Biomethane – The Green Gas

Biomethane, also known as the green gas, is a well-known and well-proven source of clean energy, and is witnessing increasing demand worldwide, especially in European countries, as it is one of the most cost-effective and eco-friendly replacement for natural gas and diesel.

Advantages of Biomethane

The key advantage of biomethane is that it is less corrosive than biogas which makes it more flexible in its application than raw biogas. It can be injected directly into the existing natural gas grid leading to energy-efficient and cost-effective transport, besides allowing natural gas grid operators to persuade consumers to make a smooth transition to a renewable source of natural gas.

Biogas can be upgraded to biomethane and injected into the natural gas grid to substitute natural gas or can be compressed and fuelled via a pumping station at the place of production. Biomethane can be injected and distributed through the natural gas grid, after it has been compressed to the pipeline pressure.

The injected biomethane can be used at any ratio with natural gas as vehicle fuel. In many EU countries, the access to the gas grid is guaranteed for all biogas suppliers.

A major advantage of using natural gas grid for biomethane distribution is that the grid connects the production site of biomethane, which is usually in rural areas, with more densely populated areas. This enables biogas to reach new customers.

Storage of Biomethane

Biomethane can be converted either into liquefied biomethane (LBM) or compressed biomethane (CBM) in order to facilitate its long-term storage and transportation. LBM can be transported relatively easily and can be dispensed through LNG vehicles or CNG vehicles. Liquid biomethane is transported in the same manner as LNG, that is, via insulated tanker trucks designed for transportation of cryogenic liquids.

Biomethane can be stored as CBM to save space. The gas is stored in steel cylinders such as those typically used for storage of other commercial gases.

Applications of Biomethane

Biomethane can be used to generate electricity and heating from within smaller decentralized, or large centrally-located combined heat and power plants. It can be used by heating systems with a highly efficient fuel value, and employed as a regenerative power source in gas-powered vehicles.

Biomethane, as a transportation fuel, is most suitable for vehicles having engines that are based on natural gas (CNG or LNG). Once biogas is cleaned and upgraded to biomethane, it is virtually the same as natural gas.

Because biomethane has a lower energy density than NG, due to the high CO2 content, in some circumstances, changes to natural gas-based vehicle’s fuel injection system are required to use the biomethane effectively.

Initiatives to Reduce Plastic Waste Leads to Growth in Global Plastic Recycling Market

Wide-spread environmental concerns about plastic waste are leading to increased demand for the plastic recycling (PR) market that has various uses for plastic waste. At the same time, and in line with this growing need, an increased number of industries that produce plastic products have committed to reducing their use of virgin plastic and ensuring that the plastic they do produce is recyclable, reusable, or compostable.

Growth of the Plastic Recycling Market

Valued at around $43.73 billion in 2018, research indicates that the plastic recycling market will grow at a compound annual growth rate (CAGR) of 6.6% in revenue and 8.8% in volume by 2027. Findings are that rising environmental concerns will be the primary driving force along with the concerted global effort towards effective waste management and sustainability. Another is the growing awareness of the need for recycling plastic and the anticipated market growth of the PR market.

A new report released by Research and Markets in February 2020 gives a market snapshot in its executive summary and discusses the plastic recycling market by material type, source, application, and geography. Titled Global Plastic Recycling Market Size, Market Share, Application Analysis, Regional Outlook, Growth Trends, Key Players, Competitive Strategies and Forecasts, 2019 to 2027, it explores the roles of the many global and regional participants in the PR market and analyses anticipated acquisitions, partnerships, and collaborations. These, the report states, are likely to be the major strategies market players will follow in an endeavor to expand their geographic presence and market share.

An older report published mid-2018 gave a slightly lower CAGR for the period 2018 to 2023 of 4.3%. This report, Global Plastic Waste Management Market 2018 by Manufacturers, Regions, Type and Application, Forecast to 2023 stated that it would grow from an estimated $27,1000 in 2017 to $34,900 in 2023.

