Black Soot, Unemployment, Environmental Degradation: Is Oil Discovery a Curse to Niger Delta Residents?

With a crude production capacity of 2.5 million barrels a day, Nigeria is Africa’s largest producer of oil and the 13th largest oil-producing country on the globe. Oil account for around 65 percent of government revenue.

Over its five decades of oil exploration, it has made tens of billions of dollars from crude oil proceeds. But despite the humongous revenue year in year out, the oil host communities reek of poverty and many other economic and humanitarian issues, including frequent occurrences of black soot, environmental degradation, high rate of unemployment/underemployment, gas flaring, and oil spill from pipelines.

Most of these problems are recurring issues they have suffered for years without any lasting solution. The health and economic effects of these plights have become a serious burden on residents, including the elderly and children.

environmental issues in niger delta

The Menace of Black Soot

Black soot, which is gradually becoming a persistent challenge in many Niger Delta communities, has been linked to the upsurge in adverse respiratory, skin, and reproductive health conditions. A 2019 report showed that black soot-related health disorders were responsible for about 25,000 deaths in the region.

In the past few months, the situation has become even much escalated, and soot pictures gathered from the communities are devastatingly worrisome. Unfortunately, pleas to the state and federal governments have seemingly fallen on deaf ears as residents continuously groan in discomfort and pain.

There has been rising concern among residents in Bayelsa, one of the states in the Niger Delta, over the noticeable black soot across the skyline.

According to a group known as Niger Delta Vigilante (NDV), the development is largely linked to the increase in ‘Kpo-fire,’ an illegal but booming oil bunkering activity in the Niger Delta region. Kpo-fire is a local oil production process of heating the crude oil in a fabricated oven to get petroleum products while its residual is indiscriminately released into the environment, with no regard for its effects on the ecosystem.

Some other factors said to be responsible include the burning of seized stolen crude by security operatives and setting ablaze crude oil sites by some oil contractors in the industry, all in the name of cleanup.

“Presently, as you walk with barefoot in your home, the sole of your foot becomes black, wash your clothes and hang same outside, they are stained with black particles, you wipe your face with a handkerchief, and it becomes black,” a Bayelsa resident, Oyinkuro Jones noted with concern.

A few months ago, towards the end of the rainy season, some residents in the state raised the alarm over what was described as black rain anytime there was a downpour but did not take their worry seriously until the soot started appearing in late November and turned the cloud to a hazy grey. The problem is reportedly more noticeable in the morning time when the thick blanket of black soot covers the landscape.

Immigration Advice Service (IAS) spoke with some residents in Port Harcourt, Rivers, another Niger Delta state, who lamented the health and environmental impacts of the soot.

“The black soot has been a big problem to the environment. In my home, we do not open our doors or windows because the place gets dirty almost immediately after we clean,” Mildred Alerechi, a health style coach, complained. “My nails are also dirty for no reason; the black soot finds its way into my fingernails.”

There has been a wide outcry on the sheer negligence by the government to the residents’ plight. Unfortunately, concerned authorities both from state and federal levels haven’t shown significant willpower to end the menace.

Another resident who spoke with an IAS correspondent said: “To the best of my knowledge, no concrete action has been taken; I’m sure they [the government] are aware of the underlying cause and can tackle the problem if they want to.”

Environmental degradation

The debilitating impacts of oil exploration on the ecosystem have been a great concern for decades. According to a report on the Niger Delta ecosystem, the advent of oil production in the region has also negatively affected the communities due to unprecedented oil spill, which has been happening “for the past five decades, making the region one of the most polluted in the world.” The reckless corruption in the government-established agencies that ought to be responsible for the welfare of the region has further contributed to the persisting ecocide.

An NNPC report back in 1983 noted that the slow poisoning of the waters and the destruction of agricultural land and good water source by oil spills usually occurred during petroleum operations. But since the beginning of the oil industry in Nigeria, there has been no effective and lasting effort made by the government and oil operators to control the environmental crisis associated with the industry.

Even to date, oil firms in the country still play the blame game on who should be responsible for these environmental problems. A Dutch Appeal Court recently found the Shell Petroleum Development Company (SPDC) culpable for some farmland and fishpond pollutions in the region.

Despite the court order asking SPDC to compensate the affected farmers, the oil company insisted that the damages were caused by sabotage and the firm should not be held responsible for the financial losses.

It took about a year before Shell began a mediation process with the farmers to settle the case out of court. Until now, the case is still ongoing, and it is left to be seen if both parties will reach a resolution soon.

Unemployment and Other Economic Problems

Economically, most oil-producing areas are poverty-stricken and plagued with a high unemployment rate. They also lack basic amenities such as stable electricity, potable water, hospitals, motorable roads, and a conducive learning environment in their schools.

As the communities suffer all these, paradoxically, local and foreign oil firms and politicians benefit handsomely from oil proceeds. Years of illegal bunkering, pollution from leaking pipelines, and other unwholesome activities have rendered several fishermen and farmers from the region jobless as their livelihood continues to be affected by oil exploration.

