Circular Economy: Viewpoint of Plastic

Pieces of plastic have been trying to get our attention. The first scientific reports of plastic pollution in oceans were in the early 1970s. This waste plastic soaks up other pollutants at up to a million times the concentration in water, harming and killing sea life worldwide. From the point of view of the plastic, we have convincingly failed with solutions. Over the past 40 years the problem has grown around 100 times, with now over 8 million tonnes of plastic waste added to oceans per year.

plastic-bottle

Everyone is aware about ways for plastic to not become waste. We can set up redesign, sharing, refill, recycling and even composting. When it comes to creating practical possibilities for not making waste, people are super smart. But when it comes to making policy to install this practice throughout the economy, which has been the aim of circular economy for the past four decades, we’re consistently collectively stupid. I call this mob thinking.

We have intelligent activists, business people, experts and officials unintentionally thinking like a mob? always bringing forward the same decades old policy weapons. When these weapons don’t work there is a discussion about strategy but not any actual new strategy, just talk about how forcefully to use the same old policy weapons. This is how it’s been possible for waste management, waste regulation and the unsolved waste problem to all grow in tandem for so long.

If the piece of plastic had a voice in the circular economy debate what might it say? It would remind us to beware mob thinking. Today’s problems are solvable only by trying new thinking and new policy weapons. Precycling is an example. The piece of plastic doesn’t mind whether it’s part of a product that’s longlife or refilled or shared or refurbished or recycled or even composted (so long as it’s fully biodegradable). It doesn’t even mind being called ‘waste’ so long as it’s on its way to a new use. Action that ensures any of these is precycling.

Our piece of plastic does mind about ending up as ecosystem waste. It does not wish to join 5 trillion other pieces of plastic abandoned in the world’s oceans. It would be horrified to poison a fish or starve a sea bird. Equally it does not want to be perpetually entombed in a landfill dump or transformed into climate destabilising greenhouse gases by incineration.

The two possible outcomes for a piece of plastic, remaining as a resource or being dumped as ecological waste, are the same fates awaiting every product. Our economies and our futures depend on our ambition in arranging the right outcome. The old policy weapons of prescriptive targets and taxes, trying to force more of one waste management outcome or less of another, are largely obsolete. Circular economy can be fully and quickly implemented by policy to make markets financially responsible for the risk of products becoming ecological waste. Some ever hopeful pieces of plastic would be grateful if we would get on with doing this.

Reference: Governments Going Circular best practice case study of precycling premiums

Hiring a Waste Management Company Can Take the Guesswork out of Recycling

Whether talking about recycling for a home or business, this type of service is extremely important for the environment. Waste has a negative impact on the environment and can cause pollution of many kinds. Most companies that offer both garbage and recycling services are very organized, and consumers are expected to be equally organized in sorting their waste and separating it from recyclable items.

Because the process of figuring out what can be recycled, many individuals and business owners find it is much easier to simply hire a waste management company.

Below are some questions to consider when looking for recycling services and reasons why hiring a waste management company can take the guesswork out of recycling.

What Kind of Recycling Service is Required?

This can mean anything from home to office to hazardous waste to syringe collection services.  Some companies offer all types of recycling and provide the different bins necessary to mitigate these needs. It is important to contact the company and find out as much information that is needed to make an informed decision on how recycling is handled.

However, most companies will only offer a general list of items that can be recycled, including plastics, cardboards, glass, etc. This list will not be exhaustive, leaving many consumers to wonder what to do with items such as plastic bottle caps, milk cartons and the like. A waste management company will know the specific regulations for what can and cannot be recycled, eliminating the hassle for you.

What Can Be Recycled?

Bricks, wood, paper, metals, cardboard, plastics, concrete, and green waste can all be recycled.

  • Bricks – These are broken down and crushed in order to be made into new bricks.
  • Wood – Wood can be used again as building materials or can be processed into pulp or mulch. Recycling wood can limit the number of trees that are being cut down.
  • Paper – The process for this material mixes old paper with chemicals and water to break it down. It is then chopped, heated and broken down further into strands of cellulose.  This substance is then called slurry or pulp and is further recycled into new paper.
  • Metals – Recycling metals will not alter its properties, the most common metals recycled are steel and aluminum.
  • Cardboard – This uses a process that reuses thick sheets of multilayered papers (cardboard) that have been discarded.
  • Plastics – The recycling process for plastics recovers waste or scraps of plastic and reprocesses them into useful products.
  • Concrete – This type of recycling is becoming more common and uses a process of reuse of the rubble for new construction endeavors.
  • Green Waste – This can be anything from leaves to grass trimmings to flower cuttings that can be decomposed and then recycled. This will in turn produce what is called green waste.

