Top 4 Benefits of Biomass Energy

Biomass is material originating from plant and animal matter. Biomass energy uses biomass to create energy by burning organic materials. The heat energy released through burning these materials can heat homes or water. Heated water produces steam, which in turn can generate electricity. Using organic materials to create heat and power is an eco-friendlier alternative compared to using fossil fuels. Here’s more about the benefits of biomass energy

biomass-bales

1. Indefinitely Renewable

The majority of the world’s energy comes from burning fossil fuels. Fossil fuels are a finite resource. Once fossil fuel resources run out, new fuel sources will be needed to meet global energy demands. Biomass offers a solution to meet this need.

Organic waste material from agriculture and logging operations, animal manure, and sludge from wastewater treatment are all viable fuels for generating biomass energy. As long as the earth is inhabited, these materials will be readily available.

2. Reduce, Reuse, Recycle

Organic waste that would typically be disposed of in landfills could be redirected for biomass energy use. This reduces the amount of material in landfills and slows the rate at which landfills are filled. Some of the most common waste products used for biomass energy are wood chips and agricultural waste products. Wood materials can easily be converted from already existing wood structures that will be destroyed, such as wooden furniture and log cabins, preferably both would also come from responsible logging and practices as well.

As more organic waste is diverted from landfills, the number of new landfills needed would be reduced. Older landfills are at risk for leaking leachate. Leachate contains many environmental pollutants that can contaminate groundwater sources.

Burning fossil fuel releases carbon into the atmosphere which was previously trapped below ground. Trapped carbon isn’t at risk for contributing to global climate change since it can’t interact with air. Each time fossil fuels are burned, they allow previously trapped carbon to enter the atmosphere and contribute to global climate change. In comparison, biofuel is carbon-neutral.

The materials used to create biomass energy naturally release carbon into the environment as they decompose. Living plants and trees use carbon dioxide to grow and release oxygen into the atmosphere. Carbon dioxide released by burning organic material will be absorbed by existing plants and trees. The biomass cycle is carbon-neutral as no new carbon is introduced to the system.

3. Smaller Carbon Footprint

The amount of unused farmland is increasing as agriculture becomes more efficient. Maintaining open land is expensive. As a result, farmers are selling off their property for new developments. Unused open agricultural land could be used to grow organic material for biofuels.

Converting open tracts of land to developed areas increases the amount of storm-water runoff. Storm-water runoff from developed areas contains more pollutants than storm-water runoff from undeveloped areas. Using open areas to grow biomass sources instead of creating new developments would reduce water pollution.

Biomass-Resources

A quick glance at popular biomass resources

Forested areas also provide sources of biofuel material. Open land converted to sustainable forestry would create new animal habitats and offset carbon emissions from existing fossil fuel sources as more plants and trees would be available to absorb carbon dioxide.

4. Social Benefits of Biomass Energy

Burning fossil fuels releases sulfur dioxide, mercury and particulate matter into the atmosphere which can cause asthma, cancer and respiratory problems. Biomass energy emits less harmful byproducts compared to fossil fuels, which means cleaner air and healthier people.

Biofuel can improve rural economies by providing more people with unused land the opportunity to grown biomass material for energy use. Workers would be needed to harvest and process the materials needed to generate biofuel.

Since biomass is a renewable energy source, energy providers can receive tax credits and incentives. Countries with land resources will be less reliant on foreign fossil fuel providers and can improve their local economies.

Increasing biomass energy usage can reduce forest fires. Selectively reducing brush can still reduce the risk of wildfires spreading. Exposing underbrush and groundcover to rainfall decreases the change of it drying out and creating optimal, fire spreading conditions.

Biomass Energy in Denmark

Denmark is an example of how effective biomass energy can be in improving energy efficiency. Approximately 70 percent of renewable-energy consumption in Denmark comes from biomass.

Woody biomass creates an increasing percentage of heating from combined heat and power (CHP) plants with a goal to for 100 percent of hearing to be derived from woody biomass by 2035. Another form of biomass is agricultural biomass. This form utilizes materials such as straw and corn to create end-products like electricity, heating and biofuels.

The Danish Energy Agency has developed a plan including four scenarios that will help Denmark become fossil fuel free by 2050. The biomass scenario involves CHP for electricity and district heating, indicating that biomass energy is important in Denmark’s energy sector today and will play an increasingly important role in the future.

