Municipal Waste Management in Poland

waste-dump-warsawMunicipal waste management in Poland has changed dramatically since the early ’90s when, as part of Poland’s privatisation program, municipal authorities were freed of their waste management obligations. The combined Polish recycling rate for dry recyclables and organic waste has increased from 5% in 2004 to 21% in 2010, according to a Copenhagen Resource Institute (CRI) study Municipal Waste Management in Poland (2013). Another source provides similar, corroborating statistics, putting the dry recycling rate in Poland at 14% and the composting rate at 7%.

The latest Eurostat data (for 2011) shows that the upward trend continuing, with the total recycled and composted reaching 28%. That is rapid rate of improvement, but leaves Poland well below the latest EU-27 average of 40% (25% recycled and 15% composted) – so what prospect is there of Poland reaching the EU’s mandatory 50% target by 2020?

Responsibility for waste disposal shifted to householders, who were left to individually contract any waste collection company of their choice. In the hard economic climate a ‘cheaper-the-better’ mentality prevailed, which did little to encourage sustainable practices. There wasn’t even an obligation on householders even to sign up for waste collection.

Landfilling was – and remains – the most common way of handling waste, but accompanying reporting and tracking methods were inadequate. Statistically, quantities of waste produced were usually larger than those collected, with the missing tonnages usually being dumped in forests or burned in domestic boilers to avoid waste disposal costs. As a result, waste management became largely uncontrolled, with a 2011 report concluding that ‘’waste management is one of the most badly neglected and at the same time one of the most urgent environmental issues for Poland.’’

Waste Management Legislation

Even after joining the EU in 2005, Poland didn’t rush to introduce reforms to improve practices and help to meet recycling targets. Only recently has Poland introduced several pieces of new waste related legislation, including:

  • Act on maintaining cleanliness and order in municipalities (2012);
  • Act on Waste (2012); and
  • Act on management of packaging and packaging waste (2013).

The first of these was revolutionary in that it gave responsibility for municipal waste collection and disposal back to municipalities. Now they are required to organise garbage collection and the separate collection of biodegradable waste and recyclable materials such as paper, metal, glass and plastic. It is expected that the new law will improve waste management control measures on a local level and greatly reduce the illegal dumping and trash burning.

The Act on Waste helps tackle the previous ‘free for all’ amongst collectors – it obliges waste handlers to act in a manner consistent with waste management principles and plans adopted at national level (by the Council of Ministers), regional level (Voivodeship) and local level (Municipality).

Poland has also this year adopted a new National Waste Management Plan, which states that an essential step towards improving the recycling rate in Poland is to increase landfill fees for recyclable, compostable or recoverable material. If acted upon, this could greatly increase the incentive to divert important municipal waste streams from landfill. The Polish market is clearly responsive to cost: in 2008 after landfill tax was significantly raised, there was a substantial reduction in waste being landfilled.

Declaration of bin-dependence

Although Polish citizens have always had to pay directly for waste collection, the new legislation has made some substantial changes to the payment system. There are now three different calculation methods. Each household is subject to a standard fee, which is then adjusted to reflect either:

  • The number of people living in a household;
  • The number of square metres covered by the property; or
  • The number of cubic metres of water used by the household per month.

The first of these options seems to be the most reasonable and has proven the most popular.

Municipalities are left to determine the standard collection fee, which as a result varies from region to region. Some municipalities charge at little as 3 Polish Zloty (around £0.56) per household, per person, per month, while some charge 20 Zloty (around £3.75).

The standard charge is also affected by a declaration made by the householder regarding waste segregation. If a property owner declares that they have separated out recyclable materials then they pay considerably lower fees. In some municipalities, this could be as low as 50% of the usual charge. Only those who declare that they don’t want to recycle pay full price. It’s rare that people do so: who would pick the most expensive option?

The problem is that some householders declare that they recycle their waste while in reality they don’t. Unfortunately, abusing the system is easy to get away with, especially since the new scheme is still in its early stages and is not yet stable. Monitoring recycling participation in order to crack down on such abuses of the system represents quite a challenging task.

Future Perspectives

Transformation periods are always hard and it is common that they bring misunderstanding and chaos. It isn’t surprising that there are problems with the new system which require ironing out, and the new legislation is nevertheless welcome. However, there is still much work to be done to provide sufficient and sustainable waste management in Poland. This will include such measures as educating the population, improving waste separation at source and securing waste treatment capacity.

Perhaps most importantly, Poland needs to take immediate action to develop its municipal waste treatment capacity across the board. If the 2020 recycling target is to be met, the country will require material recovery facilities, anaerobic digestion and in vessel composting sites, and household waste and recycling centres; and if more waste is to be diverted from landfill it will also need energy from waste (EfW) incinerators and mechanical biological treatment facilities.

According to Eurostat, only 1% of waste in Poland was incinerated in 2011. It has been confirmed so far that an EfW plant will be developed in each of Poland’s 11 biggest cities. Fortunately for Poland, the development of waste treatment installations is quite generously funded by the EU, which covers up to 80% of the total cost: EU subsidy agreements have already been signed for three of the planned EfW plants. The remaining cost will be covered by central, regional and local government.