There are a number of items that can be recycled, but it is important to note that not all recycling pickup services will be able to process all the items mentioned above. Certain materials, such as concrete or wood, must be disposed of at specific facilities.

plastic-wastes

Recycling has unending benefits

For the average homeowner, this can mean having to locate the specific facility and transport the recyclable materials to them. A waste management company will have the contacts in the industry to know where to take any type of recyclable item and can take care of the transportation for you.

What Recycling Techniques Are Used, and Are They Legal and Ethical?

  • Concretes and Aggregates – This process would involve using a crushing machine and combining the concrete with bricks, asphalt, dirt and rocks. The smaller pieces will be used as gravel, crushed concrete can all be used as dry aggregate, which in turn can be used to make new concrete that will be free of contaminates.
  • Batteries – This type of recycling can be very difficult; all batteries must be sorted into groups of similar kinds and require. Older batteries contain cadmium and mercury, which are very harmful and must be handled very carefully.
  • Biodegradable Waste – This type of waste can be made into reusable material via the process of biological decomposition. The two mechanisms that help this to occur are composting or converting it into soil improver and biogas. The latter uses anaerobic digestion where organic wastes are broken down by microorganisms in a biogas plant.

Again, a waste management company will be able to guarantee that your recycling ends up in the right processing facilities and to ensure that it does get processed according to government regulations and ethical means. When the wrong items end up in recycling, this can lead to an entire batch being thrown out. A waste management company will make sure that the recyclable items are properly sorted, helping to ensure that your efforts to recycle do not go to waste.

What Are the Benefits of Recycling?

There are many benefits to using a recycling service. For instance, recycling conserves energy, reduces greenhouse gases, reduces water and air pollution, and conserves natural resources by reusing recycled materials. Protecting the environment is one of the most important things a home or business can do. When an individual or business chooses to recycle all different kinds of waste, it makes the world a better, less toxic place to live.

Not only does recycling help protect the world, it also reduces the need for extraction such as mining, logging and quarrying. It also reduces the need for processing and refining of raw materials. All these processes can contain harmful, substantial amounts of water and air pollution. Recycling will save this energy while reducing the amount of greenhouse gas, which in turn helps to attack climate change.

Plastic Packaging Waste in the Philippines: An Analysis

I recently took a 5-month break from my work as an environmental consultant to volunteer with Marine Conservation Philippines (MCP) on the issue of marine litter. During the first few months of my stint there, we undertook an intense programme of beach cleans across sections of a small sample of local beaches. The idea was to find out what kinds of material were most prevalent, to inform the types of local initiative we could set up to try and tackle the issues. Consistently, the vast majority of the debris we found strewn across the beaches was plastic; a significant amount of that was soft plastics which can’t be recycled – plastic bags, sweet and crisp packets, and single use soap and detergent sachets. There were some variations, though: at one beach, we kept picking up a staggering amount of styrofoam.

During our beach clean work and engagement with local communities, it became increasingly apparent that part of the problem was the variability of waste management across the municipality of Zamboanguita, in the Negros Oriental province of the Philippines. Despite national legislation, some areas received no formal waste collections at all. With the help of the local Coastal Resources Manager, Tony Yocor, we began to engage with the local municipality’s Solid Waste Manager with the view to supporting appropriate an affordable waste management practices.

We focused on solutions that have been successful elsewhere in the Philippines and in other emerging markets, such as the local collection and waste sorting approach developed by Mother Earth Foundation. Unfortunately, as with most places in the world, influencing the authorities to act takes time, and whilst we started to make some progress, Tony and the staff at MCP are still working on trying to get the full range of local solutions we identified implemented.

Materials and markets

We did, however, build our own ‘MRF’ (more of a community recycling centre in UK terms) at MCP’s base to improve the management of the waste we collected. The main aim of the site is to allow as many recyclable materials as possible to be segregated so that they can be sold to the local junk shops. We also hope that this can act as a demonstration site for the types of simple solutions that can be set up locally to improve waste management.