Global Focus

When research for the new report was carried out during 2018, the Asia-Pacific region including China, Indonesia, Malaysia, and India, had the highest market share in plastic recycling. This was attributed to the fact that the region has the largest share in the generation of plastic waste and is also the biggest plastic waste importer.

However, Europe was pinpointed as a region poised to become the fastest-growing in the PR market due to increasing government initiatives and the improvement of recycling facilities in this part of the world.

While the report covers at least 16 companies involved in plastic recycling globally, the Hungarian MOL Group has been highlighted as a result of its acquisition of Aurora, a German recycled plastic compounder company. MOL is a well-established supplier of virgin polymers and was motivated by its Enter Tomorrow 2030 strategy that aims to move its business from a traditional fuel-based model to a higher value-added petrochemical product portfolio. More specifically, MOL intends to strengthen its position as a supplier in the sustainable plastic compounding segment of the automotive industry.

The older report focused on plastic waste management not only in the Asia-Pacific region but also in North and South America, Europe, the Middle East, and Africa.

Use of Recycled Plastic

In terms of plastic materials, high-density polyethylene (HDPE) and polyethylene terephthalate (PET) had the biggest market share in 2018. The reason given for this was a rapid surge in demand for PET and HDPE for the manufacturing of packaging. Hopefully, this won’t increase the production of PET and HDPE, but will rather help to get rid of waste.

As the CEO of Unilever, Alan Jope, said in a press statement late 2019: “Plastic has its place, but that place is not in the environment.” He was announcing Unilever’s commitment to halve its use of virgin plastic, reduce its use of plastic packaging, and dramatically step up its use of recycled plastic by 2025. They would also help to collect and process more plastic packaging than it sells – which will amount to about 600,000 tonnes per year, he said.

plastic-wastes

 

Additionally, technological advances in the PR industry have led to other less expected uses including the manufacture of denim clothing.

Realizing the environmental impact production of denim clothing has, Levi Strauss & Co. has taken bold steps to reduce its use of water and chemicals in cotton and cotton-clothing production, and about a decade ago, the company launched its much more sustainable Water<Less range of jeans. In 2013, Levi’s used dumped plastic bottles and food trays to make 300,000 jeans and trucker jackets for its spring collection. Of course, not the entire product was made from plastic, but it was guaranteed that at least 20% came from recycled plastic content.

Many other items are also made from recycled plastic, some with more plastic content than others. They include bags, rugs and mats, blankets, bottles, planters, dog collars, shoes, decking, fencing, and outdoor furniture.

The Future of Plastic

While many people talk about plastic as a material that should be eradicated, it does have remarkable uses as Alan Jope implies. But there is a dire need to change our thinking. The irony is that when recycled plastic was invented it was used to try and solve environmental problems like reducing the hunting of elephants for ivory and to provide protective sheaths for electrical wiring.

There is undoubtedly too much virgin plastic being produced worldwide and during the process, there are too many other natural resources being depleted. Added to this, too many consumers have no knowledge or concern about the use and disposal of plastic products. They simply don’t care!

We, as a global nation, need to focus more on the reuse, recycling, and remanufacture of plastic, which is exactly what plastic recycling companies can do so successfully.

Ultimately, we need to eradicate plastic waste by making it useful, and there is no doubt that the mechanical engineering sector is well positioned to find solutions.

Why Passive Homes Will Be the Future of Home Building

As individuals and companies alike begin to consider more sustainable building options, Passive Homes are an excellent solution. Referred to as “Passivhaus” in German, this construction concept focuses on airtight insulation to create a living space that does not require additional heating or cooling.

Developed in the 1970s, developers have incorporated the PassivHaus design in homes all over the world and in a variety of climates. As an affordable, eco-friendly and versatile construction solution, these homes will play an essential role in the future of homebuilding.

Affordable

Professionals often regard eco-friendly building solutions as too expensive. While construction costs for passive homes can cost 5 to 10% more upfront than a traditional build, these fees are negligible compared to future savings. As sustainable options become standard, these costs may drop. Passive Homes rely on design principles that promote peak energy efficiency without external systems.