The CRI paper presents three different scenarios for the future recycling rate in Poland. One of them is very optimistic and predicts that Poland has a chance to meet the 2020 recycling requirements, but each is based simply on a regression analysis of recent trends, rather than an analysis of the likely impact of recent and planned policy measures. What it does make clear, though, is that if Poland continues to progress as it has since 2006, it will reach the 2020 target. How many EU countries can claim that?

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original version of the article can be found at this link.

Municipal Solid Waste Management in Oman

Municipal solid waste management is a challenging issue for the Sultanate of Oman because of its adverse impacts on environment and public health. With population of almost 3 million inhabitants, the country produces about 1.9 million tons of solid waste each year. The per capita waste generation in Oman is more than 1.5 kg per day, among the highest worldwide.

Prevalent Scenario

Solid waste in Oman is characterized by very high percentage of recyclables, primarily paper (26%), plastics (12%), metals (11%) and glass (5%). However the country is yet to realize the recycling potential of its municipal waste stream.

The predominant waste disposal method in Oman is landfilling. Most of the solid waste is sent to authorized and unauthorized dumpsites for disposal which is creating environment and health issues. There are several dumpsites which are located in the midst of residential areas or close to catchment areas of private and public drinking water bodies.

Solid waste management scenario in Oman is marked by lack of collection and disposal facilities, as well as lack of public awareness about waste in the country. Solid waste, industrial waste, e-wastes etc are deposited in very large number of landfills scattered across the country. Oman has around 350 landfills/dumpsites which are managed by municipalities. In addition, there are numerous unauthorized dumpsites in Oman where all sorts of wastes are recklessly dumped.

Al Amerat Sanitary Landfill

Al Amerat landfill is the first engineered sanitary landfill in Oman which began its operations in early 2011. The landfill site, spread over an area of 9.6 hectares, consists of 5 cells with a total capacity of 10 million m3 of solid waste and spread over an area of over 9.6 hectares. Each cell has 16 shafts to take care of leachate (contaminated wastewater).

All the shafts are interconnected, and will help in moving leachate to the leachate pump. The project is part of the government’s initiatives to tackle solid waste in a scientific and environment-friendly manner. Being the first of its kind, Al Amerat sanitary landfill is expected to be an example for the future solid waste management projects in the country.

The Way Forward

Solid waste management is among the top priorities of Oman government which has chalked out a robust strategy to resolve waste management problem in the Sultanate. The country is striving to establish 16 engineered landfills, 65 waste transfer stations and 4 waste treatment plants in different parts of the country.

Modern solid waste management facilities are under planning in several wilayat, especially Muscat and Salalah. The new landfills will eventually pave the way for closure of authorized and unauthorized garbage dumps around the country. However investments totaling Omani Rial 2.5 billion are required to put this waste management strategy into place. Oman is also seriously exploring waste-to-energy as a tool to manage garbage in a sustainable manner.

Financing of Solid Waste Management Projects

waste-mountainFinancing of solid waste management projects can be pretty overwhelming for the city government, especially if the government see it as a critical part of the service they should render to the citizen and if the citizen also hold it as a basis for measuring the performance of the government and using it as one of the conditions for re-election.

Solid waste management entails different aspects. Generally speaking, waste management consists of pre-collection, collection, transportation, storage, treatment, and disposal. The modern hierarchy of waste management includes prevention, minimization, reuse, recycling, energy recovery, and disposal.

All these aspects require proper funding in rendering a good waste management service to the society. As citizens, we hardly give any thought to the different aspects and what it takes to ensure it is carried out efficiently and effectively.

Financing Options for Solid Waste Management

There are four different options for financing of solid waste management projects. The option chosen will be dependent on various factors. The chief factor will be “what is the end goal of providing waste management service to citizen” and this is to be determined by the city government. Therefore, we say finance option is directly related to waste management goal of a city or State.

Public Financing

This primarily involves funding of waste management service entirely by the government through budgetary allocation. The government determines how it will generate the cash for service and this can be through taxation or redistribution of funds generated from other sources like sales of city natural resources or combination of various sources of funds.

In developing countries, this is generally inefficient due to the corruption within the government and lack of proper waste management capabilities in most instances. The government might decide to charge a service fee or not.

Private Financing

This involves infusing funds from the private sector into waste management service and also overseeing day-to-day running of the service. However, the hired company will charge a service fee which will be determined by calculating the amount of invested funds, operating cost, and profit envisaged. This will be spread over a period of time.

This financing option can deliver optimal result in providing waste management service but the private sector needs to be checked in order not to set a high fee that will end up scaring citizens which might lead to citizen abhorring the service.

Public-Private Partnership (PPP)

This is a special type of arrangement which brings together the government and private sector in providing funds and management capabilities for the delivery of waste management service.

All things being equal, this arrangement is best because the government will be able to regulate and have a say in how the service should be delivered especially as it relates to the setting of service fees which might be difficult in the solely private financing option. The PPP can equally be extended to be a Joint Venture (usually termed as Institutional PPP).