But ultimately, if we are serious about tackling this issue of marine debris, we have to reduce the amount of litter we produce, and many countries are making progress on tackling commonly littered items. Restrictions on single use carrier bags are amongst the most prominent and widespread anti-littering measures around the world.

England’s 5p carrier bag levy was introduced in 2015 and, despite its limitations, is reducing bag usage and (it would seem) marine litter. Last year Kenya hit the headlines when it joined the growing list of countries adopting a rather stricter line: it banned plastic carrier bags entirely, with offenders risking heavy fines or even imprisonment.

Although bans and restrictions are becoming increasingly widespread, they have not yet reached the Philippines at a national level and it seems no coincidence that a large proportion of the items we found littered on our sample beaches around Zamboanguita were plastic bags. One beach, close to where the largest ‘ghetto’ market is held weekly, had a particularly high incidence of plastic bag litter, and the quantity increased noticeably on, and just after, market day.

Without national instruments in place, we explored what could be done with the policy powers available to the local government. Working with the local Markets Officer and Coastal Resources Manager we put the wheels in motion to propose and implement a local ordinance to introduce a charge on plastic bags, initially at the market as a trial, with the potential for a wider roll-out if successful. It’s a model that could be reapplied elsewhere in the Philippines if national legislation isn’t forthcoming.

Sachet and sea?

Plastic bags are a challenge, but because they’re distributed locally it’s relatively easy to change practices. Other forms of single use packaging contribute just as much to the litter problem afflicting many South East Asian counties, but are harder to tackle because their source is more remote.

The Philippines, like many developing and emerging economies, is a ‘sachet economy’, with a huge range of products sold in one-portion, single-use sachets. You see them everywhere, from small ‘sari sari’ stalls to large shopping centres. The producers’ perspective is that this form of packaging represents a form of social responsibility, allowing them to provide safe, long-lasting, affordable products that meet people’s needs. However, they have a wider cost.

Sachet society: one of the most common forms of litter in the Philippines. Photo courtesy of Amy Slack.

I was involved in Break Free from Plastic Negros Oriental’s December beach clean and audit, and these sachets were the most common item we found. They accounted for a massive 25% of the items picked up from Dumaguete beach, beating plastic bags into second place (13%). The waste management system in the Philippines simply isn’t geared up to dealing with this increasingly popular type of packaging – the composite materials of which they are made are impractical to recycle and so lack the economic value that engages the interest of the informal sector. So, what could be done to help?

The Best Foot Forward

There is no ‘silver bullet’ to instantly lay marine litter to rest. Even if there was a global ban on single use plastics today, it would take time for already littered material to blow or wash its way through the system. However, introducing a compulsory extended producer responsibility (EPR) mechanism into policy could help end the blame game that currently impedes action: producers blame the general public for littering, the general public blame the government for inadequate waste systems, and government blames produces for manufacturing plastic packaging.

An EPR scheme would see government giving clear responsibilities to business, and ensuring that producers fund collection and reprocessing schemes to properly manage the waste from the products they sell in the Philippines. That would in turn incentivise producers to use more easily recyclable packaging, as the costs of managing this material would be lower. The goal need not be to try to ape the waste management systems of the West, which may not be suitable in the circumstances. And in the Philippines, where labour is cheap and informal waste management thrives, it may take little more than giving a small value to packaging products to greatly reduce the amount of material that escapes into the environment.

Conclusion

Although countries like the Philippines currently struggle most to cope with the consequences of plastic packaging waste, with the right set of policies and determined volunteers to help organise local action, there is scope for them to catch up and overhaul the West in developing solutions that really do reduce litter.

Note: The article has been republished with the permission of our collaborative partner Isonomia. The original version of the article can be found at this link

Recycling Outlook for Latin America

Latin America has one of the highest rates of urbanization in the world (80% urban population). By 2050, 90% of Latin America’s population will live in urban areas. This high rate of urbanization coupled with the global economic crisis has resulted in a waste management crisis. Municipalities find themselves unable to keep up with providing services and infrastructure to the urban populations.