“The crude by-products are usually released into the rivers and on farmlands. Take Ogoni as a case study, oil spill has stopped fishing activities in that area, and it’s bad,” said Michael Ndukwu, a University of Port-Harcourt student.

Though unemployment is a nationwide issue in Nigeria, the challenge for Niger Delta residents is peculiar due to certain factors, such as environmental pollution resulting from oil exploration affecting farming, fishing, and other commercial activities in the region.

In a report that explored the root causes of unemployment and poverty rate in the Niger Delta region of Nigeria, Dr. E.D Simon, a researcher at the Cross River University of Technology Calabar, reported that the “Oil and mineral extraction in the region promoted the looting tendency by various government in Nigeria and have linked with unusually high poverty rates, poor health care and high rate of mortality. This means that sustainable development can hardly be achieved under this unfavorable and in a secured environment”.

The cost of living is relatively high compared to most other places in the country, which makes salaries and wages of most employed residents insufficient, as they could best be described as underemployed.

While the huge cost of food importation/transportation usually increases feeding expenses among Nigerians, the burden is greater on Niger Delta residents, as they could barely source any food items locally due to the damage on farmlands and waters by oil exploration. They, therefore, depend more on food items imported and transported from other parts of the country. This, in turn, renders them underpaid even when placed on the same salary structure as people from other regions.

Gas Flaring and Oil Spills

The consequences of gas flaring are also one of the burdens that the people of the Niger Delta region have to endure. According to International Photography Magazine, “Nigeria flares more natural gas associated with oil extraction than any country. With an estimation of the 3.5 billion cubic feet (100,000,000 m³) of associated gas produced annually, 2.5 billion cubic feet (70,000,000 m³), or about 70%, is wasted by flaring.

The effects of this gas flaring affect not only the ecological system but also have adverse health effects on residents in those communities. The poisonous chemicals and carcinogenic substances released into the environment affect the respiratory system. They are also said to be one of the major causes of cancer and leukemia in the world.

Oil spill is another related challenge faced by the host communities. A United Nations Development Program (UNDP) report shows that 6,817 oil spills were recorded in Nigeria between 1976 and 2001. 69 percent of these spills were said to have occurred offshore, a quarter was in swamps, and 6 percent on land.

Some researchers from the University of Lagos found that certain factors are majorly responsible for the recurring oil spill in Nigeria.: About 50 percent occur due to pipeline or truck accidents, 28 percent are caused by sabotage, 21 percent are caused during oil production operations, and 1 percent occur due to inadequate or nonfunctional production equipment.

The “sabotage” part perfectly describes the situation in the Niger Delta, and it is perpetrated by unemployed youths in the region who have embraced illegal bunkering as a source of livelihood. This worsens environmental pollution in the region and reduces people’s life expectancy.

impact of gas flaring in niger delta

“The poverty rate in those places is high; hence the reason residents are involved in this illegal business. There are barely health facilities and educational facilities, says Alerechi.”

Outdated and faulty pumping equipment is another factor responsible for oil spills in the country. However, despite its associated disastrous effects like the disappearance of mangrove forests and the death of aqua life, no serious move has been made to reconstruct these outdated production facilities.

While other oil-producing nations like UAE and Saudi use their generated revenues to develop their countries, oil discovery and its related activities seem to be a curse to the host communities in Niger Delta.

There is also great concern that if no concerted and urgent action is taken, oil exploration could result in an ecological disaster, which could lead to a humanitarian catastrophe in Nigeria’s oil host communities.

Waste Management Outlook for Nigeria

Nigeria, the most populous country in Africa with population exceeding 182 million people, is grappling with waste management issues. The country generates around 43.2 million tonnes of waste annually. By 2025 with a population of 233.5 million, Nigeria will be generating an estimated 72.46 million tonnes of waste annually at a projected rate of 0.85 kg of waste/capita/day. This means that Nigeria annual waste generation will almost equal its crude oil production which currently stands at approximately 89.63 million tonnes per year.

waste-nigeria

Also, at an estimated annual waste generation figure of 72.46 million tonnes, Nigeria will be generating about one-fourth of the total waste that will be produced in the whole of Africa. This is scary and if proper attention is not paid to this enormous challenge, Nigeria might become the “Waste Capital of Africa”.

Waste is a Resource for Nigeria

Nonetheless, this challenge can be turned into a blessing because waste is a resource in disguise. If its potential is properly tapped, waste management can create employment, enable power generation, create a waste-based economy and contribute to economic diversification which Nigeria. There is no doubt that this is achievable because we have examples of countries already utilizing their waste judiciously.

