Bioplastics: Making an Informed Decision

bioplasticsPlastics are regarded by some as one of the greatest human inventions and continue to benefit society in more ways than one. However these benefits come at a high environmental cost as research has shown that “over 300 million metric tons of plastics are produced in the world annually and about 50% of this volume is for disposable applications, products that are discarded within a year of their purchase”.

About 50 percent of all plastics produced worldwide are disposed of within one year of being manufactured; now that is a critically important statistic when plastics have been known to have life spans over 500 years.  Infact, this is the main reason behind massive waste accumulation of plastics in landfills, drainage systems, water bodies etc. Moreover, plastic’s destruction is evident when in 2009, it was reported that an estimated 150 million tons of fossil fuels were consumed for the production of plastics worldwide.  Given all of these facts, it is no surprise that the pervasive use of non-biodegradable plastics has provoked many environmental and health concerns, especially in developing countries where plastic is often disposed of in unauthorized dumping sites or burned uncontrollably.

One result of this broadening awareness of the global plastic waste problem and its impact on the environment is the development of bioplastics.  Bioplastics are based on biomass derived from renewable resources and are in many cases more environmentally friendly than traditional petroleum based plastics. Currently, numerous types of bioplastics are under development, the most popular being “Polylactides, Polyglycolic acids, Polyhydroxyalkanoates (PHAs), aliphatic polyesters, polysaccharides”.

Basic Concepts and Misconceptions

Overall, in the Plastics Industry Trade Association’s 2012 Bioplastics Industry Overview Guide, it is stated that bioplastics that are both bio-based and biodegradable play an important role in further advancing the plastic industry as a whole.  Incredibly essential to note, is that within the above statement, it states, the importance of bioplastics that are both bio-based and biodegradable.  This statement implys that not all bioplastics are biodegradable and/or bio-based.  In fact, according to a 2011 industry report, there are many characteristics such as degradable, biodegradable, bio-based and compostable that are used to describe bioplastics. However, not every bioplastic is comprised of all of these features.  According to the report, this remains a common misconception as the public at large still lacks a clear understanding of the various bioplastic related terms.  For instance, it is commonly thought of that the terms bio-based and biodegradable are interchangeable. However not all bio-based plastics will degrade naturally. In fact, “many bio-based products are designed to behave like traditional petroleum-based plastic, and remain structurally intact for hundreds of years”.

The American Society for Testing and Materials (ASTM) defines biodegradable plastics as a plastic in which all the organic carbon can be converted into biomass, water, carbon dioxide, and/or methane via the action of naturally occurring microorganisms such as bacteria and fungi, in timeframes consistent with the ambient conditions of the disposal method (Compostable Plastics 101). This definition implies that there is a specific timeframe for the biodegradation to take place and merely fragmenting into smaller pieces, even if microscopic, does not make a material biodegradable.  This definition is commonly confused with the term degradable which is a broader term given to polymers or plastics that simply break down by a number or means, such as physical disintegration, chemical disintegration and biodegradation by natural mechanisms. After degradation, a degradable plastic can still remain in a smaller or fragmented form unlike that of a biodegradable plastic, which needs to completely biodegrade into water, carbon dioxide and/or methane. This distinction between terms results in polymers that are degradable but not biodegradable.

Another term that is commonly found to describe bioplastics is ‘compostable’. Compostable is defined by ASTM as “a plastic that undergoes biological degradation during composting to yield carbon dioxide, water, inorganic compounds, and biomass at a rate consistent with other known compostable materials and leaves no visually distinguishable or toxic residues”. While the ASTM has specific standards for a plastic to be compostable such as biodegradation, eco-toxicity, and disintegration, the main difference between a plastic being compostable versus biodegradable is the rapid rate at which biodegradation, eco-toxicity, and disintegration occur. Therefore, in theory, all compostable plastics are biodegradable however, not all biodegradable plastics are compostable.