Some cities in Latin America are facing this challenge by integrating the informal sector recyclers who are already active in their cities into the municipal solid waste management systems. In many cities, these “recicladores”, “cartoneros” or “catadores” (a few of the many names used for these workers in the region) are responsible for up to 90% of the recyclable waste recovered from the waste stream. Their work reduces municipal waste transportation costs, increases landfill lifetimes and supports the recycling chain throughout the region.

State of the Affairs

Every location presents its own challenges–there is no one-size-fits-all solution for integrated solid waste management systems–but relevant lessons can be drawn from both failed attempts and successful examples of informal sector integration in recycling systems in Latin America.

There are often two very different contexts within cities. In low-income neighborhoods waste collection services are often not provided and individuals and families accumulate and then sell their recyclables for additional income. In contrast, residents in high income neighborhoods do receive a waste collection service and their motivation for recycling is often related to greater levels of environmental awareness. It is important to consider these differences when designing waste management solutions.

Imported systems, and even locally derived systems based on examples from the Global North, generally focus on only one waste management scenario, making it difficult to manage the multiple competing scenarios in many cities in Latin America. There is often a bias towards the automation of waste management services, with the application of the high technology solutions used in the Global North. Regardless of the practicality or scientific evidence against certain high tech solutions, these are often sought after, thought to raise the bar of the city, to make it appear more sophisticated and modern. This leads to a misconception that working with informal sector is a step backwards in terms of urban development and modernization.

Conflicts between private waste management companies, the municipality and informal recyclers are common. The waste management companies do not want pickers on the landfill and wastepickers then go to the municipality for help. However, municipalities usually have very little experience to support the integration of formal and informal waste sectors. There are opportunities for new systems to emerge within this conflict. For example, during a similar conflict in Mexicali, Mundo Sustentable, with the help of Danone, intervened to help a private company work with the informal waste sector and improve recycling rates.

The Way Forward

In Latin America, there is a great opportunity to increase recycling rates by using labour-intensive solutions, which create jobs and support the development of a better urban environment in the cities. Municipal governments should be an integral part of these processes as they are usually responsible for solid waste management at local level. The key to catalyzing informal recycling sector integration will be the development and dissemination of successful examples.

Informal recyclers provide important a range of services to municipalities (such as waste collection and recovery in communities that would not otherwise have access to them), as well as cost savings (for example, the extension of landfill life and reduced transport costs), yet are rarely compensated for these benefits. Informal recyclers further form the foundation of an entire recycling supply chain, which ultimately benefits formal businesses, and often aliment entire local economies.

Challenges to Overcome

Municipal governments are often hesitant to work with informal actors, who are frequently seen as an unknown quantity. Yet often in the process of working and developing relations with informal recycler groups, their concerns diminish and they may actually exhibit enthusiasm. Likewise, the recyclers may gain in confidence and professionalism in their experience of formalization.

One major challenge facing efforts to integrate the informal sector in developing countries is the desire of some local governments to adopt technological solutions that appear more “modern.” In much of Latin America, however, low-cost, low-tech solutions tend to be more viable and sustainable.

The main difference between Latin America and the countries of the Global North is that solid waste management is a labor intensive system. It is made up of workers and hence has an important social component. The ILO estimated there is 24 million of people working in the global recycling supply chain, but those at the bottom of the pyramid, the wastepickers, make up 80%. They remain the lowest paid even though they make an enormous contribution to their cities.

It is important to understand that highly sophisticated, high technology systems are not required for effective resource recovery. In many cities in Latin America between 80-90% of everything that is recycled is recovered by the informal recycling sector.

Despite the fact that there is little or no public investment in waste management or recycling infrastructure, cities with an active informal sector reach twice the rate of fully formalized municipal solid waste management systems. As an example, the recycling rate is 60% in Cairo, while in Rotterdam (and other cities in the Global North) recycling levels only reach 30%, even with a high public investment in the system (UN Habitat, 2010).

When designing infrastructure and waste management systems we must consider not only the waste management and resource recovery needs but also the social side of the system. In order to be effective, efforts to upgrade waste management services should go hand in hand with efforts to formalise and integrate the informal sector.

Bogota – A Success Story

An example of a recent success story is that after 27 years of struggle, the waste pickers in Bogota, Colombia have managed to change the government’s outlook on their work and their existence. They are now included in the system and are paid per tonne of waste collected, just like any other private sector collection and waste management company would be. They have become recognized as public service providers, acknowledged for their contribution to the environment and public health of the city.