Some good examples of sustainable waste management systems that can be implemented in Nigeria includes

  1. Shanghai (China) which turn 50% of the generated waste into power generation electrifying 100,000 homes;
  2. Incheon (South Korea) where its Sudokwon landfill receives about 20,000 tons of waste daily which is converted into electric power, has a water recycling and desalination facility, and has created more than 200 jobs;
  3. Los Angeles (USA) which produces electric power enough for 70,000 homes in its Puente Hills landfill;
  4. Germany whose sophisticated waste processing systems through recycling, composting, and energy generation has already saved the country 20% of the cost of metals and 3% of the cost of energy imports;
  5. Austria, though a small country, is doing big things in waste management especially through recycling;
  6. Sweden, whose recycling is so revolutionary that the country had to import waste; and
  7. Flanders, Belgium which possesses the best waste diversion rate in Europe with 75% of their waste being reused, recycled or composted. An interesting fact is that per capita waste generation rate in Flanders is more than twice that of Nigeria at 1.5 kg/day.

Waste Management Outlook for Nigeria

Below are some of the major things the government need to do to judiciously utilize the free and abundant resource available in the form of trash in Nigeria:

Firstly, attention needs to be paid to building the human resource potential of the country to build the required capacity in conceptualizing fit-for-purpose innovative solution to be deployed in tackling and solving the waste challenge.

While knowledge exchange/transfer through international public private partnership is a possible way in providing waste management solution, it is not sustainable for the country especially because there is already an unemployment problem in Nigeria. Hence, funding the training of interested and passionate individuals and entrepreneurs in waste management is a better way of tackling the waste crisis in Nigeria.

Olusosun is the largest dumpsite in Nigeria

The Federal Government through the Petroleum Trust Development Fund (PTDF) and National Information Technology Development Agency (NITDA) of the Ministry of Communication currently sponsor students to study oil and gas as well as information technology related subjects in foreign countries in the hope of boosting manpower in both sectors of the economy. The same approach should be used in the waste management sector and this can be handled through the Federal Ministry of Environment.

Interestingly, waste generation is almost at par with crude oil production in Nigeria. Therefore, equal attention should be paid to waste-to-wealth sector. Needless to say, this is important as there is no university in Nigeria currently offering waste management as a stand-alone course either at undergraduate or postgraduate level.

The Rationale for National Waste Strategy

Secondly, there is an urgent need for a strong National Waste Management Strategy to checkmate the different types of waste that enters the country’s waste stream as well as the quantity of waste being produced. To develop an effective national waste strategy, a study should be carried out to understand the country’s current stream of waste, generation pattern, and existing management approach. This should be championed by the Federal Ministry of Environment in conjunction with State and Local Government waste management authorities.

Once this is done, each State of the Federation will now integrate their own individual State Waste Management Plan into that of the Federal Government to achieve a holistic waste management development in Nigeria. By so doing, the government would also contribute to climate change mitigation because the methane produced when waste degrades is 25 times more potent than carbon dioxide (a major greenhouse gas known to many and contributor to global warming).

The Need for Financial Incentives

Finally, the government needs to support existing waste management initiatives either through tax-holiday on major equipment that need to be imported for their work and/or on their operation for a certain period of time. Also, if workable, the government can float a grant for innovative ideas and provide liberal subsidies in waste management to jumpstart the growth of the sector.

Lastly, the Government of Nigeria can raise a delegation of experts, entrepreneurs, industry professionals, academia, and youngsters to visit countries with sound waste management strategy for knowledge sharing, capacity-building, technology transfer and first-hand experience.

Note: The unedited version of the article can be found at this link

PKS From Africa Can Fuel Biomass Power Plants in Japan

Japan’s biomass fuel requirement is estimated to be tens of millions of tons each year on account of its projected biomass energy capacity of 6,000MW by the year 2030. To achieve this capacity, more than 20 million tons of biomass fuel will be needed every year which will be mainly met by wood pellets and palm kernel shell (PKS). The similarity of the properties of wood pellets with PKS makes PKS the main competitor of wood pellets in the international biomass fuel market.

PKS-biomass

PKS has emerged as an attractive biomass commodity in Japan

Canada and USA are the biggest suppliers of wood pellets to the Japanese biomass market while PKS mainly comes from Indonesia and Malaysia. With the size of the material almost the same as wood pellets, but at a cheaper price (almost half the wood pellets) and also available in abundance, PKS is the preferred biomass fuel for the Japanese market. PKS can be used 100% in power plants that use fluidized bed combustion technology, while wood pellets are used in pulverized combustion.

Although there is abundant PKS in CPO (crude palm oil) producing countries, but fluctuations in CPO production and increase in domestic demand has led to reduction in PKS exports in Southeast Asia. In palm oil plantations, it is known as the low crop season and peak crop season. When the low crop season usually occurs in the summer or dry season, the supply of fruit to the palm oil mills decreases so that the CPO production decreases and also the supply of PKS automatically reduces, and vice versa in the peak crop season. When demand is high or even stable but supply decreases, the price of PKS tends to rise.