Finally, probably the most often confused term regarding bioplastics is the label, “bio-based”.  As defined by the US Department of Agriculture, the term “bio-based” refers to solely the raw materials of the plastic. According to the Department of Agriculture, bio-based materials that are those that are “composed in whole, or in significant part, of biological products or renewable domestic agricultural materials or forestry materials”. Since the majority, not all, of the materials have to be renewable, many bio-based plastics combine both petroleum-based materials with naturally based ones. For this reason, some researchers have suggested that a bio-based material may not technically be a sustainable product. Therefore, while the two terms are somewhat related, whether or not a product is bio-based is not an independent indicator of whether it is biodegradable.

Making an Informed Decision

This lack of understanding between the terms is a large issue that does not get much recognition.  Consumers are increasingly buying more and more bioplastics but are not fully being educated on the differences between the various different types of bioplastics on the markets. While as a whole, bioplastics may have many notable attributes making them excellent alternatives to traditional plastics, they are not considered flawless solutions. Some bioplastics encompass all of the above qualities while others may only hold one or two of these characteristics; meaning that there is a vast disparity between how environment-friendly different bioplastics might actually be.

Consumers often see the term bioplastic or a bio-based plastic and automatically assume that it will breakdown into the soil like leaves or grass once it is disposed of, when as discussed, this is often not the case. All in all, given the significant differences between the terms, it is very important for consumers to know that “bio-based,” “biodegradable” and “compostable” are individual attributes and be educated on what these characteristics actually mean. It is equally important for manufacturers to be educated on these differences and make proper labeling of their bioplastic products.

References

Biobased and degradable plastics in California. Retrieved from  this link

California Organics Recycling Council. (2011). Compostable plastics 101. Retrieved from this link

Confused by the terms biodegradable & biobased. (n.d.). Retrieved from this link

Divya, G., Archana, T., & Manzano, R. A. (2013). Polyhydroxy alkanoates – A sustainable alternative to petro-based plastics. Petroleum & Environmental Biotechnology, 4(3), 1-8. http://dx.doi.org/10.4172/2157-7463.1000143

Liu, H-Y. (2009). Bioplastics poly(hydroxyalkanoate) production during industrial wastewater treatment. Retrieved from ProQuest Digital Dissertations. (AAT 3362495)

Niaounakis, M. (2013). Biopolymers: Reuse, recycling, and disposal. Waltham, MA: William Andrew Publishing.

North, E. J., & Halden, R. U. (2013). Plastics and environmental health: the road ahead. Reviews on Environmental Health, 28(1), 1-8. doi: 10.1515/reveh-2012-0030

The Society of the Plastics Industry, Inc. (2012, April). Bioplastics Industry Overview Guide. Retrieved from this link

United States Department of Agriculture. (2006). Federal biobased products preferred procurement program. Retrieved from this link

Solar Energy Prospects in Oman

Even the fleetest of glances at a map of worldwide solar energy levels shows Oman to be well placed to exploit the energy-giving rays of the sun. In fact, over the last few years, a gaggle of reports have been published extolling the virtues of exploiting this renewable energy source. However, with increasing and more urbanised populations consuming greater and greater amounts of energy, only now are governments across the Gulf and wider MENA regions seriously looking at harnessing solar power to help fill potential energy deficits.

Mr Jigar Shah, quoted in a recent article, said investors were “desperate to invest in the Middle East solar industry” and were waiting for clear instructions from the governments in the region. He said, “The economics of switching to solar energy are far better here than in South Africa, India, Brazil, China and the US. Now that the costs of developing solar technologies have significantly declined, it is time for the Middle East to turn talk into action.”

That there is huge potential in the solar industry was underlined in no uncertain terms by the announcement last year of a $2 billion project to develop solar energy power resources in Oman. The plans also envisage creating industrial plants for the manufacture of solar panels and aluminium frames, to be used by the power station and also for local consumption and export.

Knowledge and technology transfer were also critical contributors to the success of the project which also aimed to tie-up with major international technology companies and international universities with expertise in renewable energy education, to help train the local population in servicing this burgeoning industry.