The key challenge is to be much more creative and understand that in order to improve the working conditions of waste pickers and in order to increase recycling rates, we don’t need high technology. We need a systemic approach and this can be very simple sometimes infrastructure as simple as a roof [on a sorting area] can be effective in improving working conditions.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Biomass Wastes to Energy for MENA

The high volatility in oil prices in the recent past and the resulting turbulence in energy markets has compelled many MENA countries, especially the non-oil producers, to look for alternate sources of energy, for both economic and environmental reasons. The significance of renewable energy has been increasing rapidly worldwide due to its potential to mitigate climate change, to foster sustainable development in poor communities, and augment energy security and supply.

The Middle East is well-poised for waste-to-energy development, with its rich feedstock base in the form of municipal solid wastes, crop residues and agro-industrial wastes. The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also accelerating the generation of a wide variety of waste. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita waste generation. The gross urban waste generation quantity from Arab countries is estimated at more than 80 million tons annually. Open dumping is the most prevalent mode of municipal solid waste disposal in most countries.

Waste-to-energy technologies hold the potential to create renewable energy from waste matter, including municipal solid waste, industrial waste, agricultural waste, and industrial byproducts. Besides recovery of substantial energy, these technologies can lead to a substantial reduction in the overall waste quantities requiring final disposal, which can be better managed for safe disposal in a controlled manner. Waste-to-energy systems can contribute substantially to GHG mitigation through both reductions of fossil carbon emissions and long-term storage of carbon in biomass wastes.

Modern waste-to-energy systems options offer significant, cost-effective and perpetual opportunities for greenhouse gas emission reductions. Additional benefits offered are employment creation in rural areas, reduction of a country’s dependency on imported energy carriers (and the related improvement of the balance of trade), better waste control, and potentially benign effects with regard to biodiversity, desertification, recreational value, etc. In summary, waste-to-energy can significantly contribute to sustainable development both in developed and less developed countries. Waste-to-energy is not only a solution to reduce the volume of waste that is and provide a supplemental energy source, but also yields a number of social benefits that cannot easily be quantified.

Biomass wastes can be efficiently converted into energy and fuels by biochemical and thermal conversion technologies, such as anaerobic digestion, gasification and pyrolysis. Waste-to-energy technologies hold the potential to create renewable energy from waste matter.  The implementation of waste-to-energy technologies as a method for safe disposal of solid and liquid biomass wastes, and as an attractive option to generate heat, power and fuels, can significantly reduce environmental impacts of wastes. In fact, energy recovery from MSW is rapidly gaining worldwide recognition as the fourth ‘R’ in sustainable waste management system – Reuse, Reduce, Recycle and Recover. A transition from conventional waste management system to one based on sustainable practices is necessary to address environmental concerns and to foster sustainable development in the region.

Obstacles in Implementation of Waste-to-Energy

The biggest obstacle to the implementation of Waste-to-Energy (or WTE) lies not in the technology itself but in the acceptance of citizens. Citizens who are environmentally minded but lack awareness of the current status of waste-to-energy bring up concerns of environmental justice and organize around this. They view WTE as ‘dumping’ of pollutants on lower strata of society and their emotional critique rooted in the hope for environmental justice tends to move democracy.

An advocate of public understanding of science, Shawn Lawrence Otto regrets that the facts are not able to hold the same sway. Some US liberal groups such as the Center for American Progress are beginning to realize that the times and science have changed. It will take more consensus on the science and the go ahead from environmental groups before the conversation moves forward, seemingly improbable but not without precedent.

Spittelau Waste-to-Energy Plant

The Spittelau waste-to-energy plant is an example of opposition coming together in consensus over WTE. It was built in Vienna in 1971 with the purpose of addressing district heating and waste management issues. Much later awareness of the risks of dioxins emitted by such plants grew and the people’s faith in the technology was called into question. It also became a political issue whereby opposition parties challenged the mayor on the suitability of the plant. The economic interests of landfill owners also lay in the shutting down of the WTE facility. The alternative was to retrofit the same plant with advanced technology that would remove the dioxins through Selective Catalytic Reduction (SCR).

