per year. Infact, the quantity of PKS generated in both countries exceeds the production of wood pellets from the United States and Canada, or the two largest producers of wood pellets today.

Interestingly, United States and Canada cannot produce PKS, because they do not have oil palm plantations, but Indonesia and Malaysia can also produce wood pellets because they have large forests. The production of wood pellets in Indonesia and Malaysia is still small today, which is less than 1 million tons per year, but the production of PKS is much higher which can power biomass power plants across Europe and protect forests which are being cut down to produce wood pellets in North America and other parts of the world.

PKS as a Boiler Fuel

Although most power plants currently use pulverized coal boiler technology which reaches around 50% of the world’s electricity generation, the use of grate combustion boiler technology and fluidized bed boilers is also increasing. Pulverized coal boiler is mainly used for very large capacity plants (> 100 MW), while for ordinary medium capacity uses fluidized bed technology (between 20-100 MW) and for smaller capacity with combustor grate (<20 MW). The advantage of boiler combustion and fluidized bed technology is fuel flexibility including tolerance to particle size.

When the pulverized coal boiler requires a small particle size (1-2 cm) like sawdust so that it can be atomized on the pulverizer nozzle, the combustor grate and fluidized bed the particle size of gravel (max. 8 cm) can be accepted. Based on these conditions, palm kernel shells has a great opportunity to be used as a boiler fuel in large-scale power plants.

Use of PKS in pulverized coal boiler

There are several things that need to be considered for the use of PKS in pulverized coal boilers. The first thing that can be done is to reduce PKS particle size to a maximum of 2 cm so that it can be atomized in a pulverized system. The second thing to note is the percentage of PKS in coal, or the term cofiring. Unlike a grate and a fluidized bed combustion that can be flexible with various types of fuel, pulverized coal boilers use coal only. There are specific things that distinguish biomass and coal fuels, namely ash content and ash chemistry, both of which greatly influence the combustion characteristics in the pulverized system.


PKS has emerged as an attractive biomass commodity in Japan

Coal ash content is generally greater than biomass, and coal ash chemistry is very different from biomass ash chemistry. Biomass ash has lower inorganic content than coal, but the alkali content in biomass can change the properties of coal ash, especially aluminosilicate ash.

Biomass cofiring with coal in small portions for example 3-5% does not require modification of the pulverized coal power plant. For example, Shinci in Japan with a capacity of 2 x 1,000 MW of supercritical pulverized fuel with 3% cofiring requires 16,000 tons per year of biomass and no modification. Similarly, Korea Southeast Power (KOSEP) 5,000 MW with 5% cofiring requires 600,000 tons per year of biomass without modification.

PKS cofiring in coal-based power plants

Pulverized coal-based power plants are the predominant method of large-scale electricity production worldwide including Europe. If pulverised fuel power plants make a switch to co-firing of biomass fuels, it will make a huge impact on reducing coal usage, reducing carbon emissions and making a transition to renewable energy. Additionally, the cheapest and most effective way for big coal-based power plants to enter renewable energy sector is biomass cofiring. Palm kernel shells can be pyrolyzed to produce charcoal while coal will produce coke if it is pyrolyzed. Charcoal can be used for fuel, briquette production and activated charcoal.

Circular Economy: Past, Present and Future

For a society accustomed to the achievements of a linear economy, the transition to a circular economic system is a hard task even to contemplate. Although the changes needed may seem daunting, it is important to remember that we have already come a long way. However, the history of the waste hierarchy has taught that political perseverance and unity of approach are essential to achieving long term visions in supply chain management.

Looking back, it is helpful to view the significance of the Lansink’s Ladder in the light of the sustainability gains it has already instigated. From the outset, the Ladder encountered criticism, in part because the intuitive preference order it expresses is not (and has never been put forward as) scientifically rigorous. Opposition came from those who feared the hierarchy would impede economic growth and clash with an increasingly consumerist society. The business community expressed concerns about regulatory burdens and the cost of implementing change.


However, such criticism was not able to shake political support, either in Holland where the Ladder was adopted in the Dutch Environmental Protection Act of 1979, or subsequently across Europe, as the Waste Hierarchy was transposed into national legislation as a result of the revised Waste Framework Directive.