David Heimhofer, Chairman of Terra Nex Group and Managing Director of Middle East Best Select Fund, said, “By attracting foreign direct investment in the growing renewable energy sector and using German expertise, Oman will become not just a regional leader in the field, but also benefit from the great intrinsic value within the complete value chain associated with this economic sector. He says“In addition to generating new jobs for the Omani people and boosting exports, this project creates an entire industry that Oman can be proud of.”

The project is expected to deliver more than 2000 jobs for Omanis across a diverse range of industrial sectors and services. In order to increase the skill set of the local population to help service these new jobs, the University of Zurich proposed the setting up of an educational institution in the Sultanate specialising in the field of renewable energy engineering.

Wastes Generation in Tanneries

Wastes originate from all stages of leather making, such as fine leather particles, residues from various chemical discharges and reagents from different waste liquors comprising of large pieces of leather cuttings, trimmings and gross shavings, fleshing residues, solid hair debris and remnants of paper bags.

Tanning refers to the process by which collagen fibers in a hide react with a chemical agent (tannin, alum or other chemicals). However, the term leather tanning also commonly refers to the entire leather-making process. Hides and skins have the ability to absorb tannic acid and other chemical substances that prevent them from decaying, make them resistant to wetting, and keep them supple and durable. The flesh side of the hide or skin is much thicker and softer. The three types of hides and skins most often used in leather manufacture are from cattle, sheep, and pigs.

Out of 1000 kg of raw hide, nearly 850 kg is generated as solid wastes in leather processing. Only 150 Kg of the raw material is converted in to leather. A typical tannery generate huge amount of waste:

  • Fleshing: 56-60%
  • Chrome shaving, chrome splits and buffing dust: 35-40%
  • Skin trimming: 5-7%
  • Hair: 2-5%

Over 80 per cent of the organic pollution load in BOD terms emanates from the beamhouse (pre-tanning); much of this comes from degraded hide/skin and hair matter. During the tanning process at least 300 kg of chemicals (lime, salt etc.) are added per ton of hides. Excess of non-used salts will appear in the wastewater.

Because of the changing pH, these compounds can precipitate and contribute to the amount of solid waste or suspended solids. Every tanning process step, with the exception of finishing operations, produces wastewater. An average of 35 m3 is produced per ton of raw hide. The wastewater is made up of high concentration of salts, chromium, ammonia, dye and solvent chemicals etc.

A large amount of waste generated by tanneries is discharged in natural water bodies directly or indirectly through two open drains without any treatment. The water in the low lying areas in developing countries, like India and Bangladesh, is polluted in such a degree that it has become unsuitable for public uses. In summer when the rate of decomposition of the waste is higher, serious air pollution is caused in residential areas by producing intolerable obnoxious odours.

Tannery wastewater and solid wastes often find their way into surface water, where toxins are carried downstream and contaminate water used for bathing, cooking, swimming, and irrigation. Chromium waste can also seep into the soil and contaminate groundwater systems that provide drinking water for nearby communities. In addition, contamination in water can build up in aquatic animals, which are a common source of food.

Dealing with Household Hazardous Wastes

household-hazardous-wastesHousehold Hazardous Waste (HHW) are leftover household products that contain corrosive, toxic, ignitable, or reactive ingredients such as paints, cleaners, oils, batteries, pesticides etc. HHW contain potentially hazardous ingredients and require special care and safe disposal. A typical home can contain a vast array of household hazardous wastes used for cleaning, painting, beautifying, lubricating and disinfecting the house, yard, workshop and garage. The chemical-based household products from a single home may seem insignificant; but, when millions of homes use similar products, handling, storing and disposing them improperly may have the combined impact and becomes a major problem.