Through public discussions it appeared that the majority of the people were against the plant altogether though thorough studies by informed researchers showed that the science backs WTE. The mayor, Helmut Zilk eventually consulted Green Party members on how to make this technology better perceived in the eyes of the people, and asked the famous Austrian artist Freidensreich Hundertwasser, who was a green party member to design the look of the plant. Freidensreich Hundertwasser after carefully studying the subject wrote a letter of support, stating his belief as to why WTE was needed and accepted Mayor Helmut Zilk’s request. Later public opinion polls showed that there were a majority of people who were either in favor of or not opinionated about the plant, with only 3% in outright opposition of the plant.

Polarized Discussion

Waste-to-Energy or recycling has kept public discourse from questioning whether there may not be intermediate or case specific solutions. This polarization serves to move the conversation nowhere. For now it can be agreed that landfills are devastating in their contribution to Climate Change and must be done away with. The choice then, of treatment processes for municipal solid waste are plentiful. If after recovery of recyclable materials there remains a sizeable waste stream the option of waste-to-energy can be explored.

Primary Considerations

  • Environmental implications (i.e. CO2 emissions vis-à-vis the next best fuel source) given the composition of the local waste stream. If the waste stream consists of a high percentage of recyclables the more sustainable waste strategy would be to ramp up recycling efforts rather than to adopt WTE,
  • Likely composition and variation of the waste stream and the feasibility of the technology to handle such a waste stream,
  • Financial considerations with regards to the revenue stream from the WTE facility and its long term viability,
  • Efforts at making citizens aware of the high standards achieved by this technology in order to secure their approval.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Waste Management Scenario in Oman

Waste management is a challenging issue for the Sultanate of Oman due to high waste generation rates and scarcity of disposal sites. With population of almost 3 million inhabitants, the country produced about 1.6 million tons of solid waste in 2010. The per capita waste generation is more than 1.5 kg per day, among the highest worldwide.

Solid waste in Oman is characterized by very high percentage of recyclables, primarily paper (26%), plastics (12%), metals (11%) and glass (5%). However the country is yet to realize the recycling potential of its municipal waste stream. Most of the solid waste is sent to authorized and unauthorized dumpsites for disposal which is creating environment and health issues. There are several dumpsites which are located in the midst of residential areas or close to catchment areas of private and public drinking water bodies.

Solid waste management scenario in marked by lack of collection and disposal facilities. Solid waste, industrial waste, e-wastes etc are deposited in very large number of landfills scattered across the country. Oman has around 350 landfills/dumpsites which are managed by municipalities. In addition, there are numerous unauthorized dumpsites in Oman where all sorts of wastes are recklessly dumped.

Al Amerat landfill is the first engineered sanitary landfill in Oman which began its operations in early 2011. The landfill site, spread over an area of 9.6 hectares, consists of 5 cells with a total capacity of 10 million m3 of solid waste and spread over an area of over 9.6 hectares. Each cell has 16 shafts to take care of leachate (contaminated wastewater). All the shafts are interconnected, and will help in moving leachate to the leachate pump. The project is part of the government’s initiatives to tackle solid waste in a scientific and environment-friendly manner. Being the first of its kind, Al Amerat sanitary landfill is expected to be an example for the future solid waste management projects in the country.

Solid waste management is among the top priorities of Oman government which has chalked out a robust strategy to resolve waste management problem in the Sultanate. The country is striving to establish engineered landfills, waste transfer stations, recycling projects and waste-to-energy facilities in different parts of the country.  Modern solid waste management facilities are under planning in several wilayat, especially Muscat and Salalah. The new landfills will eventually pave the way for closure of authorized and unauthorized garbage dumps around the country. However investments totaling Omani Rial 2.5 billion are required to put this waste management strategy into place.

The state-owned Oman Environment Services Holding Company (OESHCO), which is responsible for waste management projects in Oman, has recently started the tendering process for eight important projects. OESHCO has invited tenders from specialised companies for an engineered landfill and material recovery facility in Barka, apart from advisory services for 29 transfer stations and a couple of tenders for waste management services in the upcoming Special Economic Zone (SEZ) in Duqm, among others. Among the top priorities is that development of Barka engineered landfill as the existing Barka waste disposal site, which serve entire wilayat and other neighbouring wilayats in south Batinah governorate, is plagued by environmental and public health issues.