Donors and Grants

This funding mechanism is dependent on the interest of the donor organization. While it is a good way to develop a city’s waste management infrastructure, attracting and utilizing grants is solely reliant on what the donor considers as important. Hence, it might be difficult for a city government to dictate how the funds should be distributed among the various aspect of waste management.

Waste management projects based on public-private partnership (PPP) model has more chances of success in developing countries

However, this type of financing can be combined with a PPP arrangement to cater for a specific waste management aspect that is in tandem with the interest of the donor and can be part of the city government contribution to the PPP.

Conclusion

In conclusion, waste management financing is quite dynamic just like many other services and infrastructure provided by a city government and the best option for financing the provision of waste management service can only be made after appropriate due diligence and consultation with relevant stakeholders has been made and observed.

Note: The original version of the article was published on Waste Watch Africa website at this link.

Circular Economy: Past, Present and Future

For a society accustomed to the achievements of a linear economy, the transition to a circular economic system is a hard task even to contemplate. Although the changes needed may seem daunting, it is important to remember that we have already come a long way. However, the history of the waste hierarchy has taught that political perseverance and unity of approach are essential to achieving long term visions in supply chain management.

Looking back, it is helpful to view the significance of the Lansink’s Ladder in the light of the sustainability gains it has already instigated. From the outset, the Ladder encountered criticism, in part because the intuitive preference order it expresses is not (and has never been put forward as) scientifically rigorous. Opposition came from those who feared the hierarchy would impede economic growth and clash with an increasingly consumerist society. The business community expressed concerns about regulatory burdens and the cost of implementing change.

Circular-Economy

However, such criticism was not able to shake political support, either in Holland where the Ladder was adopted in the Dutch Environmental Protection Act of 1979, or subsequently across Europe, as the Waste Hierarchy was transposed into national legislation as a result of the revised Waste Framework Directive.

Prevention, reuse and recycling have become widely used words as awareness has increased that our industrial societies will eventually suffer a shortage of raw materials and energy. So, should we see the waste hierarchy as laying the first slabs of the long road to a circular economy? Or is the circular economy a radical new departure?

Positive and negative thinking

There have been two major transitionary periods in waste management: public health was the primary driver for the first, from roughly 1900 to 1960, in which waste removal was formalised as a means to avoid disease. The second gained momentum in the 1980s, when prevention, reuse and recovery came on the agenda. However, consolidation of the second transition has in turn revealed new drivers for a third. Although analysing drivers is always tricky – requiring a thorough study of causes and effects – a general indication is helpful for further discussion. Positive (+) and negative (-) drivers for a third transition may be:

(+) The development of material supply chain management through the combination of waste hierarchy thinking with cradle to cradle eco design;

(+) The need for sustainable energy solutions;

(+) Scarcity of raw materials necessary for technological innovation; and

(+) Progressive development of circular economy models, with increasing awareness of social, financial and economic barriers.

(-) Growth of the global economy, especially in China and India, and later in Africa;

(-) Continued growth in global travel;

(-) Rising energy demand, exceeding what can be produced from renewable energy sources and threatening further global warming;

(-) Biodiversity loss, causing a further ecological impoverishment; and

(-) Conservation of the principle of ownership, which hinders the development of the so-called ‘lease society’. 

A clear steer

As the direction, scale and weight of these drivers are difficult to assess, it’s necessary to steer developments at all levels to a sustainable solution. The second transition taught that governmental control appears indispensable, and that regulation stimulates innovation so long as adequate space is left for industry and producers to develop their own means of satisfying their legislated responsibilities.

The European Waste Framework Directive has been one such stimulatory piece of legislation. Unfortunately, the EC has decided to withdraw its Circular Economy package, which would otherwise now be on track to deliver the additional innovation needed to achieve its goals – including higher recycling targets. Messrs. Juncker and Timmermans must now either bring forward the more ambitious legislation they have hinted at, or explain why they have abandoned the serious proposals of their predecessors.

Perhaps the major differences between Member States and other countries may require a preliminary two-speed policy, but any differences in timetable between Western Europe and other countries should not stand in the way of innovation, and differences of opinion between the European Parliament and the Commission must be removed for Europe to remain credible.

Governmental control requires clear rules and definitions, and for legislative terminology to be commensurate with policy objectives. One failing in this area is the use of the generic term ‘recovery’ to cover product reuse, recycling and incineration with energy recovery, which confuses the hierarchy’s preference order. The granting of R1 status to waste incineration plants, although understandable in terms of energy diversification, turns waste processors into energy producers benefiting from full ovens. Feeding these plants reduces the scope for recycling (e.g. plastics) and increases COemissions. When relatively inefficient incinerators still appear to qualify for R1 status, it offers confusing policy signals for governments, investors and waste services providers alike.

The key role for government also is to set clear targets and create the space for producers and consumers to generate workable solutions. The waste hierarchy’s preference order is best served by transparent minimum standards, grouped around product reuse, material recycling or disposal by combustion. For designated product or material categories, multiple minimum standards are possible following preparation of the initial waste streams, which can be tightened as technological developments allow.