The health and safety of our families, neighborhoods and environment is threatened when HHW is stored or disposed of improperly. These products should not be put in the garbage bins or disposed in the storm drains or burned, as they pose a threat to human health and the environment. Thousands of consumer products are hazardous. The general categories are:

  • Automotive products: Gasoline, motor oil, antifreeze, windshield wiper fluid, car wax and cleaners, lead-acid batteries, brake fluid, transmission fluid etc.
  • Home improvement products: Paint, varnish, stain, paint thinner, paint stripper, caulk, adhesives etc.
  • Pesticides: Insecticide and insect repellent, weed killer, rat and mouse poison, pet spray and dip, wood preservative etc.
  • Household cleaners: Furniture polish and wax, drain opener, oven cleaner, tub and tile cleaner, toilet bowl cleaner, spot remover, bleach, ammonia etc.
  • Other: Household batteries, cosmetics, pool chemicals, shoe polish, lighter fluid, prescription medicines etc.

Each year, thousands of people are injured by exposure or accident involving hazardous household products.  Because of the dangers they pose. These products require special awareness, handling, and disposal.  In order to protect health and environment, every consumer should know how to properly use, store, and dispose of hazardous household products. 

Many common household products contain hazardous chemicals.  Once released into the environment, these substances may pose a serious threat to living organisms.  Small quantities of hazardous substances can accumulate over time to reach dangerous levels and contaminate the air, water, and soil. 

Here are some basic guidelines for managing household hazardous wastes:

  • Select the least toxic item and buying only the minimum quantity as required.
  • Read the entire label carefully for health warnings and use good judgment when choosing any product.
  • Store the product at a safe place and away from the children reach.
  • Avoid aerosol products.
  • Always use hazardous products in a well-ventilated area.
  • Never leave containers open.  Many products are volatile, evaporating quickly into the air. 
  • Always seal containers tightly after use.
  • Never mix chemicals and hazardous products. 
  • Do not use spent chemical containers for other purposes.
  • Wear protective clothing such as gloves and a mask when dealing with any hazardous material. 
  • Wash clothing exposed to hazardous materials separately from other clothes.
  • Do not eat, drink or smoke while using hazardous products.
  • Clean up the place after using hazardous products. Carefully seal products and properly refasten all caps.
  • Never put hazardous products in food or beverage containers.
  • Keep products away from sources of heat, spark, flame or ignition.
  • Know where flammable materials are located in your home and how to extinguish them.
  • Keep a multi-purpose dry chemical fire extinguisher in your home.

Obstacles in Implementation of Waste-to-Energy

The biggest obstacle to the implementation of Waste-to-Energy (or WTE) lies not in the technology itself but in the acceptance of citizens. Citizens who are environmentally minded but lack awareness of the current status of waste-to-energy bring up concerns of environmental justice and organize around this. They view WTE as ‘dumping’ of pollutants on lower strata of society and their emotional critique rooted in the hope for environmental justice tends to move democracy.

An advocate of public understanding of science, Shawn Lawrence Otto regrets that the facts are not able to hold the same sway. Some US liberal groups such as the Center for American Progress are beginning to realize that the times and science have changed. It will take more consensus on the science and the go ahead from environmental groups before the conversation moves forward, seemingly improbable but not without precedent.

Spittelau Waste-to-Energy Plant

The Spittelau waste-to-energy plant is an example of opposition coming together in consensus over WTE. It was built in Vienna in 1971 with the purpose of addressing district heating and waste management issues. Much later awareness of the risks of dioxins emitted by such plants grew and the people’s faith in the technology was called into question. It also became a political issue whereby opposition parties challenged the mayor on the suitability of the plant. The economic interests of landfill owners also lay in the shutting down of the WTE facility. The alternative was to retrofit the same plant with advanced technology that would remove the dioxins through Selective Catalytic Reduction (SCR).

Through public discussions it appeared that the majority of the people were against the plant altogether though thorough studies by informed researchers showed that the science backs WTE. The mayor, Helmut Zilk eventually consulted Green Party members on how to make this technology better perceived in the eyes of the people, and asked the famous Austrian artist Freidensreich Hundertwasser, who was a green party member to design the look of the plant. Freidensreich Hundertwasser after carefully studying the subject wrote a letter of support, stating his belief as to why WTE was needed and accepted Mayor Helmut Zilk’s request. Later public opinion polls showed that there were a majority of people who were either in favor of or not opinionated about the plant, with only 3% in outright opposition of the plant.