Waste Management in Gaza

With population of approximately 1.75 million, waste management is one of the most serious challenges confronting the local authorities. The daily solid waste generation across Gaza is more than 1300 tons which is characterized by per capita waste generation of 0.35 to 1.0 kg. Scarcity of waste disposal sites coupled with huge increase in waste generation is leading to serious environmental and human health impacts on the population.

The severity of the crisis is a direct consequence of continuing blockade by Israeli Occupation Forces and lack of financial assistance from international donor. Israeli Occupation Forces deliberately destroyed most of the sewage infrastructure in the Gaza Strip, during 2008-2009 Gaza War inflicting heavy damage to sewage pipes, water tanks, wastewater treatment plants etc.

There are three landfills in Gaza Strip – one each in southern and central part of Gaza and one in Gaza governorate. In addition, there are numerous unregulated dumpsites scattered across rural and urban areas which are not fenced, lined or monitored. Around 52% of the MSW stream is made up of organic wastes.

Domestic, industrial and medical wastes are often dumped near cities and villages or burned and disposed of in unregulated disposal sites which cause soil, air and water pollution, leading to health hazards and ecological damage. The physical damage caused to Gaza’s infrastructure by repeated Israeli aggression has been a major deterred in putting forward a workable solid waste management strategy in the Strip.

The sewage disposal problem is assuming alarming proportions. The Gaza Strip’s sewage service networks cover most areas, except for Khan Yunis and its eastern villages where only 40% of the governorate is covered. There are only three sewage water treatment stations in Gaza Strip – in Beit Lahia, Gaza city and Rafah – which are unable to cope with the increasing population growth rate. The total quantity of produced sewage water is estimated at 45 million m3 per annum, in addition to 3000 cubic meters of raw sewage water discharged from Gaza Strip directly into the sea every day. Sewage water discharge points are concentrated on the beaches of Gaza city, Al Shate’ refugee camp and Deir El Balah.

The continuous discharge of highly contaminated sewage water from Gaza Strip in the Mediterranean shores is causing considerable damage to marine life in the area. The beaches of Gaza City are highly polluted by raw sewage. In addition, groundwater composition in Gaza Strip is marked by high salinity and nitrate content which may be attributed to unregulated disposal of solid and liquid wastes from domestic, industrial and agricultural sources. The prevalent waste management scenario demands immediate intervention of international donors, environmental agencies and regional governments in order to prevent the situation from assuming catastrophic proportions.

Optimizing Any Outdoor Venue for Maximum Recycling Potential

Concerts, outdoor festivals and other gatherings with large numbers of people can generate an immense amount of waste. Not only is this wasteful potentially off-putting and unsanitary, but it can cause damage to both the environment and the appeal of the venue.

Many event organizers and planners focus on maximizing the appeal of their events via marketing, big names and other elements designed to draw in crowds. However, any outdoor event in particular must take into account the challenges posed by waste management and recycling in order to ensure sanitary and environmentally-friendly conditions.

In order to maximize the recycling potential of any outdoor venue, the following actions should be considered by any planning team prior to the event.

Partner with Green Waste Removal Companies

One of the biggest ways any event organizer(s) can contribute toward energy efficiency and more environmentally-friendly outcomes is to procure the services of a green waste disposal service.

Anyone who has organized an outdoor event before – especially in an open space or other area where standard permanent facilities do not exist – understands the need for waste disposal. Companies such as Satellite Industries provide on-site portable restroom services that dispose of waste in efficient and environmentally-friendly ways.

Some companies even use this bio-waste to create clean energy from the output, helping to further minimize its impact on the environment.

Position Recycling Bins Ideally

Virtually every outdoor venue generates large amounts of waste. From bottles and cans to miscellaneous items that find their way onto the ground or in trash cans, it can be a mess. When planning any outdoor event, organizers will have full control over where the flow of traffic is and how/where people congregate.

With this knowledge available, event planners can take steps to ensure that recycling bins and containers are optimally positioned throughout the premises to capture the largest amount of waste possible. Depending on the event and its offerings, you may need separate containers for aluminum, plastic, paper and/or glass.