With a focus on proper insulation and minimizing air leakage, homeowners can save on conventional heating costs without needing to invest in expensive forms of renewable energy. While solar panels or other types of eco-friendly power are popular, because of the efficiency of the Passive House, their usage is minimal.

Adaptable

People build Passive Houses all over the globe in a variety of climates. The five main principles of passive homebuilding are versatile and can be altered depending on the environment. The airtight construction utilizes proper heat balance, ensuring that warm air remains inside in cooler climates, and properly ventilates in warmer ones.

 

Another nice feature of Passive Home construction is the ability to modify each project aesthetically. Unlike other forms of sustainable building, such as strawbale homes or shipping containers, professionals can construct Passive Homes using a variety of materials. This style does not limit builders to certain architectural styles. Because supplies can vary, many homeowners choose to add to the overall sustainability of their homes by using post-consumer building materials.

Eco-Friendly

Passive Homes are eco-friendly by design. In Europe, it’s the standard building practice of the future. According to The Resolution of the European Parliament, its implementation will be mandatory in new home construction by all member states in 2021.

The elements of Passive Homes are sustainable by default and do not require relying on alternative energy systems for primary energy. The standard principles are the result of research at the Passive House Institute, and include:

  • Airtight structures
  • Double and triple-insulated windows
  • Continuous insulation
  • Thermal sealing
  • Air quality management

Passive Home design principles do not rely on renewables as a primary source of energy, focusing instead on insulation and passive solar to maximize heat efficiency. They’re also the most affordable way to achieve zero-carbon, resulting in energy savings of up to 90% compared to conventional energy systems.

Passive Building for the Future

Passive Home design incorporates efficient ventilation, heat recovery and super insulation to create a high-quality structure that is not only efficient but also extremely comfortable. A contractor can adapt these buildings to any climate or design preference. While Passive Homes are already a standard — and future mandated — construction in Europe, they’re also becoming more popular in the United States.

Thanks to a U.S. Department of Energy “Building America” Grant, the PassivHaus Institute established new building standards that take into account market and climate variables throughout North America, including comfort and performance.

Any architect or contractor can easily utilize the Passive Home style, and the building standards are available via online distribution. As consumers and developers look towards a more sustainable and eco-friendly future, this style of building should be at the forefront of construction.

Trends in Waste-to-Energy Industry

The increasing clamor for energy and satisfying it with a combination of conventional and renewable resources is a big challenge. Accompanying energy problems in almost all parts of the world, another problem that is assuming critical proportions is that of urban waste accumulation. The quantity of waste produced all over the world amounted to more than 12 billion tonnes in 2006, with estimates of up to 13 billion tonnes in 2011. The rapid increase in population coupled with changing lifestyle and consumption patterns is expected to result in an exponential increase in waste generation of up to 18 billion tonnes by year 2020. Ironically, most of the wastes are disposed of in open fields, along highways or burnt wantonly.

Waste-to-Energy-Industry

Size of the Industry

Around 130 million tonnes of municipal solid waste (MSW) are combusted annually in over 600 waste-to-energy (WTE) facilities globally that produce electricity and steam for district heating and recovered metals for recycling. The global market for biological and thermochemical waste-to-energy technologies is expected to grow to USD 29.2 billion by 2022. Incineration, with energy recovery, is the most common waste-to-energy method employed worldwide.

Since 1995, the global WTE industry increased by more than 16 million tonnes of MSW. Over the last five years, waste incineration in Europe has generated between an average of 4% to 8% of their countries’ electricity and between an average of 10% to 15% of the continent’s domestic heat.

Advanced thermal technologies, like gasification and pyrolysis, and anaerobic digestion systems are beginning to make deep inroads in the waste-to-energy sector and are expected to increase their respective market shares on account of global interest in integrated waste management framework in urban areas. Scarcity of waste disposal sites coupled with growing waste volumes and solid waste management challenges are generating high degree of interest in energy-from-waste systems among policy-makers, urban planners, entrepreneurs, utility companies etc.