In addition, a wide range of industries in Indonesia and Malaysia have also began to use PKS as an alternative fuel triggering increased domestic demand. In recent years, PKS is also being processed into solid biomass commodities such as torrified PKS, PKS charcoal and PKS activated carbon. Thus, there is very limited scope of increasing PKS supply from Southeast Asia to large-scale biomass consumers like Japan and South Korea.

Palm oil mills process palm oil fruit from palm oil plantations, so the more fruit is processed the greater the PKS produced and also more processors or mills are needed. At present it is estimated that there are more than 1500 palm oil mills in Indonesia and Malaysia. Palm kernel shells from Indonesia and Malaysia is either being exported or used domestically by various industries. On the other hand, in other parts of the world PKS is still considered a waste which tends to pollute the environment and has no economic value.

Palm Oil Producers

Top palm oil producers around the world

West African countries, such Nigeria, Ghana and Togo, are still struggling to find a sustainable business model for utilization of PKS. Keeping in view the tremendous PKS requirements in the Asia-Pacific region, major PKS producers in Africa have an attractive business opportunity to export this much-sought after biomass commodity to the Japan, South Korea and even Europe.

Simply speaking, PKS collected from palm oil mills is dried, cleaned and shipped to the destination country. PKS users have special specifications related to the quality of the biomass fuel used, so PKS needs to be processed before exporting.

PKS-export

PKS exports from Indonesia and Malaysia to Japan are usually  with volume 10 thousand tons / shipment by bulk ship. The greater the volume of the ship or the more cargo the PKS are exported, the transportation costs will generally be cheaper. African countries are located quite far from the Asia-Pacific region may use larger vessels such as the Panamax vessel to export their PKS.

Biomass Energy in Nigeria: An Overview

Oil and gas accounts for over 70% of energy consumed in Nigeria, according to the World Bank. Considering this dependency on fossil oil and possibility of it running out in the future, there should be an urgent intervention to look into other ways to generate energy in Nigeria. The world is moving away gradually from fossil oil and aligning towards sustainable energy resources to substitute conventional fuel, Nigeria should not be exempted from this movement. Biomass, a popular form of renewable energy, is considered as a credible and green alternative source of energy which many developed and developing countries have been maximizing to its potential.

biomass-sustainability

Power generation and supply have been inadequate in Nigeria. This inadequacy of power limits human, commercial and industrial productivity and economic growth . What is the use of infrastructure without constant electricity? Even God created light first. Sustainable and constant supply of power should be one of the priority of government in nation development. Investing in biomass energy will cause an increase in the amount of power generated in Nigeria. Infact, biomass energy has the potential to resolve the energy crisis in the country in the not so distant future.

What is Biomass

The word biomass refers to organic matter (mainly plants) which acts as a source of sustainable and renewable energy. It is a renewable energy source because the plants can be replaced as oppose to the conventional fossil fuel which is not renewable. Biomass energy is a transferred energy from the sun; plants derives energy from the sun through photosynthesis which is further transferred through the food chain to animals’ bodies and their waste.

Biomass has the potential to provide an affordable and sustainable source of energy, while at the same time help in curbing the green house effect. In India the total biomass generation capacity is 8,700 MW according to U.S. of Commerce’s International Trade Administration, whereas the generating capacity in U.S. is 20,156  MW with 178 biomass power plants, according to Biomass Magazine.

Power Sector in Nigeria

Unfortunately, the total installed electricity capacity generated in Nigeria is 12,522 MW, well below the current demand of 98,000MW . The actual output is about 3,800MW, resulting in a demand shortfall of 94,500MW throughout the country. As a result of this wide gap between demand and output, only 45% of Nigeria’s population has access to electricity. Renewable energy contributed 19% of total electricity generated in Nigeria out of which biomass contribution is infinitesimal.

Electricity generation for Nigeria’s grid is largely dominated by two sources; non-renewable thermal (natural gas and coal) and renewable (hydro). Nigeria depends on non-renewable energy despite its vast potential in renewable sources such as solar, wind, biomass and hydro. The total potential of these renewables is estimated at over 68,000MW, which is more than five times the current power output.

Biomass Resources in Nigeria

Biomass can come in different forms like wood and wood waste, agriculture produce and waste, solid waste.

1. Wood

Electricity can be generated with wood and wood product/waste(like sawdust) in modern day through cogeneration, gasification or pyrolysis.

2. Agriculture Residues

In Nigeria, agricultural residues are highly important sources of biomass fuels for both the domestic and industrial sectors. Availability of primary residues for energy application is usually low since collection is difficult and they have other uses as fertilizer, animal feed etc.

However secondary residues are usually available in relatively large quantities at the processing site and may be used as captive energy source for the same processing plant involving minimal transportation and handling cost.

3. Municipal Solid Waste

Back then in secondary school, I learnt that gas could be tapped from septic tank which could further be used for cooking.  Any organic waste (like animal waste, human waste) when decomposed by anaerobic microorganisms releases biogas which can be tapped and stored for either cooking or to generate electricity.

