Plastic Wastes and its Management

Plastic seems all pervasive and unavoidable. Since the 1960s our use of plastic has increased dramatically, and subsequently, the portion of our garbage that is made up of plastic has also increased from 1% of the total municipal solid waste stream (household garbage) to approximately 13% (US Environmental Protection Agency). Plastic products range from things like containers and packaging (soft drink bottles, lids, shampoo bottles) to durable goods (think appliances, furniture and cars) and non-durable goods including things from a plastic party tray to medical devices. Sometimes marked with a number and a chasing arrow, there is an illusion that all plastics are recyclable, and therefore recycled. But there are a number of problems with this assumption.

While use and consumption of plastic is increasingly high, doubts about viable options for reuse, recycling and disposal are also on the rise. Complications such as the increasing number of additives used alter the strength, texture, flexibility, colour, resistance to microbes, and other characteristics of plastics, make plastics less recyclable. Additionally, there is very little market value in some plastics, leading municipalities to landfill or incinerate plastics as waste. Based on figures from the EPA (2011 data) only 8% of plastic materials are recovered through recycling.

Another major concern about plastics in the waste stream is their longevity and whether or not they are truly biodegrade. It is estimated that most plastics would take 500-1000 years to break down into organic components. Because of this longevity and the low rate of recycling, much of our plastic waste ends up in landfills or as litter. Some of this plastic waste makes its way via rivers and wind to the ocean. Garbage barges, and the trans-continental transport of recyclable materials also lead to an increasing amount of plastics in our oceans and waterways.

Plastic waste directly and indirectly affects living organisms throughout the ecosystem, including an increasingly high impact on marine life at a macro and micro scale. According to United Nations, almost 80% of marine debris is plastic. Policy enforcement remains weak, global manufacture of plastics continues to increase, and the quantity of plastic debris in the oceans, as well as on land, is likely to increase.

With limited sustainable recovery of plastics, there is a growing global movement to reduce the generation of plastic. Certain types of plastic may be ’safer‘ for the environment than others, however, there are troubling issues associated with all of them, leading to the conclusion that action is needed to remove plastic waste, and stricter controls are required to limit new sources of plastic pollution. Efforts such as light weighting of packaging and shifts to compostable plastics are options. Policies limiting the use of plastics such as bottle bills and bag bans are other ways to decrease the production and consumption of plastics.

Mining the debris fields in our oceans and turning plastic waste into usable materials, from socks made of fishing line to fuel made from a variety of plastic debris, is one way to mitigate the current situation.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Challenges in Hazardous Medical Waste Management

medical-waste-managementMedical waste management is a concern of healthcare facilities all over the world; about 10-20% of the facility’s budget every year is spent on waste disposal. According to the WHO, about 85% of the total amount of generated waste is non hazardous but the remaining 15% is considered infectious, toxic or radioactive. While non-hazardous medical waste poses less problems, the risks and challenges of hazardous medical waste management must be considered carefully, since incineration or open burning of hazardous medical waste can result in emissions of dangerous pollutants such as dioxins and furans.

For this reason, measures must be taken to ensure safe disposal of hazardous medical waste waste in order to prevent negative impact on the environment or biological hazards, especially in developing countries.

Health Risks

Biologically hazardous waste can be a source of infection due to the harmful microorganisms it contains; the most exposed are hospital patients, hospital staff, health workers. However, the situation is potentially harmful for the general public as well. The risks include chemical burns, air pollution, radiation burns and toxic exposure to harmful pharmaceutical products and substances, such as mercury or dioxins, especially during the process of waste incineration.

Other risks can also derive from the incorrect disposal of needles and syringes; worldwide, it is estimated that, every year, about 16 billion infections are administered. Unfortunately, not all needles are safely eliminated, creating risk of infection but also the possibility of unintentional reuse. Even though this risk has decreased in recent years, unsafe infections are still responsible for many new cases of HIV, hepatitis B and hepatitis C.

Environmental Impacts

Incorrect disposal of untreated healthcare waste can contaminate drinking and ground water in landfill, and also release dangerous chemical substances in the environment. Deficient waste incineration can also release hazardous pollutants in the air, and generate dioxins and furans, substances which have been linked to cancer and other adverse health conditions. Heavy metals, if incinerated, can lead to the diffusion of toxic metals in the environment.

The Way Forward

There is still a long way to go in order to ensure safe disposal of hazardous healthcare waste. A joint WHO/UNICEF assessment conducted in 2015 found that only 58% of analyzed facilities over 24 countries had appropriate medical waste disposal systems in place.

Strategies to improve healthcare waste segregation is an essential step in medical waste management

In the workplace, it is important to raise awareness and promote self-practices. Training in the areas of infection control and clinical waste management is important in order to maintain a clean, safe environment for patients and staff alike. Specialized industrial cleaning can also be effective in reducing risk of infection.