Ask for Help

Especially true when coordinating events for charities, local organizations and non-profits, a small volunteer force may be both obtainable and very useful in facilitating recycling. With the help of a few volunteers, a team can scour the venue during and after the event in order to retrieve recyclables from the receptacles. In addition, these volunteers can also help with any litter found on the grounds during the event, thereby minimizing the amount of clean-up time after the event has concluded.

Contact Local Recycling Centers

Your local recycling center, landfill or governmental body may have additional resources to provide in the pursuit of improving recycling at an event. Some cities have independent recycling agencies that offer free receptacles and pick-up for recycled goods. Others offer comprehensive guides on how to position recycling areas and maximize participation from event attendees. Even the federal government offers recycling resources to those who wish to improve waste outcomes.

Outdoor festivals, such as Glastonbury, generates a tremendous amount of waste.

Ultimately, this information and assistance can go a long way toward maximizing recycling at any event, as these entities will have plenty of expertise and experience in these areas. Such advice can help further improve environmentally-friendly outcomes and reduce the incidence of waste at any event.

The massive amount of potential waste generated during any outdoor event can be disruptive both to the event and the environment. Event organizers who want to maximize cleanliness and environmental friendliness can take steps to reduce the amount of discarded materials that end up in landfills and other centers. By working with local agencies, procuring volunteers, partnering with waste removal agencies and using recycling bins efficiently, the overall amount of waste at any outdoor event can be substantially reduced.

Waste Management in Sweden: Perspectives

Sweden is considered as a global leader in sustainable waste management and in the reduction of per capita carbon footprint. The country consistently works to lower its greenhouse gas emissions, improve energy efficiency and increase public awareness. Over the past 10 years, Sweden developed methods of repurposing waste, so less than one percent of the total waste generated in the country makes it to landfills. To accomplish this, the country changed their perspective of garbage.

Increase Recycling

Recycling is a part of Swedish culture. Residents regularly sort recyclable materials and food scraps from other waste in their homes before disposal. This streamlines the recycling process and reduces the effort required to sort large volumes of waste at larger recycling centers. As another way to promote recycling, the Swedish government created legislation stating recycling centers must be within 1,000 feet of residential areas. Conveniently located facilities encourage citizens to properly dispose of their waste.

Repurpose Materials

Citizens are also encouraged to reuse or repurpose materials before recycling or disposing of them. Repurposing and reusing products requires less energy when compared to the recycling or waste disposal process. As Swedes use more repurposed products, they reduce the volume of new products they consume which are created from fresh materials. In turn, the country preserves more of its resources.

Invest in Waste to Energy

Over 50 percent of the waste generated in Sweden is burned in waste-to-energy facilities. The energy produced by these facilities heats homes across the country during the long winter months. Localized heating — known as district heating — has improved air quality throughout the nation. It’s easier and more economical to control the emissions from several locations as opposed to multiple, smaller non-point sources.

Another benefit of waste-to-energy facilities is that ash and other byproducts of the burning process can be used for road construction materials. As a whole, Sweden doesn’t create enough waste to fuel its waste to energy plants — the country imports waste from its neighbors to keep its facilities going.

In the early 1990’s, the Swedish government shifted the responsibility for waste management from cities to the industries producing materials which would eventually turn to waste. To promote burning waste for energy, the government provides tax incentives to companies which make more economically attractive.

Impact of Waste-to-Energy

Although Sweden has eliminated the volume of trash entering landfills, they have increased their environmental impacts in other ways. Waste-to-energy facilities are relatively clean in that most harmful byproducts are filtered out before entering the environment, though they still release carbon-dioxide and water as their primary outputs. On average, waste-to-energy plants generate nearly 20 percent more carbon-dioxide when compared to coal plants.

 

waste-management-sweden

Coal plants burn and release carbon which is otherwise sequestered in the ground and unable to react with the earth’s atmosphere. Waste-to-energy facilities consume and release carbon from products made of organic materials, which naturally release their carbon over time. The downside to this process is that it frees the carbon from these materials at a much faster rate than it would be naturally.

The reliance on the waste-to-energy process to generate heat and the tax incentives may lower Swedish motivation to recycle and reuse materials. The country already needs to import trash to keep their waste-to-energy plants running regularly. Another disadvantage of this process is the removal and destruction of finite materials from the environment.

Even though Sweden continues to make strides in lowering their environmental impact as a whole, they should reevaluate their reliance on waste to energy facilities.