Where the rubber meets the road

As waste markets increase in scale, are liberalised, and come under international regulation, individual governmental control is diminished. These factors are currently playing out in the erratic prices of secondary commodities and the development of excess incinerator capacity in some nations that has brought about a rise in RDF exports from the UK and Italy. Governments, however, may make a virtue of the necessity of avoiding the minutiae: ecological policy is by definition long-term and requires a stable line; day to day control is an impossible and undesirable task.

The road to the third transition – towards a circular economy – requires a new mind-set from government that acknowledges and empowers individuals. Not only must we approach the issue from the bottom-up, but also from the side and above. Consumer behaviour must be steered by both ‘soft’ and ‘hard’ controls: through information and communication, because of the importance of psychological factors; but also through financial instruments, because both consumers and industry are clearly responsive to such stimuli.

Where we see opposition to deposit return schemes, it comes not from consumers but from industry, which fears the administrative and logistical burden. The business community must be convinced of the economic opportunities of innovation. Material supply chain management is a challenge for designers and producers, who nevertheless appreciate the benefits of product lifetime extensions and reuse. When attention to environmental risks seems to lapse – for example due to financial pressures or market failures – then politics must intervene.

Government and industry should therefore get a better grip on the under-developed positive drivers of the third transition, such as eco design, secondary materials policy, sustainable energy policy, and research and development in the areas of bio, info, and nanotechnologies. 

Third time’s the charm

Good supply chain management stands or falls with the way in which producers and consumers contribute to the policies supported by government and society. In order that producers and consumers make good on this responsibility, government must first support their environmental awareness.

The interpretation of municipal duty of care determines options for waste collection, disposal and processing. Also essential is the way in which producer responsibility takes shape, and the government must provide a clear separation of private and public duties. Businesses may be liable for the negative aspects of unbridled growth and irresponsible actions. It is also important for optimal interaction with the European legislators: a worthy entry in Brussels is valuable because of the international aspects of the third transition. Finally, supply chain management involves the use of various policy tools, including:

  • Rewarding good behaviour
  • Sharpening minimum standards
  • Development and certification of CO2 tools
  • Formulation and implementation of end-of-waste criteria
  • Remediation of waste incineration with low energy efficiency
  • Restoration or maintenance of a fair landfill tax
  • Application of the combustion load set at zero

‘Seeing is believing’ is the motto of followers of the Apostle Thomas, who is chiefly remembered for his propensity for doubt. The call for visible examples is heard ever louder as more questions are raised around the feasibility of product renewal and the possibilities of a circular economy.

Ultimately, the third transition is inevitable as we face a future of scarcity of raw materials and energy. However, while the direction is clear, the tools to be employed and the speed of change remain uncertain. Disasters are unnecessary to allow the realisation of vital changes; huge leaps forward are possible so long as government – both national and international – and society rigorously follow the preference order of the waste hierarchy. Climbing Lansink’s Ladder remains vital to attaining a perspective from which we might judge the ways in which to make a circle of our linear economy.

Note: The article is being republished with the permission of our collaborative partner Isonomia. The original article can be found at this link.

Circular Economy: Viewpoint of Plastic

Pieces of plastic have been trying to get our attention. The first scientific reports of plastic pollution in oceans were in the early 1970s. This waste plastic soaks up other pollutants at up to a million times the concentration in water, harming and killing sea life worldwide. From the point of view of the plastic, we have convincingly failed with solutions. Over the past 40 years the problem has grown around 100 times, with now over 8 million tonnes of plastic waste added to oceans per year.

plastic-bottle

Everyone is aware about ways for plastic to not become waste. We can set up redesign, sharing, refill, recycling and even composting. When it comes to creating practical possibilities for not making waste, people are super smart. But when it comes to making policy to install this practice throughout the economy, which has been the aim of circular economy for the past four decades, we’re consistently collectively stupid. I call this mob thinking.

We have intelligent activists, business people, experts and officials unintentionally thinking like a mob? always bringing forward the same decades old policy weapons. When these weapons don’t work there is a discussion about strategy but not any actual new strategy, just talk about how forcefully to use the same old policy weapons. This is how it’s been possible for waste management, waste regulation and the unsolved waste problem to all grow in tandem for so long.

If the piece of plastic had a voice in the circular economy debate what might it say? It would remind us to beware mob thinking. Today’s problems are solvable only by trying new thinking and new policy weapons. Precycling is an example. The piece of plastic doesn’t mind whether it’s part of a product that’s longlife or refilled or shared or refurbished or recycled or even composted (so long as it’s fully biodegradable). It doesn’t even mind being called ‘waste’ so long as it’s on its way to a new use. Action that ensures any of these is precycling.

Our piece of plastic does mind about ending up as ecosystem waste. It does not wish to join 5 trillion other pieces of plastic abandoned in the world’s oceans. It would be horrified to poison a fish or starve a sea bird. Equally it does not want to be perpetually entombed in a landfill dump or transformed into climate destabilising greenhouse gases by incineration.

The two possible outcomes for a piece of plastic, remaining as a resource or being dumped as ecological waste, are the same fates awaiting every product. Our economies and our futures depend on our ambition in arranging the right outcome. The old policy weapons of prescriptive targets and taxes, trying to force more of one waste management outcome or less of another, are largely obsolete. Circular economy can be fully and quickly implemented by policy to make markets financially responsible for the risk of products becoming ecological waste. Some ever hopeful pieces of plastic would be grateful if we would get on with doing this.