Prevention, reuse and recycling have become widely used words as awareness has increased that our industrial societies will eventually suffer a shortage of raw materials and energy. So, should we see the waste hierarchy as laying the first slabs of the long road to a circular economy? Or is the circular economy a radical new departure?

Positive and negative thinking

There have been two major transitionary periods in waste management: public health was the primary driver for the first, from roughly 1900 to 1960, in which waste removal was formalised as a means to avoid disease. The second gained momentum in the 1980s, when prevention, reuse and recovery came on the agenda. However, consolidation of the second transition has in turn revealed new drivers for a third. Although analysing drivers is always tricky – requiring a thorough study of causes and effects – a general indication is helpful for further discussion. Positive (+) and negative (-) drivers for a third transition may be:

(+) The development of material supply chain management through the combination of waste hierarchy thinking with cradle to cradle eco design;

(+) The need for sustainable energy solutions;

(+) Scarcity of raw materials necessary for technological innovation; and

(+) Progressive development of circular economy models, with increasing awareness of social, financial and economic barriers.

(-) Growth of the global economy, especially in China and India, and later in Africa;

(-) Continued growth in global travel;

(-) Rising energy demand, exceeding what can be produced from renewable energy sources and threatening further global warming;

(-) Biodiversity loss, causing a further ecological impoverishment; and

(-) Conservation of the principle of ownership, which hinders the development of the so-called ‘lease society’. 

A clear steer

As the direction, scale and weight of these drivers are difficult to assess, it’s necessary to steer developments at all levels to a sustainable solution. The second transition taught that governmental control appears indispensable, and that regulation stimulates innovation so long as adequate space is left for industry and producers to develop their own means of satisfying their legislated responsibilities.

The European Waste Framework Directive has been one such stimulatory piece of legislation. Unfortunately, the EC has decided to withdraw its Circular Economy package, which would otherwise now be on track to deliver the additional innovation needed to achieve its goals – including higher recycling targets. Messrs. Juncker and Timmermans must now either bring forward the more ambitious legislation they have hinted at, or explain why they have abandoned the serious proposals of their predecessors.

Perhaps the major differences between Member States and other countries may require a preliminary two-speed policy, but any differences in timetable between Western Europe and other countries should not stand in the way of innovation, and differences of opinion between the European Parliament and the Commission must be removed for Europe to remain credible.

Governmental control requires clear rules and definitions, and for legislative terminology to be commensurate with policy objectives. One failing in this area is the use of the generic term ‘recovery’ to cover product reuse, recycling and incineration with energy recovery, which confuses the hierarchy’s preference order. The granting of R1 status to waste incineration plants, although understandable in terms of energy diversification, turns waste processors into energy producers benefiting from full ovens. Feeding these plants reduces the scope for recycling (e.g. plastics) and increases COemissions. When relatively inefficient incinerators still appear to qualify for R1 status, it offers confusing policy signals for governments, investors and waste services providers alike.

The key role for government also is to set clear targets and create the space for producers and consumers to generate workable solutions. The waste hierarchy’s preference order is best served by transparent minimum standards, grouped around product reuse, material recycling or disposal by combustion. For designated product or material categories, multiple minimum standards are possible following preparation of the initial waste streams, which can be tightened as technological developments allow.

Where the rubber meets the road

As waste markets increase in scale, are liberalised, and come under international regulation, individual governmental control is diminished. These factors are currently playing out in the erratic prices of secondary commodities and the development of excess incinerator capacity in some nations that has brought about a rise in RDF exports from the UK and Italy. Governments, however, may make a virtue of the necessity of avoiding the minutiae: ecological policy is by definition long-term and requires a stable line; day to day control is an impossible and undesirable task.

The road to the third transition – towards a circular economy – requires a new mind-set from government that acknowledges and empowers individuals. Not only must we approach the issue from the bottom-up, but also from the side and above. Consumer behaviour must be steered by both ‘soft’ and ‘hard’ controls: through information and communication, because of the importance of psychological factors; but also through financial instruments, because both consumers and industry are clearly responsive to such stimuli.