Biomass can be used to provide heat and electricity as well as biofuel and biogas for transport. There are enough biomass capacity to meet our demand for electricity and other purposes. From climatic point of view, there is a warm climate in Nigeria which is a good breeding ground for bacteria to grow and decompose the wastes. There are plant and animal growth all year round which in turn create waste and consequently produce biomass.

In November 2016, The Ebonyi State Government  took over  the United Nations Industrial Development Organization (UNIDO) demonstration biomass gasifier power plant located at the UNIDO Mini -industrial cluster in Ekwashi Ngbo in Ohaukwu Local Government Area of the State. The power plant is to generate 5.5 Megawatt energy using rice husk and other available waste materials available. More of these type of power plants and commitment are needed to utilize the potential of biomass fully.

Why Biomass Energy?

Since biomass makes use of waste to supply energy, it helps in waste management. It also has the potential to supply more energy (10 times) than the one produced from sun and wind. Biomass energy in Nigeria will lead to increase in revenue generation and conserves our foreign exchange. Increase in energy generation will yield more productivity for industries and the rate at which they are shutting down due to the fact that they spend more on power will be reduced to minimal.

Many local factories/companies will spring up and foreign investors will be eager to invest in Nigeria with little concern about power. Establishment of biopower plants will surely create more jobs and indirectly reduce the number of people living in poverty which is increasing everyday at an alarming rate.

Africa’s most populous country needs more than 10 times its current electricity output to guarantee supply for its 198 million people – nearly half of whom have no access at all, according to power minister Babatunde Fashola. Biomass energy potential in Nigeria is promising –  with heavy investment, stake holder cooperation and development of indigenous technologies. The deployment of large-scale biomass energy systems will not only significantly increase Nigeria’s electricity capacity but also ease power shortages in the country.

Solid Waste Management in Nigeria

Solid waste management is the most pressing environmental challenge faced by urban and rural areas of Nigeria. Nigeria, with population exceeding 170 million, is one of the largest producers of solid waste in Africa. Despite a host of policies and regulations, solid waste management in the country is assuming alarming proportions with each passing day.

waste-nigeria

Nigeria generates more than 32 million tons of solid waste annually, out of which only 20-30% is collected. Reckless disposal of MSW has led to blockage of sewers and drainage networks, and choking of water bodies. Most of the wastes is generated by households and in some cases, by local industries, artisans and traders which litters the immediate surroundings.

Improper collection and disposal of municipal wastes is leading to an environmental catastrophe as the country currently lack adequate budgetary provisions for the implementation of integrated waste management programmes across the States.

According to the United Nations Habitat Watch, African city populations will more than triple over the next 40 years. African cities are already inundated with slums; a phenomenon that could triple urban populations and spell disaster, unless urgent actions are initiated. Out of the 36 states and a federal capital in the country, only a few have shown a considerable level of resolve to take proactive steps in fighting this scourge, while the rest have merely paid lip services to issues of waste management indicating a huge lack of interest to develop the waste sector.

Scenario in Lagos

Lagos State, the commercial hub of Nigeria, is the second fastest growing city in Africa and seventh in the world.  The latest reports estimate its population to be more than 21 million making it the largest city in entire Africa.  With per capita waste generation of 0.5 kg per day, the city generates more than 10,000 tons of urban waste every day.

Despite being a model for other states in the country, municipal waste management is a big challenge for the Lagos State Waste Management Agency (LAWMA) to manage alone, hence the need to engage the services of private waste firms and other franchisee to reduce the burden of waste collection and disposal. One fundamental issue is the delayed collection of household solid waste.  In some cases, the wastes are not collected until after a week or two, consequently, the waste bin overflows and litters the surroundings.

Improper garbage disposal and lack of reliable transport infrastructure means that collected wastes are soon dispersed to other localities. Another unwelcome practice is to overload collection trucks with 5-6 tons of waste to reduce the number of trips; this has necessitated calls by environmental activist to prevail on the relevant legislature to conform to the modern waste transportation standard.

Situation in Oyo

Away from Lagos State, Oyo is another ancient town in Nigeria with an estimated population of six million people. Here, solid waste is regulated by the Oyo State Solid Waste Management Authority (OYOWMA). Unlike Lagos State, Oyo State does not have a proper waste management scheme that cuts across the nooks and crannies of the state, apart from Ibadan, the capital city, people from other towns like Ogbomoso and Iseyin resort to waste burning. In case the waste generators feels that the amount being charged by the waste franchisee is beyond their means, they dump the waste along flood paths thus compounding the waste predicament.

Burning of municipal wastes is a common practice in Nigeria

Burning of municipal wastes is a common practice in Nigeria

Kano and Rivers State with its fair share of population also suffers similar fate in controlling and managing solid waste. Generally speaking, population increase in Nigeria has led to an unprecedented growth in its economy but with a devastating effect on the environment as more wastes are generated due to the need for housing, manufacturing industries and a boost in trade volume.