Reference: Governments Going Circular best practice case study of precycling premiums

Hiring a Waste Management Company Can Take the Guesswork out of Recycling

Whether talking about recycling for a home or business, this type of service is extremely important for the environment. Waste has a negative impact on the environment and can cause pollution of many kinds. Most companies that offer both garbage and recycling services are very organized, and consumers are expected to be equally organized in sorting their waste and separating it from recyclable items.

Because the process of figuring out what can be recycled, many individuals and business owners find it is much easier to simply hire a waste management company.

Below are some questions to consider when looking for recycling services and reasons why hiring a waste management company can take the guesswork out of recycling.

What Kind of Recycling Service is Required?

This can mean anything from home to office to hazardous waste to syringe collection services.  Some companies offer all types of recycling and provide the different bins necessary to mitigate these needs. It is important to contact the company and find out as much information that is needed to make an informed decision on how recycling is handled.

However, most companies will only offer a general list of items that can be recycled, including plastics, cardboards, glass, etc. This list will not be exhaustive, leaving many consumers to wonder what to do with items such as plastic bottle caps, milk cartons and the like. A waste management company will know the specific regulations for what can and cannot be recycled, eliminating the hassle for you.

What Can Be Recycled?

Bricks, wood, paper, metals, cardboard, plastics, concrete, and green waste can all be recycled.

  • Bricks – These are broken down and crushed in order to be made into new bricks.
  • Wood – Wood can be used again as building materials or can be processed into pulp or mulch. Recycling wood can limit the number of trees that are being cut down.
  • Paper – The process for this material mixes old paper with chemicals and water to break it down. It is then chopped, heated and broken down further into strands of cellulose.  This substance is then called slurry or pulp and is further recycled into new paper.
  • Metals – Recycling metals will not alter its properties, the most common metals recycled are steel and aluminum.
  • Cardboard – This uses a process that reuses thick sheets of multilayered papers (cardboard) that have been discarded.
  • Plastics – The recycling process for plastics recovers waste or scraps of plastic and reprocesses them into useful products.
  • Concrete – This type of recycling is becoming more common and uses a process of reuse of the rubble for new construction endeavors.
  • Green Waste – This can be anything from leaves to grass trimmings to flower cuttings that can be decomposed and then recycled. This will in turn produce what is called green waste.

There are a number of items that can be recycled, but it is important to note that not all recycling pickup services will be able to process all the items mentioned above. Certain materials, such as concrete or wood, must be disposed of at specific facilities.

plastic-wastes

Recycling has unending benefits

For the average homeowner, this can mean having to locate the specific facility and transport the recyclable materials to them. A waste management company will have the contacts in the industry to know where to take any type of recyclable item and can take care of the transportation for you.

What Recycling Techniques Are Used, and Are They Legal and Ethical?

  • Concretes and Aggregates – This process would involve using a crushing machine and combining the concrete with bricks, asphalt, dirt and rocks. The smaller pieces will be used as gravel, crushed concrete can all be used as dry aggregate, which in turn can be used to make new concrete that will be free of contaminates.
  • Batteries – This type of recycling can be very difficult; all batteries must be sorted into groups of similar kinds and require. Older batteries contain cadmium and mercury, which are very harmful and must be handled very carefully.
  • Biodegradable Waste – This type of waste can be made into reusable material via the process of biological decomposition. The two mechanisms that help this to occur are composting or converting it into soil improver and biogas. The latter uses anaerobic digestion where organic wastes are broken down by microorganisms in a biogas plant.

Again, a waste management company will be able to guarantee that your recycling ends up in the right processing facilities and to ensure that it does get processed according to government regulations and ethical means. When the wrong items end up in recycling, this can lead to an entire batch being thrown out. A waste management company will make sure that the recyclable items are properly sorted, helping to ensure that your efforts to recycle do not go to waste.

What Are the Benefits of Recycling?

There are many benefits to using a recycling service. For instance, recycling conserves energy, reduces greenhouse gases, reduces water and air pollution, and conserves natural resources by reusing recycled materials. Protecting the environment is one of the most important things a home or business can do. When an individual or business chooses to recycle all different kinds of waste, it makes the world a better, less toxic place to live.

Not only does recycling help protect the world, it also reduces the need for extraction such as mining, logging and quarrying. It also reduces the need for processing and refining of raw materials. All these processes can contain harmful, substantial amounts of water and air pollution. Recycling will save this energy while reducing the amount of greenhouse gas, which in turn helps to attack climate change.

Plastic Packaging Waste in the Philippines: An Analysis

I recently took a 5-month break from my work as an environmental consultant to volunteer with Marine Conservation Philippines (MCP) on the issue of marine litter. During the first few months of my stint there, we undertook an intense programme of beach cleans across sections of a small sample of local beaches. The idea was to find out what kinds of material were most prevalent, to inform the types of local initiative we could set up to try and tackle the issues. Consistently, the vast majority of the debris we found strewn across the beaches was plastic; a significant amount of that was soft plastics which can’t be recycled – plastic bags, sweet and crisp packets, and single use soap and detergent sachets. There were some variations, though: at one beach, we kept picking up a staggering amount of styrofoam.