Polarized Discussion

Waste-to-Energy or recycling has kept public discourse from questioning whether there may not be intermediate or case specific solutions. This polarization serves to move the conversation nowhere. For now it can be agreed that landfills are devastating in their contribution to Climate Change and must be done away with. The choice then, of treatment processes for municipal solid waste are plentiful. If after recovery of recyclable materials there remains a sizeable waste stream the option of waste-to-energy can be explored.

Primary Considerations

  • Environmental implications (i.e. CO2 emissions vis-à-vis the next best fuel source) given the composition of the local waste stream. If the waste stream consists of a high percentage of recyclables the more sustainable waste strategy would be to ramp up recycling efforts rather than to adopt WTE,
  • Likely composition and variation of the waste stream and the feasibility of the technology to handle such a waste stream,
  • Financial considerations with regards to the revenue stream from the WTE facility and its long term viability,
  • Efforts at making citizens aware of the high standards achieved by this technology in order to secure their approval.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Sustainable Environment in Singapore: An Attraction for Businesses and Investors

In addition to a robust economy, Singapore’s sustainable environment is another leading factor that has attracted numerous investors. Most cities in the world have failed to address environmental issues brought about by urbanization. Towns or urban areas cover over 2% of the Earth’s surface; they are responsible for about 80% of the greenhouse gases emitted while using up almost 75%  of nature’s resources.

However, a host of countries in Southeast Asia are leading the way to change this contrary notion about cities and urban regions. Research conducted by several world-leading environmental bodies and institutions determined that Singapore is indeed one of the most environmentally sustainable nations.

Singapore’s first prime minister kickstarted the dream of making Singapore a green city. His main agenda was to make Singapore stand out from the rest of the Asian countries and also attract investors from all over the world. The first step undertaken to achieve this dream was the eradication of the houseboats and overcrowded slums along the banks of Singapore River.

Incorporation services Singapore are offering entrepreneurs moving to Singapore a platform to incorporate their businesses in Singapore. This allows them to run their firms within the stipulated terms while also receive the government’s backing.

On the world’s Environmental Performance Ranking, Yale University and the U.N place Singapore at seventeenth globally and first position in Asia. Contrary to popular belief, Singapore’s efforts and strict green technology guidelines, which were set and backed up by the government, helped in making it an eco-friendly city.  

So how exactly does Singapore afford to provide suitable surroundings perfect for its citizens and also attract investors and entrepreneurs from overseas?

Government Support

As discussed before, adoption of green technology is one of the leading things that has made Singapore an eco-friendly city. Singapore has been able to morph into a modernized city-state without having a negative impact on nature.

The Singapore government’s Cleantech division, which is a subsidiary of the board tasked with economic growth, has offered continued support to companies in the clean technology business. This has led to the business sector growing tremendously in areas such as renewable energy, water conservation, green buildings, etc.

Growing ICT Center

Companies such as Hewlett Packard (HP) and International Business Machines Corporation have partnered with the Ministry of Environment and Water Resources. The main idea behind these partnerships is to ensure that Singapore’s ICT industry thrives. HP, for example, has been tasked with designing and manufacturing energy efficient systems that will cut power costs while still providing a working platform for businesses.

There is no shortage of green spaces in Singapore

Low Energy Costs and Environmental Remedies

Accommodating over 7000 companies from different nations across the globe is no mean feat. As such, Singapore’s government and other agencies know that a green environment is not the only requirement to attract more investors.

Through an alliance known as the Singapore Sustainability Alliance, an umbrella consisting of government groups, non-governmental organizations, and teaching institutions, Singapore has been able to come up with policies that create a sustainable environment. Other than this, the alliance has overseen the adoption of systems that include proper water use, renewable energy, energy efficiency, waste management, etc. which have significantly improved business growth.  

Waste Management in Qatar

Waste management is one of the most serious environmental challenges faced by the tiny Gulf nation of Qatar. mainly on account of high population growth rate, urbanization, industrial growth and economic expansion. The country has one of the highest per capita waste generation rates worldwide of 1.8 kg per day. Qatar produces more than 2.5 million tons of municipal solid waste each year. Solid waste stream is mainly comprised of organic materials (around 60 percent) while the rest of the waste steam is made up of recyclables like glass, paper, metals and plastics.