Where we see opposition to deposit return schemes, it comes not from consumers but from industry, which fears the administrative and logistical burden. The business community must be convinced of the economic opportunities of innovation. Material supply chain management is a challenge for designers and producers, who nevertheless appreciate the benefits of product lifetime extensions and reuse. When attention to environmental risks seems to lapse – for example due to financial pressures or market failures – then politics must intervene.

Government and industry should therefore get a better grip on the under-developed positive drivers of the third transition, such as eco design, secondary materials policy, sustainable energy policy, and research and development in the areas of bio, info, and nanotechnologies. 

Third time’s the charm

Good supply chain management stands or falls with the way in which producers and consumers contribute to the policies supported by government and society. In order that producers and consumers make good on this responsibility, government must first support their environmental awareness.

The interpretation of municipal duty of care determines options for waste collection, disposal and processing. Also essential is the way in which producer responsibility takes shape, and the government must provide a clear separation of private and public duties. Businesses may be liable for the negative aspects of unbridled growth and irresponsible actions. It is also important for optimal interaction with the European legislators: a worthy entry in Brussels is valuable because of the international aspects of the third transition. Finally, supply chain management involves the use of various policy tools, including:

  • Rewarding good behaviour
  • Sharpening minimum standards
  • Development and certification of CO2 tools
  • Formulation and implementation of end-of-waste criteria
  • Remediation of waste incineration with low energy efficiency
  • Restoration or maintenance of a fair landfill tax
  • Application of the combustion load set at zero

‘Seeing is believing’ is the motto of followers of the Apostle Thomas, who is chiefly remembered for his propensity for doubt. The call for visible examples is heard ever louder as more questions are raised around the feasibility of product renewal and the possibilities of a circular economy.

Ultimately, the third transition is inevitable as we face a future of scarcity of raw materials and energy. However, while the direction is clear, the tools to be employed and the speed of change remain uncertain. Disasters are unnecessary to allow the realisation of vital changes; huge leaps forward are possible so long as government – both national and international – and society rigorously follow the preference order of the waste hierarchy. Climbing Lansink’s Ladder remains vital to attaining a perspective from which we might judge the ways in which to make a circle of our linear economy.

Note: The article is being republished with the permission of our collaborative partner Isonomia. The original article can be found at this link.

Tips on Writing a Research Paper on Solar Energy

The share of energy received from the Sun is steadily increasing every year. Last year, the global solar market increased by 26%. According to forecasts, in 2018 for the first time, the mark of 100 gigawatts of new installed capacity per year will be passed all over the world. Writing a research paper on solar energy is not an easy assignment, as you will have to deal with lot’s of statistics, results of experiments, and, surprisingly, sociology — the usage of alternative sources of energy are strongly connected with the social issues and moods. In this article, you’ll receive some tips on how to write a stellar research paper on solar energy and impress your professor.

We are sure you know how to structure a research paper, and you won’t forget about an engaging thesis (problem) statement. Our tips will cover the latest trends you should mention and the discussions related to the usage of solar energy, pros, cons and exciting facts.

Pay Attention to the Latest Trends

Analysts have identified trends in the solar energy market in the near future.

  • An increasing number of countries are developing solar energy projects at the national level. In 2016, there were 32 such countries, at the end of last year already 53. Tenders for the development of solar energy are planned in 23 countries.
  • In the United States in the next 4 years, the number of states installing more than 1 gigawatt will reach 18. They will account for 80% of all US photovoltaic plants.
  • Reducing the cost of solar energy can be achieved through the use of more powerful modules, which will reduce the proportion of equipment and maintenance costs.
  • The role of electronics operating at the level of a single photovoltaic panel will grow. Now micro-inventors and current converters for one module are not used very widely.
  • Prices for stationary solar systems in the world are falling, but in the USA they remain at the same level (the cost of watts of power for US home systems is the highest in the world). The price for a “sunny” watt from state to state can vary by 68 cents, and companies will have to look for ways to reduce production costs.

Talk about the Future

Naturally, interest in renewable energy sources will continue to grow. The year 2050 will be the point of no return – it is by this time that most countries will completely switch to clean energy. And in 2018 serious steps will be made in this direction.

The first to be hit will be coal power plants in Europe. To date, 54% of them are not profitable, and there are only for the sake of peak load. In 2018, Finland will ban the use of coal to generate electricity and increase the tax on carbon dioxide emissions. By 2030, the country plans to abandon this fuel completely.