Regional Trends

Currently, the European nations are recognized as global leaders of waste-to-energy movement. They are followed behind by the Asia Pacific region and North America respectively. In 2007 there are more than 600 WTE plants in 35 different countries, including large countries such as China and small ones such as Bermuda. Some of the newest plants are located in Asia. China is witnessing a surge in waste-to-energy installations and has plans to establish 125 new waste-to-energy plants during the twelfth five-year plan ending 2015.

Incineration is the most common waste-to-energy method used worldwide.

The United States processes 14 percent of its trash in WTE plants. Denmark, on the other hand, processes more than any other country – 54 percent of its waste materials. As at the end of 2008, Europe had more than 475 WTE plants across its regions – more than any other continent in the world – that processes an average of 59 million tonnes of waste per annum. In the same year, the European WTE industry as a whole had generated revenues of approximately US$4.5bn.

Legislative shifts by European governments have seen considerable progress made in the region’s WTE industry as well as in the implementation of advanced technology and innovative recycling solutions. The most important piece of WTE legislation pertaining to the region has been the European Union’s Landfill Directive, which was officially implemented in 2001 which has resulted in the planning and commissioning of an increasing number of WTE plants over the past five years.

Food Waste Management – Consumer Behavior and Food Waste Disposers

Food waste is a global issue that begins at home and as such, it is an ideal contender for testing out new approaches to behaviour change. The behavioural drivers that lead to food being wasted are complex and often inter-related, but predominantly centre around purchasing habits, and the way in which we store, cook, eat and celebrate food.

food-waste-management

Consumer Behavior – A Top Priority

Consumer behaviour is a huge priority area in particular for industrialised nations – it is estimated that some western societies might be throwing away up to a third of all food purchased. The rise of cheap food and convenience culture in recent years has compounded this problem, with few incentives or disincentives in place at producer, retail or consumer level to address this.

While it is likely that a number of structural levers – such as price, regulation, enabling measures and public benefits – will need to be pulled together in a coherent way to drive progress on this agenda, at a deeper level there is a pressing argument to explore the psycho-social perspectives of behaviour change.

Individual or collective behaviours often exist within a broader cultural context of values and attitudes that are hard to measure and influence. Simple one-off actions such as freezing leftovers or buying less during a weekly food shop do not necessarily translate into daily behaviour patterns. For such motivations to have staying power, they must become instinctive acts, aligned with an immediate sense of purpose. The need to consider more broadly our behaviours and how they are implicated in such issues must not stop at individual consumers, but extend to governments, businesses and NGOs if effective strategies are to be drawn up.

Emergence of Food Waste Disposers

Food waste disposer (FWDs), devices invented and adopted as a tool of convenience may now represent a unique new front in the fight against climate change. These devices, commonplace in North America, Australia and New Zealand work by shredding household or commercial food waste into small pieces that pass through a municipal sewer system without difficulty.

The shredded food particles are then conveyed by existing wastewater infrastructure to wastewater treatment plants where they can contribute to the generation of biogas via anaerobic digestion. This displaces the need for generation of the same amount of biogas using traditional fossil fuels, thereby averting a net addition of greenhouse gases (GHG) to the atmosphere.

Food waste is an ideal contender for testing new approaches to behaviour change.

The use of anaerobic digesters is more common in the treatment of sewage sludge, as implemented in the U.K., but not as much in the treatment of food waste. In addition to this, food waste can also replace methanol (produced from fossil fuels) and citric acid used in advanced wastewater treatment processes which are generally carbon limited.

Despite an ample number of studies pointing to the evidence of positive impacts of FWDs, concerns regarding its use still exist, notably in Europe. Scotland for example has passed legislation that bans use of FWDs, stating instead that customers must segregate their waste and make it available curbside for pickup. This makes it especially difficult for the hospitality industry, to which the use of disposer is well suited. The U.S. however has seen larger scale adoption of the technology due to the big sales push it received in the 1950s and 60s. In addition to being just kitchen convenience appliances, FWDs are yet to be widely accepted as a tool for positive environmental impact.