Municipalities are responsible for solid waste collection in Qatar both directly, using their own logistics, and indirectly through private sector contract. Waste collection and transport is carried out by a large fleet of trucks that collect MSW from thousands of collection points scattered across the country.

The predominant method of solid waste disposal is landfilling. The collected is discharged at various transfer stations from where it is sent to the landfill. There are three landfills in Qatar; Umm Al-Afai for bulky and domestic waste, Rawda Rashed for construction and demolition waste, and Al-Krana for sewage wastes. However, the method of waste disposal by landfill is not a practical solution for a country like Qatar where land availability is limited.

Solid Waste Management Strategy

According to Qatar National Development Strategy 2011-2016, the country will adopt a multi-faceted strategy to contain the levels of waste generated by households, commercial sites and industry – and to promote recycling initiatives. Qatar intends to adopt integrated waste hierarchy of prevention, reduction, reuse, recycling, energy recovery, and as a last option, landfill disposal.

A comprehensive solid waste management plan is being implemented which will coordinate responsibilities, activities and planning for managing wastes from households, industry and commercial establishments, and construction industry. The target is to recycle 38 percent of solid waste, up from the current 8 percent, and reduce domestic per capita waste generation.

Five waste transfer stations have been setup in South Doha, West Doha, Industrial Area, Dukhan and Al-Khor to reduce the quantity of waste going to Umm Al-Afai landfill. These transfer stations are equipped with material recovery facility for separating recyclables such as glass, paper, aluminium and plastic.

Domestic Solid Waste Management Centre

One of the most promising developments has been the creation of Domestic Solid Waste Management Centre (DSWMC) at Mesaieed. This centre is designed to maximize recovery of resources and energy from waste by installing state-of-the-art technologies for separation, pre-processing, mechanical and organic recycling, and waste-to-energy and composting technologies. At its full capacity, it will treat 1550 tons of waste per day, and is expected to generate enough power for in-house requirements, and supply a surplus of 34.4 MW to the national grid.

Future Outlook

While commendable steps are being undertaken to handle solid waste, the Government should also strive to enforce strict waste management legislation and create mass awareness about 4Rs of waste management viz. Reduce, Reuse, Recycle and Recovery. Legislations are necessary to ensure compliance, failure of which will attract a penalty with spot checks by the Government body entrusted with its implementation.

Improvement in curbside collection mechanism and establishment of material recovery facilities and recycling centres may also encourage public participation in waste management initiatives. When the Qatar National Development Strategy 2011-2016 was conceived, the solid waste management facility plant at Mesaieed was a laudable solution, but its capacity has been overwhelmed by the time the project was completed. Qatar needs a handful of such centers to tackle the burgeoning garbage disposal problem.

Ingredients of Environmental Sustainability

Global interest in environmental sustainability is on the rise. Businesses and individuals are making efforts to engage in more environmentally conscious practices, thanks in part to a growing worldwide population and dwindling natural resources. Ultimately, sustainability is the practice of finding long-lasting methods of maintaining our existing quality of life while still preserving the environment and natural resources.

Proponents must consider all aspects of environmental sustainability for it be successful. Additionally, eco-conscious thought must be applied to multiple professions to achieve deep-rooted results. Here are three ingredients to ensure the continued success of environmental sustainability.

Economic Incentives

Everyone knows change can be difficult. Making the shift toward more eco-friendly practices is no different. One way to initiate this change is through financial incentives. Money is an essential factor for families and companies. If sustainable options and practices are too expensive the majority of the population can’t afford to implement them, the environmentally-conscious movement will come grinding to a halt.

Environmentally-friendly technology often carries higher upfront costs but pays off through long-term benefits, both to the environment and to individuals. Additionally, companies that invest in environmentally conscious technology can potentially market to a broader range of consumers with similar interests and values.