Future Perspectives

The government at the federal level as a matter of urgency needs to revive its regulatory framework that will be attractive for private sectors to invest in waste collection, recycling and reusing.  The environmental health officer’s registration council of Nigeria would do well to intensify more effort to monitor and enforce sanitation laws as well as regulate the activities of the franchisees on good sustainable practices.

Taking the advocacy further on waste management, to avoid littering the environment, some manufacturing companies (e.g. chemical and paint industry) have introduced a recall process that will reward individuals who returns empty/used plastic containers. This cash incentive has been proven over time to validate the waste to wealth program embarked upon by the manufacturing companies. It is also expected that the government will build more composting and recycling plants in addition to the ones in Ekiti and Kano State to ensure good sustainable waste management.

Waste management situation in Nigeria currently requires concerted effort to sensitize the general public on the need for proper disposal of solid waste. Also, the officials should be well trained on professionalism, service delivery and ensure that other states within the country have access to quality waste managers who are within reach and can assist on the best approach to managing their waste before collection.

Waste Management Progress in Nigeria’s Delta State

Waste management is a serious problem in Nigeria, and Delta State is no exception. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern, and you often see people disposing of their household waste in the streets at night. Once the waste gets out into the streets, it’s perceived as the duty of the government to handle it.

However, I have never yet heard of any Nigerian politician making waste management a feature of his or her manifesto during the election campaign process. Having said that, a few of Nigeria’s political leaders deserve to be commended for coming to terms with the fact that waste has to be managed properly, even if such issues were far from their minds when they entered political office.

waste-management-nigeria

Legislation and Framework

Nigeria does have a waste legislation framework in place. Its focus has been on the most toxic and hazardous waste: partly in response to some major pollution incidents in the 1980s, the government took powers in relation to Hazardous Waste in 1988. In the same year, the Federal Environmental Protection Agency was established – and was subsequently strengthened by the addition of an inspectorate and enforcement department arm in 1991, with divisions for standard regulation, chemical tracking and compliance monitoring. These laws have since given rise to regulations and guidelines pertaining to environmental and waste management issues.

Under our laws, waste management in each state is the duty of the local governments that fall within it, but few are taking an active approach to implementing and enforcing the sensible measures that the regulations require. A small number of states have taken over this task from local government, and Delta State’s decision to do this has led to significant new investment in waste management.

One of the fruits of that investment is the Delta State Integrated Waste Management Facility at Asaba for treating both household and clinical waste generated locally. It was developed when the Delta State government decided to put an end to the non-sustainable dumping of waste in Asaba, the state capital.

Integrated Waste Management Facility at Asaba

It is described as an integrated waste management facility because it includes a composting department, a recycling department and a (non-WTE) incineration department. Trucks carrying waste are weighed in as they come into the facility. From the weigh bridge, they move to the relevant reception bay – there are separate ones for household and clinical wastes – to tip their load, and are then weighed again on the way out.

Medical waste is taken directly for incineration, but household wastes are sent along conveyors for sorting. Recyclables and compostable materials are, so far as possible, separated both from other waste and from one another. Each recyclable stream ends up in a chamber where it can be prepared for sale. The compostable materials are moved to the composting section, which uses aerated static pile composting.

The remaining waste is conveyed into the three incinerators – moving grate, rotary kiln and fixed end– for combustion. The resulting ash is recycled by mixing it with cement and sharp sand and moulding it into interlocking tiles. The stacks of the three incinerators are fitted with smoke cleaning systems to reduce emissions. The process produces wastewater, which is channelled to a pit where it is treated and reused. Overall, 30% of the waste is composted, 15% recycled and 55% incinerated.

There are many examples of sophisticated waste infrastructure being built in developing countries, but failing because the necessary collection systems were not in place to support them. To ensure that this problem is avoided at Asaba, the Delta State government is working with a group known as the Private Sector Participants (PSP).

Each member of this group has trucks assigned to them and has been directed to collect household waste from different parts of the city, for delivery to the facility for treatment. The arrangements made by each PSP are different: some collect from outside individual properties, and some from communal sites; most collect waste that is found in the streets; and while each is subsidised by the state, households also have to pay towards the cost.

Before the Asaba waste management facility was developed, most of the wastes generated in Asaba were disposed of at a dumpsite just adjacent to the Delta State Airport. This created a pungent odour, as well as visual disamenity for people nearby. A great deal of remediation work is now taking place at the dumpsite, which is vastly improving the local environmental quality.

War on Waste

Of course, although this is an improvement there remains more to do. First on the list is education. People do not know how sustainable waste management can impact positively in their lives, reducing their exposure to toxins as well as improving their surroundings. Nor do they understand that recycling a beverage can or a plastic bottle will cost less than producing one from virgin materials and will have a lesser environmental impact. There remains a good deal of cultural change and environmental education that is needed before people will stop throwing waste and litter on the streets – but there are few countries where, to some extent, the same would not be true.