During our beach clean work and engagement with local communities, it became increasingly apparent that part of the problem was the variability of waste management across the municipality of Zamboanguita, in the Negros Oriental province of the Philippines. Despite national legislation, some areas received no formal waste collections at all. With the help of the local Coastal Resources Manager, Tony Yocor, we began to engage with the local municipality’s Solid Waste Manager with the view to supporting appropriate an affordable waste management practices.

We focused on solutions that have been successful elsewhere in the Philippines and in other emerging markets, such as the local collection and waste sorting approach developed by Mother Earth Foundation. Unfortunately, as with most places in the world, influencing the authorities to act takes time, and whilst we started to make some progress, Tony and the staff at MCP are still working on trying to get the full range of local solutions we identified implemented.

Materials and markets

We did, however, build our own ‘MRF’ (more of a community recycling centre in UK terms) at MCP’s base to improve the management of the waste we collected. The main aim of the site is to allow as many recyclable materials as possible to be segregated so that they can be sold to the local junk shops. We also hope that this can act as a demonstration site for the types of simple solutions that can be set up locally to improve waste management.

But ultimately, if we are serious about tackling this issue of marine debris, we have to reduce the amount of litter we produce, and many countries are making progress on tackling commonly littered items. Restrictions on single use carrier bags are amongst the most prominent and widespread anti-littering measures around the world.

England’s 5p carrier bag levy was introduced in 2015 and, despite its limitations, is reducing bag usage and (it would seem) marine litter. Last year Kenya hit the headlines when it joined the growing list of countries adopting a rather stricter line: it banned plastic carrier bags entirely, with offenders risking heavy fines or even imprisonment.

Although bans and restrictions are becoming increasingly widespread, they have not yet reached the Philippines at a national level and it seems no coincidence that a large proportion of the items we found littered on our sample beaches around Zamboanguita were plastic bags. One beach, close to where the largest ‘ghetto’ market is held weekly, had a particularly high incidence of plastic bag litter, and the quantity increased noticeably on, and just after, market day.

Without national instruments in place, we explored what could be done with the policy powers available to the local government. Working with the local Markets Officer and Coastal Resources Manager we put the wheels in motion to propose and implement a local ordinance to introduce a charge on plastic bags, initially at the market as a trial, with the potential for a wider roll-out if successful. It’s a model that could be reapplied elsewhere in the Philippines if national legislation isn’t forthcoming.

Sachet and sea?

Plastic bags are a challenge, but because they’re distributed locally it’s relatively easy to change practices. Other forms of single use packaging contribute just as much to the litter problem afflicting many South East Asian counties, but are harder to tackle because their source is more remote.

The Philippines, like many developing and emerging economies, is a ‘sachet economy’, with a huge range of products sold in one-portion, single-use sachets. You see them everywhere, from small ‘sari sari’ stalls to large shopping centres. The producers’ perspective is that this form of packaging represents a form of social responsibility, allowing them to provide safe, long-lasting, affordable products that meet people’s needs. However, they have a wider cost.

Sachet society: one of the most common forms of litter in the Philippines. Photo courtesy of Amy Slack.

I was involved in Break Free from Plastic Negros Oriental’s December beach clean and audit, and these sachets were the most common item we found. They accounted for a massive 25% of the items picked up from Dumaguete beach, beating plastic bags into second place (13%). The waste management system in the Philippines simply isn’t geared up to dealing with this increasingly popular type of packaging – the composite materials of which they are made are impractical to recycle and so lack the economic value that engages the interest of the informal sector. So, what could be done to help?

The Best Foot Forward

There is no ‘silver bullet’ to instantly lay marine litter to rest. Even if there was a global ban on single use plastics today, it would take time for already littered material to blow or wash its way through the system. However, introducing a compulsory extended producer responsibility (EPR) mechanism into policy could help end the blame game that currently impedes action: producers blame the general public for littering, the general public blame the government for inadequate waste systems, and government blames produces for manufacturing plastic packaging.

An EPR scheme would see government giving clear responsibilities to business, and ensuring that producers fund collection and reprocessing schemes to properly manage the waste from the products they sell in the Philippines. That would in turn incentivise producers to use more easily recyclable packaging, as the costs of managing this material would be lower. The goal need not be to try to ape the waste management systems of the West, which may not be suitable in the circumstances. And in the Philippines, where labour is cheap and informal waste management thrives, it may take little more than giving a small value to packaging products to greatly reduce the amount of material that escapes into the environment.

Conclusion

Although countries like the Philippines currently struggle most to cope with the consequences of plastic packaging waste, with the right set of policies and determined volunteers to help organise local action, there is scope for them to catch up and overhaul the West in developing solutions that really do reduce litter.

Note: The article has been republished with the permission of our collaborative partner Isonomia. The original version of the article can be found at this link

Recycling Outlook for Latin America

Latin America has one of the highest rates of urbanization in the world (80% urban population). By 2050, 90% of Latin America’s population will live in urban areas. This high rate of urbanization coupled with the global economic crisis has resulted in a waste management crisis. Municipalities find themselves unable to keep up with providing services and infrastructure to the urban populations.