When considering options to follow more sustainable practices, consumers need to set specific goals they would like to achieve and define their plan of action. This will also help maintain perspective and keep the focus on the long-term incentives, which will keep everyone motivated to continue down the road to sustainability.

Environmental Protection

Another key factor in environmental sustainability is protecting and preserving the environment. Part of this practice includes sustainable use and management procedures. While specific materials may be renewable over time, overuse can deplete these resources and lead to shortages. Industry professionals must give careful consideration to planning how, when and in what quantity resources will be used.

Surprisingly, several sustainable methods exist to renew depleted environmental resources in a fast and environmentally conscious manner. Agricultural practices often strip fields of necessary minerals and nutrients while leaving behind harmful inorganic residuals from fertilizers.

Naturally occurring microorganisms will eventually restore the soil’s nutrients and neutralize noxious compounds, though this process takes a long time. Bioremediation can expedite this process. Industry professionals can introduce higher numbers of the naturally occurring microbes and then create their optimal living conditions by varying the amount of water and food they have available.

Once the harmful pollutants are neutralized, farmers can resume planting operations. In addition to bioremediation, sustainable agricultural practices include rotating crops and using cover crops. Rotating crops and using cover crops can help reduce the occurrence of weeds and the impact of pests. In turn, farmers can use less fertilizer and maintain soil health for more extended periods.

Fostering interest in sustainability at a young age will encourage future leaders

Education

Without proper education, the general public won’t understand the importance of sustainability. This may lead to a decreased demand for sustainable products and procedures, which will foster growth in non-sustainable markets and practices. Future generations will then be left with the task of preserving and repairing the environment.

Fostering interest in sustainability at a young age will encourage future leaders to create innovative solutions to meet the current demands of society through unconventional and eco-conscious means. The future youth will also need the proper educational background to develop the tools they need to cultivate these solutions.

Environmental education also helps adults understand the impact their choices have on themselves and society. Uneducated adults may not recognize their choices to pollute or use toxic chemicals are degrading the local water supply for their neighbors or are harmful to their health. Once they understand the full weight of their decisions, they will be able to make the most informed choices.

With proper management and forethought, environmental sustainability can be fully achievable in our society today.

A New Form of Ecotourism in Cyprus

Ecotourism has gained popularity as different states seek sustainability. It was one of the millennial goals at the global level, and many states have invested money and ideas into the project. Cyprus has not been left behind and has done a lot to promote a new form of ecotourism in the country. If you are planning to obtain a Cyprus immigration with One Visa, their agents definitely mention a few things about ecotourism in Cyprus. Now that you are reading this publication, you have come to the right place to get insights on a new form of ecotourism.

Guided Walks

Cyprus has a plethora of trained guides to lead you on nature walks. You can easily choose the destination from a list of many depending on what you want to view and experience. Some are best suited for the family while others are suited for explorers. For walks and expeditions in the forest and on the beaches, the guides will explain all the regulations that seek to protect the habitat by leaving it as natural as possible. Unfortunately, Cyprus’s government does not allow collection of souvenirs and artifacts.

Cyprus Village Tours

Cyprus still has people living in villages in rural areas. However, the villages are becoming smaller by the day, and the government is encouraging their growth. This is one way to preserve the original culture of the Cypriot people. The number of people who can take bus tours to the villages is highly regulated. If you would like to visit these villages, make sure that you book well in advance and follow the given regulations.

Marine Tours

Cyprus is an island and has breathtaking and clean beaches. The marine department is obsessed with maintaining the original form of both the beaches and the marine life. However, this does not mean that people cannot go to visit the marine life. The country offers guided tours to the beach, shallow sea and deep sea. Some of the best scenery can be found at the untouched shipwrecks and with the marine life that dwells in and around the shipwrecks. The diving tours are guided and regulated by the government to make sure that the untouched environment is maintained.