Note: Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Biomethane Industry in Europe

Biomethane is a well-known and well-proven source of clean energy, and is witnessing increasing demand worldwide, especially in European countries. Between 2012 and 2016, more than 500 biomethane production plants were built across Europe which indicates a steep rise of 165 percent. The main reasons behind the growth of biomethane industry in Europe is increasing interest in industrial waste-derived biogas sector and public interest in biogas.  Another important reason has been the guaranteed access to gas grid for all biomethane suppliers.

Biomethane production in Europe has swiftly increased from 752 GWh in 2011 to 17,264 GWh in 2016 with Germany being the market leader with 195 biomethane production plants, followed by United Kingdom with 92 facilities. Biogas generation across Europe also witnessed a rapid growth of 59% during the year 2011 and 2016. In terms of plant capacities, the regional trend is to establish large-scale biomethane plants.

Sources of Biomethane in Europe

Landfill gas and AD plants (based on energy crops, agricultural residues, food waste, industrial waste and sewage sludge) are the major resources for biomethane production in Europe, with the predominant source being agricultural crops (such as maize) and dedicated energy crops (like miscanthus). In countries, like Germany, Austria and Denmark, energy crops, agricultural by-products, sewage sludge and animal manure are the major feedstock for biomethane production. On the other hand, France, UK, Spain and Italy rely more on landfill gas to generate biomethane.

A large number of biogas plants in Europe are located in agricultural areas having abundant availability of organic wastes, such as grass silage and green waste, which are cheaper than crops. Maize is the most cost-effective raw material for biomethane production. In many parts of Europe, the practice of co-digestion is practised whereby energy crops are used in combination with animal manure as a substrate. After agricultural biogas plants, sewage sludge is one of the most popular substrates for biomethane production in Europe.

Biomethane Utilization Trends in Europe

Biomethane has a wide range of applications in the clean energy sector. In Europe, the main uses of biomethane include the following:

  1. Production of heat and/or steam
  2. Power generation and combined heat and power production(CHP)
  3. Replacement for natural gas (gas grid injection)
  4. Replacement for compressed natural gas & diesel – (bio-CNG for use as transport fuel)
  5. Replacement for liquid natural gas – (bio-LNG for use as transport fuel)

Prior to practically all utilization options, the biogas has to be dried (usually through application of a cooling/condensation step). Furthermore, elements such as hydrogen sulphide and other harmful trace elements must be removed (usually trough application of an activated carbon filter) to prevent adverse effects on downstream processing equipment (such as compressors, piping, boilers and CHP systems).

biomethane-transport

Biomethane is getting popularity as a clean vehicle fuel in Europe. For example, Germany has more than 900 CNG filling stations, with a fleet of around 100,000 gas-powered vehicles including cars, buses and trucks. Around 170 CNG filling stations in Germany sell a blend mixture of natural gas and biomethane while about 125 filling stations sell 100% biomethane from AD plants.

Barriers to Overcome

The fact that energy crops can put extra pressure on land availability for cultivation of food crops has led many European countries to initiate measures to reduce or restrict biogas production from energy crops. As far as waste-derived biomethane is concerned, most of the EU nations are phasing out landfill-based waste management systems which may lead to rapid decline in landfill gas production thus putting the onus of biomethane production largely on anaerobic digestion of food waste, sewage sludge, industrial waste and agricultural residues.

The high costs of biogas upgradation and natural gas grid connection is a major hurdle in the development of biomethane sector in Eastern European nations. The injection of biomethane is also limited by location of suitable biomethane production facilities, which should ideally be located close to the natural gas grid.  Several European nations have introduced industry standards for injecting biogas into the natural gas grid but these standards differ considerably with each other.

Another important issue is the insufficient number of biomethane filling stations and biomethane-powered vehicles in Europe. A large section of the population is still not aware about the benefits of biomethane as a vehicle fuel. Strong political backing and infrastructural support will provide greater thrust to biomethane industry in Europe.