Biomass offers an eco-friendly and renewable method of reducing pollution and the effects of global climate change. And, like other forms of renewable energy, the products needed to develop biomass energy are readily available.

Top Technologies and Practices for Sustainable Forestry and Agriculture

Innovative technologies can help improve the resilience of different industries. Agriculture and forestry are no exception. In this piece, you will find out whether you can take care of the health of the fields, detect common tree diseases promptly and save resources without harming the environment.

Sustainability and Technologies

At first glance, digital technologies and environmental sustainability are mutually exclusive concepts since common development factors do not link them. Technological changes are aimed at increasing production efficiency using artificial intelligence, IoT, and robotics. Environmental sustainability is promoted by a combination of several factors associated with geopolitical instability, deteriorating climatic conditions, and the environment.

The business will not cover all the needs of a growing population for food and services by simply increasing production. Social and environmental problems of the modern world can be solved only with the help of innovative technologies. The combination of digital innovation and environmental sustainability can help address these challenges. In addition, this combination is an excellent way for a business to stand out and consolidate its viability among clients and related organizations. Indeed, sustainable practices and digital technologies may be an integral part of any business. This combination can provide the company with higher income at lower costs while providing a positive customer experience.

Sustainable Forestry

Humanity needs the resources that the forest provides. Sustainable forestry involves  forest management and caring for its health. It is vital to save the forest as a separate ecosystem and habitat for many animals and so that the essential resources remain for future generations.

sustainable forestry

1. Forest Health and Forest Management

Various sustainable forest management practices are tailored for each area. One of the basic methods is to check the regeneration. It means that you need to make sure you have enough tree sprouts, natural seeds and seedlings.  Excessive populations of certain species of animals can lead to the destruction of young trees as they eat them. In such cases, people can install a fence. If there is little sunlight in the forest, some trees can be removed, as can weeds, which grow and take up a significant portion of the nutrients or water.

Sustainable forestry practices also include caring for wet areas and forest streams. Do not allow much soil to enter the water, as it can harm aquatic organisms. Large pipes should control rain flow to prevent erosion of exposed soil in areas where trees have been felled.

Caring for the health of the forest is another challenge for sustainable forest management. The extinction of a large number of trees testifies to the health problems of the woods. They can be caused by insect pests, diseases, wildfires, or unfavorable weather conditions. Sustainable forestry is concerned with promoting health and reducing negative health factors.

2. Precision Forestry

Precision forestry relies on various innovative technologies, including drones, soil sensors, drones, and laser scanning. However, this concept is not limited only to the introduction of technologies. Still, it means a transition from an analog control system to a system with operational control and digital data collection.

The technologies of precision forestry are designed to improve management. With their help, you can optimize the decision-making process, relying on advanced analytics. Better data collection goes hand in hand with more control over various operations, automation of production, and better meeting the needs of the forest, for example, when it comes to nutrients or soil moisture.

Sustainable Agriculture

The agricultural sector, as well as the use of forest resources, is necessary for humanity. However, the use of harmful farming practices, including the release of agricultural waste, is detrimental to the environment. Sustainable agriculture exists to minimize the negative impact on the environment. It offers the use of environmentally friendly technologies and methods.

compost-organic-waste-farming

The concept of safe food using organic waste generated compost is getting traction.

1. Irrigation

Smart irrigation systems can go beyond just providing timely watering and reporting soil moisture levels and temperatures so growers can effectively care for their crops. Many plants have specific requirements for these parameters. Special sensors inform farmers about the need to change the growing environment depending on the temperature conditions while reducing water loss.

2. Biotechnology

Thanks to biotechnology, breeders can develop plants with specific traits using more precise methods with faster results. Scientists are also working on plants that use water more efficiently and can thrive even in drought conditions. Biotechnology also contributes to higher yields, as breeders by editing the genes of plants make them more resistant to various diseases. It also has great potential in animal husbandry.

sustainable agriculture

3. Data and Software

The Internet of Things has a significant impact on the sustainability of agriculture, and it is through this technology, farmers can use intelligent irrigation systems or livestock health trackers. Software and sensors transmit data to a central system, from where farmers receive information. You can make more effective decisions based on the obtained data regarding the health of the crops, and therefore save resources.