A breath-taking natural attraction in Cyprus

Preserving the Historic Sites

Any tour in Cyprus cannot be complete without touring the historic and cultural ruins. However, have you ever wondered how these sites still exist or why they get recognized all over the world? It has taken great efforts to protect them and let nature take its course. Even though Cyprus has modern architectural buildings, none has interfered with these cultural and historic sites. They spread all over the island and carry a rich history for all people to enjoy.

Conclusion

Finally, it is worth mentioning that Cyprus has zoos and modern parks that protect indigenous plants and animals. The public is allowed to visit under certain regulations. The government strives to preserve the country’s tourist attractions through the employment of ecotourism strategies. If you visit the country as a tourist or an expat, remember to check the regulations that govern ecotourism.

Towards Sustainable Pharmaceutical Management

The pharmaceutical industry has a substantial impact on the environment, especially when the materials used to make them and the chemicals that comprise make their way directly into the environment. The pharmaceutical industry at large as well as average consumer can take steps to make of use of medicine more sustainable through both significant and relatively minor changes.

Medicines and the Environment

The drugs that we consume naturally enter our environment as our body turns them to waste. This issue becomes exacerbated when people intentionally dispose of unused medicine by flushing it down the drain.

Although our water treatment systems are designed to take contaminants out of our wastewater before we re-introduce to the natural environment, some still get through. These contaminants, which include those in medications, can damage the ecosystems they end up in.

High levels of estrogen in waters due to birth control, for example, can hamper the ability of fish to reproduce, reducing their population size. Once those chemicals find their way into the water, they enter the food chain and eventually impact animals that live on land too, including humans.

Plants will absorb the chemicals from medications. Animals then eat these plants or drink the water and ingest the contaminants. Humans might drink the water or eat the plants or animals, making pollution from pharmaceuticals a human health hazard as well. This problem becomes worse in the summer when livestock such as cattle require two to three times as much water as they do during other times of the year.

Proper Disposal of Medicines

If you have unused medications that you need to get rid of, don’t flush them down the drain or throw them straight into the trash. The U.S. Food and Drug Administration (FDA) recommends one of several other options for the safe and sustainable disposal of medicines.

Some communities have drug take-back programs that the Drug Enforcement Administration (DEA) approves. Some pharmacies also allow you to mail in or dispose of unused medications at kiosks. The DEA also organizes a national drug take-back day.

Although certain medications have recommendations on the label to flush them, you can dispose of the majority of them in your regular trash at home. The FDA recommends mixing them with something unpalatable such as dirt, kitty litter or coffee grounds in a plastic bag that you can seal. This disguises the drugs and prevents pets from getting into them. You can then throw the bag away.

If you are a throwing away a prescription medication container, be sure to scratch out all potentially identifying information to protect your privacy and identity.

Using Medicines More Sustainably

Another option for reducing the impact your use of medicine has on the environment is to use less of it or use more environmentally friendly medications.

To use less medicine, only use it when you truly need it and try substituting natural remedies for pharmaceuticals. Reach for naturally derived treatments such as essential oils, vitamins, herbs or a cup of hot tea. Always consult with your doctor before changing your medication regimen.

As a long-term strategy, regular exercise and a healthy diet can do wonders in improving your overall health and decreasing your need to take medicines.

Sustainability from the Industry’s Perspective

Of course, making the pharmaceutical industry more sustainable isn’t the sole responsibility of the consumer. The industry can also change its practices to manage pharmaceuticals in a more environmentally friendly fashion.

One aspect of this involves energy use. The manufacturing and transportation of medications can be extremely energy-intensive. By using energy more efficiently and using cleaner energy, drug companies can reduce their environmental impact.

Pharmaceutical industry can change its practices to manage pharmaceuticals in a more ecofriendly manner.

These corporations can also make an effort to include more eco-friendly substances in their medications. While they may not be able to remove every non-natural chemical from their products, they can offer greener alternatives to consume and look into reducing the presence of damaging substances as much as possible.

This applies not only to the organizations closest to the consumers but to the entire supply chain.

Medications are often vital to our health, but it can also have a negative impact on the health of our environment. Taking steps to manage pharmaceuticals more sustainably can enable us to protect our own well-being as well as that of our environment.