Next is the lack of infrastructure. Nigeria has 36 states and a federal capital, yet the facility in Asaba is the first publicly commissioned one of its kind in the country; there are also some privately owned incinerators that a few companies in Port Harcourt use to treat wastes from vessels (ships), hospitals and industries. Lagos state and Abuja are relatively advanced, simply by virtue of having put in place a few managed landfills, but they are still far from having the level of facility that Asaba can now boast.

The backbone of Asaba’s progress is the state government’s commitment to put a proper waste management solution in place. We’ve seen the impact in the form of infrastructure, collections and remediation, and law enforcement work is starting to change people’s perception about waste management in Delta State. At the moment, plans are being concluded to setup another facility in Warri, Delta State’s industrial hub, which will be twice the size of the Asaba facility.?

My hope is that the progress made by Delta State will be a beacon for other states’ governments. The example we are providing of cleaner, hygienic, more environmentally responsible waste management, and the positive changes that is bringing about, should inspire new development elsewhere in the country, which could equal or even exceed Delta State’s results. So whilst Nigeria’s track record on waste may leave a lot to be desired, the path ahead could be a great deal more promising.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be found at this link.

Trends in Utilization of Palm Kernel Shells

The palm kernel shells used to be initially dumped in the open thereby impacting the environment negatively without any economic benefit. However, over time, palm oil mills in Southeast Asia and elsewhere realized their brilliant properties as a fuel and that they can easily replace coal as an industrial fuel for generating heat and steam.

palm-kernel-shell-uses

Palm kernel shells is an abundant biomass resource in Southeast Asia

Major Applications

Nowadays, the primary use of palm kernel shells is as a boiler fuel supplementing the fibre which is used as primary fuel. In recent years kernel shells are extensively sold as alternative fuel around the world. Besides selling shells in bulk, there are companies that produce fuel briquettes from shells which may include partial carbonisation of the material to improve the combustion characteristics.

Palm kernel shells have a high dry matter content (>80% dry matter). Therefore the shells are generally considered a good fuel for the boilers as it generates low ash amounts and the low K and Cl content will lead to less ash agglomeration. These properties are also ideal for production of biomass for export.

As a raw material for fuel briquettes, palm shells are reported to have the same calorific characteristics as coconut shells. The relatively smaller size makes it easier to carbonise for mass production, and its resulting palm shell charcoal can be pressed into a heat efficient biomass briquette.

Although the literature on using oil palm shells (and fibres) is not as extensive as EFB, common research directions of using shells, besides energy, are to use it as raw material for light-weight concrete, fillers, activated carbon, and other materials. However, none of the applications are currently done on a large-scale. Since shells are dry and suitable for thermal conversion, technologies that further improve the combustion characteristics and increase the energy density, such as torrefaction, could be relevant for oil palm shells.

Torrefaction is a pretreatment process which serves to improve the properties of biomass in relation to the thermochemical conversion technologies for more efficient energy generation. High lignin content for shells affects torrefaction characteristics positively (as the material is not easily degraded compared to EFB and fibres).

Furthermore, palm oil shells are studied as feedstock for fast pyrolysis. To what extent shells are a source of fermentable sugars is still not known, however the high lignin content in palm kernel shells indicates that shells are less suitable as raw material for fermentation.

Future Outlook

The leading palm oil producers in the world should consider limiting the export of palm kernel shells (PKS) to ensure supplies of the biomass material for renewable energy projects, in order to decrease dependency on fossil fuels. For example, many developers in Indonesia have expressed an interest in building palm kernel shell-fired power plants.

However, they have their concerns over supplies, as many producers prefer to sell their shells overseas currently. Many existing plants are facing problems on account of inconsistent fuel quality and increasing competition from overseas PKS buyers. PKS market is well-established in provinces like Sumatra and export volumes to Europe and North Asia as a primary fuel for biomass power plants is steadily increasing.

The creation of a biomass supply chain in palm oil producing countries may be instrumental in discouraging palm mills to sell their PKS stocks to brokers for export to foreign countries. Establishment of a biomass exchange in leading countries, like Indonesia, Malaysia and Nigeria, will also be a deciding factor in tapping the unharnessed potential of palm kernel shells as biomass resource.

A Glance at Biggest Dumpsites in Nigeria

Waste dumping is the predominant method for solid waste disposal in developing countries worldwide, and Nigeria is no exception. Nigeria is home to six of the biggest dumpsites in Africa, according to Waste Atlas 2014 report on World’s 50 Biggest Dumpsites published by D-Waste. These dumpsites are located in three most important cities in Nigeria namely, Lagos, Port Harcourt and Ibadan.

Let us have a quick look at the major landfills in Nigeria:

Olusosun

Olusosun is the largest dumpsite not only in Lagos but in Nigeria and receives about 2.1 million tonnes of waste annually comprising mostly of municipal solid waste, construction waste, and electronic waste (e-waste). The dumpsite covers an area of about 43 hectares and it is 18 meters deep.