The Indian coal mining company Coal India also plans to close 37 coal mines in March 2018 – their development has become uneconomical due to the growth of renewable energy. The company will save about $ 124 million on this, after which it will switch to solar power and install at least 1 GW of new solar capacity in India.

Don’t Focus Solely on Content

It is a no-brainer that the content of your research paper is the most essential part of your work. However, if you forget about formatting, citations, plagiarism, using valid academic sources, etc., your research paper can fail despite having an amazing thesis statement or the project idea. can help in detecting plagiarized content.

When you start doing research, note down every link you use or want to use, every quote you like, every piece of statistical information. At first, it seems very dull and unnecessary — you think you can find this information at any moment. However, days pass, and you fail to make proper references, which can be a reason of being accused of plagiarism. Proofread your research paper several times, use online sources to check grammar and spelling, don’t forget about plagiarism checkers to stay on the safe side.

If you find out that writing a proper research paper on solar energy is too complicated for you now, or you don’t have enough time energy to deal with it, it is a wise choice to get affordable research paper writing by experts who can help you immediately with your assignment. When writing a research paper on solar energy don’t forget to check on the latest numbers and analytical data worldwide. Good luck!

Renewable Energy Trends in Germany

Germany has been called “the world’s first major renewable energy economy” as the country is one of the world’s most prolific users of renewable energy for power, heating, and transport. Germany has rapidly expanded the use of clean energy which now contributes almost one-fourth to the national energy mix. Renewable energy contribute as much as one-fourth of the primary energy mix and the country has set a goal to producing 35 percent of electricity from renewable sources by 2020 and 100 percent by 2050.


Solar Energy

Germany is the world’s biggest solar market and largest PV installer with a solar PV capacity of more than 32.3 GW in December 2012. The German new solar PV installations increased by about 7.6 GW in 2012, with a record 1.3 million PV systems installed across the country. Germany has nearly as much installed solar power generation capacity as the rest of the world combined and gets about 5 percent of its overall annual electricity needs from solar power alone.

Wind Energy

Germany’s wind energy industry is one of the world’s largest, and it is at the forefront of technological development.  Over half of all wind turbines in Germany are owned by local residents, farmers and local authorities which have tremendously improved the acceptance of wind turbines among local communities as they directly profit.

Being Europe’s primary wind energy market, Germany represents around 30 percent of total installed capacity in Europe and 12 percent of global installed capacity. Total wind energy capacity in Germany was 31.32 GW at the end of year 2012. Currently Germany is ranked third worldwide in installed total wind capacity with its share of total domestic electricity production forecasted to reach 25 percent by 2025.

Biomass Energy

Biomass energy is making a significant contribution to renewable energy supply in Germany and accounts for about 5.5 percent of the total electricity production in the country. Germany is the market leader in biogas technology and is also Europe’s biggest biogas producer. Last year around 7,600 systems with a cumulative capacity of 3,200 MW generated 21.9 billion kWh in the country, thus consolidating Germany’s status as a pioneer in clean energy technologies.

Renewable Energy Investment

Germany’s plan to phase out all 17 of its nuclear power plants and shift to renewable energy by 2022 is the largest infrastructure investment program in Europe since World War II. The country’s transition from nuclear energy-based power network to renewable energy systems will require investments of much as $55 billion by 2030.

Germany is the world’s third largest market for renewable energy investment which totalled $31billion in 2011. Sixty-five percent of investment in Germany was directed toward solar, with 29 percent ($8.5 billion) directed to wind. In addition, 700 MW of biomass capacity was added in 2011

The country offers generous feed-in-tariffs for investors across all renewable energy segments which is attracting huge private capital in cleantech investments. In 2010, the majority ($29 billion) of cleantech investment came from corporate investors across all sectors of the economy, including farmers, energy utilities, and industrial and commercial enterprises.

In the first six months of 2012, the amount of electricity produced from renewable resource rose from 20% to 25%, bringing Germany closer to its targets of 35% by 2020 and 80% by 2050. According to figures released by the government agency Germany Trade and Invest, 38% of the electricity produced by renewable energy during that period was through wind power, and almost 16% from solar.