Some cities in Latin America are facing this challenge by integrating the informal sector recyclers who are already active in their cities into the municipal solid waste management systems. In many cities, these “recicladores”, “cartoneros” or “catadores” (a few of the many names used for these workers in the region) are responsible for up to 90% of the recyclable waste recovered from the waste stream. Their work reduces municipal waste transportation costs, increases landfill lifetimes and supports the recycling chain throughout the region.

State of the Affairs

Every location presents its own challenges–there is no one-size-fits-all solution for integrated solid waste management systems–but relevant lessons can be drawn from both failed attempts and successful examples of informal sector integration in recycling systems in Latin America.

There are often two very different contexts within cities. In low-income neighborhoods waste collection services are often not provided and individuals and families accumulate and then sell their recyclables for additional income. In contrast, residents in high income neighborhoods do receive a waste collection service and their motivation for recycling is often related to greater levels of environmental awareness. It is important to consider these differences when designing waste management solutions.

Imported systems, and even locally derived systems based on examples from the Global North, generally focus on only one waste management scenario, making it difficult to manage the multiple competing scenarios in many cities in Latin America. There is often a bias towards the automation of waste management services, with the application of the high technology solutions used in the Global North. Regardless of the practicality or scientific evidence against certain high tech solutions, these are often sought after, thought to raise the bar of the city, to make it appear more sophisticated and modern. This leads to a misconception that working with informal sector is a step backwards in terms of urban development and modernization.

Conflicts between private waste management companies, the municipality and informal recyclers are common. The waste management companies do not want pickers on the landfill and wastepickers then go to the municipality for help. However, municipalities usually have very little experience to support the integration of formal and informal waste sectors. There are opportunities for new systems to emerge within this conflict. For example, during a similar conflict in Mexicali, Mundo Sustentable, with the help of Danone, intervened to help a private company work with the informal waste sector and improve recycling rates.

The Way Forward

In Latin America, there is a great opportunity to increase recycling rates by using labour-intensive solutions, which create jobs and support the development of a better urban environment in the cities. Municipal governments should be an integral part of these processes as they are usually responsible for solid waste management at local level. The key to catalyzing informal recycling sector integration will be the development and dissemination of successful examples.

Informal recyclers provide important a range of services to municipalities (such as waste collection and recovery in communities that would not otherwise have access to them), as well as cost savings (for example, the extension of landfill life and reduced transport costs), yet are rarely compensated for these benefits. Informal recyclers further form the foundation of an entire recycling supply chain, which ultimately benefits formal businesses, and often aliment entire local economies.

Challenges to Overcome

Municipal governments are often hesitant to work with informal actors, who are frequently seen as an unknown quantity. Yet often in the process of working and developing relations with informal recycler groups, their concerns diminish and they may actually exhibit enthusiasm. Likewise, the recyclers may gain in confidence and professionalism in their experience of formalization.

One major challenge facing efforts to integrate the informal sector in developing countries is the desire of some local governments to adopt technological solutions that appear more “modern.” In much of Latin America, however, low-cost, low-tech solutions tend to be more viable and sustainable.

The main difference between Latin America and the countries of the Global North is that solid waste management is a labor intensive system. It is made up of workers and hence has an important social component. The ILO estimated there is 24 million of people working in the global recycling supply chain, but those at the bottom of the pyramid, the wastepickers, make up 80%. They remain the lowest paid even though they make an enormous contribution to their cities.

It is important to understand that highly sophisticated, high technology systems are not required for effective resource recovery. In many cities in Latin America between 80-90% of everything that is recycled is recovered by the informal recycling sector.

Despite the fact that there is little or no public investment in waste management or recycling infrastructure, cities with an active informal sector reach twice the rate of fully formalized municipal solid waste management systems. As an example, the recycling rate is 60% in Cairo, while in Rotterdam (and other cities in the Global North) recycling levels only reach 30%, even with a high public investment in the system (UN Habitat, 2010).

When designing infrastructure and waste management systems we must consider not only the waste management and resource recovery needs but also the social side of the system. In order to be effective, efforts to upgrade waste management services should go hand in hand with efforts to formalise and integrate the informal sector.

Bogota – A Success Story

An example of a recent success story is that after 27 years of struggle, the waste pickers in Bogota, Colombia have managed to change the government’s outlook on their work and their existence. They are now included in the system and are paid per tonne of waste collected, just like any other private sector collection and waste management company would be. They have become recognized as public service providers, acknowledged for their contribution to the environment and public health of the city.

The key challenge is to be much more creative and understand that in order to improve the working conditions of waste pickers and in order to increase recycling rates, we don’t need high technology. We need a systemic approach and this can be very simple sometimes infrastructure as simple as a roof [on a sorting area] can be effective in improving working conditions.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Biomass Wastes to Energy for MENA

The high volatility in oil prices in the recent past and the resulting turbulence in energy markets has compelled many MENA countries, especially the non-oil producers, to look for alternate sources of energy, for both economic and environmental reasons. The significance of renewable energy has been increasing rapidly worldwide due to its potential to mitigate climate change, to foster sustainable development in poor communities, and augment energy security and supply.