The dumpsite has been in existence since 1992 and has housed about 24.5 million tonnes of waste since then. A population of about 5 million people lives around 10km radius from the site and numerous health problems like skin irritation, dysentery, water-related diseases, nausea etc. have been reported by residents living around 3km radius from the site.

Solous 2

It is located in Lagos and occupies around 8 hectares of land along Lasu-Iba road. The dumpsite receives about 820,000 tonnes of waste annually and has since its existence in 2006 accepted around 5.8 million tonnes of MSW.

Solous is just 200 meters away from the nearest dwellings and almost 4 million people live within 10km radius from the site. Due to the vulnerable sand formation of the area, leachate produced at the dumpsite flows into groundwater causing its contamination.

Epe

Epe dumpsite also in Lagos occupies about 80 hectares of land. The dumpsite was opened in 2010 and has an annual input of 12,000 tonnes of MSW. Epe is the dumpsite which the Lagos State government is planning to upgrade to an engineered landfill and set to replace Olusosun dumpsite after its closure.

Since its existence, it has received about 47,000 tonnes of waste and it is just 500 meters away from the nearest settlement. The dumpsite is also just 2km away from Osogbo River and 7km away from Lekki Lagoon.

Awotan (Apete)

The dumpsite is located in Ibadan and has been in existence since 1998 receiving 36,000 tonnes of MSW annually. It covers an area of 14 hectares and already has in place almost 525,000 tonnes of waste.

The dumpsite is close to Eleyele Lake (2.5km away) and IITA Forest Reserve (4.5km away). The nearest settlement to the dumpsite is just 200 meters away and groundwater contamination has been reported by nearby residents.

Lapite

Lapite dumpsite is also located in Ibadan occupies an area of 20 hectares receiving around 9,000 tonnes of MSW yearly. Since its existence in 1998, it has housed almost 137,000 tonnes of MSW. It is 9km away from IITA Forest Reserve and surrounded by vegetations on both sides of the road since the dumpsite is directly opposite a major road.

Olusosun is the largest dumpsite in Nigeria

The nearest settlement is about 2km away but due to the heavy metals present in the leachate produced in the waste dump, its leakage poses a great threat to groundwater and biodiversity in the area.

Eneka

It is located in Port Harcourt, the commercial hub of South-South, Nigeria along Igwuruta/Eneka road and 9km from Okpoka River and Otamiri River. It receives around 45,600 tonnes of MSW annually and already has about 12 million tonnes of waste in place.

The site lies in an area of 5 hectares and it is flooded almost all year round as rainfall in the area exceeds 2,500mm per annum. Due to this and the resultant flow of the flood which would have mixed with dumpsite leachate; groundwater, surface water, and soil contamination affect the 1.2 million people living around 10km radius from the site as the nearest building is just 200 meters away.

Waste Disposal Methods: Perspectives for Africa

Waste disposal methods vary from city to city, state to state and region to region. It equally depends on the kind and type of waste generated. In determining the disposal method that a city or nation should adopt, some factors like type, kind, quantity, frequency, and forms of waste need to be considered.

For the purpose of this article, we will look at the three common waste disposal methods in Africa and the kind of waste they accept.

Open Dumping/Burning

This is the crudest means of disposing of waste and it is mostly practiced in rural areas, semi-urban settlements, and undeveloped urban areas. For open dumping or open burning, every type and form of waste (including household waste, hazardous wastes, tires, batteries, chemicals) is dumped in an open area within a community or outside different homes in a community and same being set on fire after a number of days or when the waste generator or community feels it should be burnt.

There is no gainsaying that the negative health and environmental impact of such practice are huge only if the propagators know better.

Controlled Dumping

This is apparent in most States in Nigeria, if not all and some cities in Africa like Mozambique, Ghana, Kenya, Cameroon, to mention but a few. It is a method of disposing of all kinds of waste in a designated area of land by waste collectors and it is usually controlled by the State or City Government.

Controlled dumps are commonly found in urban areas and because they are managed by the government, some dumps do have certain features of a landfill like tenure of usage, basic record keeping, waste covering, etc. Many cities in Nigeria confuse the practice of controlled dumping as landfilling but this not so because a landfill involves engineering design, planning, and operation.

Sanitary Landfill

A sanitary landfill is arguably the most desired waste management option in reducing or eliminating public health hazards and environmental pollution. The landfill is the final disposal site for all forms and types of waste after the recyclable materials must have been separated for other usages and other biodegradables have been extracted from the waste for use as compost, heat, or energy; or after incineration. These extractions can be done at household level or Material Recovery Facilities (MRFs) operated by the government or private individuals.

As desirable as a landfill is, so many factors need to be put into consideration in its siting and operation plus it requires a huge investment in construction and operation. Some of these factors include but not limited to distance from the residential area, proximity to water bodies, water-table level of the area the landfill is to be sited, earth material availability, and access road.