The Middle East is well-poised for waste-to-energy development, with its rich feedstock base in the form of municipal solid wastes, crop residues and agro-industrial wastes. The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also accelerating the generation of a wide variety of waste. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita waste generation. The gross urban waste generation quantity from Arab countries is estimated at more than 80 million tons annually. Open dumping is the most prevalent mode of municipal solid waste disposal in most countries.

Waste-to-energy technologies hold the potential to create renewable energy from waste matter, including municipal solid waste, industrial waste, agricultural waste, and industrial byproducts. Besides recovery of substantial energy, these technologies can lead to a substantial reduction in the overall waste quantities requiring final disposal, which can be better managed for safe disposal in a controlled manner. Waste-to-energy systems can contribute substantially to GHG mitigation through both reductions of fossil carbon emissions and long-term storage of carbon in biomass wastes.

Modern waste-to-energy systems options offer significant, cost-effective and perpetual opportunities for greenhouse gas emission reductions. Additional benefits offered are employment creation in rural areas, reduction of a country’s dependency on imported energy carriers (and the related improvement of the balance of trade), better waste control, and potentially benign effects with regard to biodiversity, desertification, recreational value, etc. In summary, waste-to-energy can significantly contribute to sustainable development both in developed and less developed countries. Waste-to-energy is not only a solution to reduce the volume of waste that is and provide a supplemental energy source, but also yields a number of social benefits that cannot easily be quantified.

Biomass wastes can be efficiently converted into energy and fuels by biochemical and thermal conversion technologies, such as anaerobic digestion, gasification and pyrolysis. Waste-to-energy technologies hold the potential to create renewable energy from waste matter.  The implementation of waste-to-energy technologies as a method for safe disposal of solid and liquid biomass wastes, and as an attractive option to generate heat, power and fuels, can significantly reduce environmental impacts of wastes. In fact, energy recovery from MSW is rapidly gaining worldwide recognition as the fourth ‘R’ in sustainable waste management system – Reuse, Reduce, Recycle and Recover. A transition from conventional waste management system to one based on sustainable practices is necessary to address environmental concerns and to foster sustainable development in the region.

Obstacles in Implementation of Waste-to-Energy

The biggest obstacle to the implementation of Waste-to-Energy (or WTE) lies not in the technology itself but in the acceptance of citizens. Citizens who are environmentally minded but lack awareness of the current status of waste-to-energy bring up concerns of environmental justice and organize around this. They view WTE as ‘dumping’ of pollutants on lower strata of society and their emotional critique rooted in the hope for environmental justice tends to move democracy.

An advocate of public understanding of science, Shawn Lawrence Otto regrets that the facts are not able to hold the same sway. Some US liberal groups such as the Center for American Progress are beginning to realize that the times and science have changed. It will take more consensus on the science and the go ahead from environmental groups before the conversation moves forward, seemingly improbable but not without precedent.

Spittelau Waste-to-Energy Plant

The Spittelau waste-to-energy plant is an example of opposition coming together in consensus over WTE. It was built in Vienna in 1971 with the purpose of addressing district heating and waste management issues. Much later awareness of the risks of dioxins emitted by such plants grew and the people’s faith in the technology was called into question. It also became a political issue whereby opposition parties challenged the mayor on the suitability of the plant. The economic interests of landfill owners also lay in the shutting down of the WTE facility. The alternative was to retrofit the same plant with advanced technology that would remove the dioxins through Selective Catalytic Reduction (SCR).

Through public discussions it appeared that the majority of the people were against the plant altogether though thorough studies by informed researchers showed that the science backs WTE. The mayor, Helmut Zilk eventually consulted Green Party members on how to make this technology better perceived in the eyes of the people, and asked the famous Austrian artist Freidensreich Hundertwasser, who was a green party member to design the look of the plant. Freidensreich Hundertwasser after carefully studying the subject wrote a letter of support, stating his belief as to why WTE was needed and accepted Mayor Helmut Zilk’s request. Later public opinion polls showed that there were a majority of people who were either in favor of or not opinionated about the plant, with only 3% in outright opposition of the plant.

Polarized Discussion

Waste-to-Energy or recycling has kept public discourse from questioning whether there may not be intermediate or case specific solutions. This polarization serves to move the conversation nowhere. For now it can be agreed that landfills are devastating in their contribution to Climate Change and must be done away with. The choice then, of treatment processes for municipal solid waste are plentiful. If after recovery of recyclable materials there remains a sizeable waste stream the option of waste-to-energy can be explored.

Primary Considerations

  • Environmental implications (i.e. CO2 emissions vis-à-vis the next best fuel source) given the composition of the local waste stream. If the waste stream consists of a high percentage of recyclables the more sustainable waste strategy would be to ramp up recycling efforts rather than to adopt WTE,
  • Likely composition and variation of the waste stream and the feasibility of the technology to handle such a waste stream,
  • Financial considerations with regards to the revenue stream from the WTE facility and its long term viability,
  • Efforts at making citizens aware of the high standards achieved by this technology in order to secure their approval.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link