It is also essential to develop safe methods and technologies of treating hazardous medical waste, as opposed to waste incineration, which has already been shown to be ineffective and dangerous. Alternatives to incineration, such as microwaving or autoclaving, greatly reduce the release of hazardous emissions.

Finally, developing global strategies and systems to improve healthcare waste segregation is another essential step; since only about 15% of clinical waste is hazardous, treatment and disposal costs could be reduced significantly with proper segregation practices. Furthermore, these practices also reduce risks of infections for those workers who handle clinical waste.

Pet Waste Management in UK – Prospects and Challenges

pet-wastesPet waste is a growing public health and environmental risk. According to a report commissioned by the Pet Food Manufacturers’ Association, 13 million UK households (45%) keep pets of some kind.  Cats and dogs are each kept by 8.5 million households (these numbers are not additive, as some will of course keep both).

Can those of us who want both the joys of animal companionship and waste minimisation, find ways to cut down, or better manage, the huge amount of pet waste generated in the UK every year? With so many cats and dogs in the UK, pet waste must represent a significant mass of organic matter within the residual waste stream.

Does this waste represent a floater in the residual waste stream by necessity—due to inherently unpleasant and possibly dangerous characteristics of the waste—or is it only there out of convention and squeamishness?

I’ve written before about the relationship between waste management and squeamishness, and talking about faeces really brings the point home. There are some undoubtedly nasty pathogens present in pet faeces, notably the parasites Toxocariasis and Toxoplasmosis. But might these be safely killed off by the temperatures reached in anaerobic digestion (AD). If so, provided any litter and bags were made of organic matter, might pet waste be collected along with food waste?

I began by contacting a local authority waste officer, but was told that no one had asked this question before, and that I might be better off talking to AD plant operators. This I did, but most seemed similarly baffled by my query.  However, one mentioned that AD digestate goes through a pasteurisation process, where it is heated to a temperature of 70oC for one hour, in order to make it safe for land application. I also attempted to contact some technical specialists in the field, but to no avail.

There are some theoretical indications that this pasteurisation should be sufficient. Hanna Mizgajska-Wiktor and Shoji Uga’s  essay Exposure and Environmental Contamination states: “Anaerobic waste treatment kills Toxocara spp. eggs at temperatures in excess of 45oC”, well below the 70oC mentioned by my operator. The susceptibility of Toxoplasma to heat is less clear, although numerous internet sources suggest this can be killed in meat by cooking at 66oC. So far, then, I haven’t confirmed or falsified my initial inkling, and so the collection of pet waste in the municipal organic stream remains a theoretical possibility.

Motivated dog owners  can already turn their pet’s waste into a resource within their own home. The website London Worms explains how you can turn your dog’s poo into rich and useful vermicompost, although it warns that the results will only be suitable for use on non-edible plants.

Foul Pay

Household pet droppings may still be largely fated for disposal, but even when binned this waste is at least moving through proper waste management channels.  Unfortunately, not all pet poo is binned, and we have real data measuring public perceptions of the disamenity resulting from dog fouling. For most, the presence of this unwelcome waste in our streets, parks and footpaths is of much higher concern than its diversion from landfill.

A 2011 Defra-funded study on local residents’ willingness-to-pay — via an increase in council tax — for improvements across a range of environmental factors found that dog fouling was the third most important issue out of the presented range (with litter and fly-tipping taking first and second place). Surveys were conducted in inner-city, suburban and rural/semi-rural areas around London, Manchester and Coventry.

In order to move from the current level of dog fouling to the best possible scenario, it was found that inner-city residents would on average be willing to pay £8.87 per month, suburban residents £7.79 per month, and rural residents £2.72. Combining these figures with population statistics allows us to place a disamenity value on dog fouling. National statistics only allow for an urban-rural split, but based on a 2012 Defra rurality study which found that 18.9% of the population lives in rural areas, we can calculate that across England we would collectively be willing to pay £462m per year to achieve best case scenario improvements in dog fouling.

This somewhat crude calculation gives an indication of the perceived disamenity of dog fouling. Presenting the matter in terms such as these may allow economically minded policy makers a means of engaging with this important street scene issue and evaluating the costs and benefits of interventions.

Food for Thought

Let’s wash our hands of poo (with plenty of soap and warm water) and look to the other end of the pet waste problem. According to a report published by WRAP, the UK uses around 75,000 tonnes of primary packaging annually. This holds 1,263,000 tonnes of wet and dry cat and dog food, of which 9,000 uneaten tonnes are thrown away. Although this wasted food constitutes less than 1% of the total sold (if only we were as careful with food for human consumption) the estimated cost to the consumer is still £21m a year.

WRAP examined a number of designs intended to cut to down on the amounts of both pet food and packaging thrown away. A major problem with packaging design is the need to account for portion sizes, which vary from animal to animal and change depending on age and level of activity. Single serve packaging may actually lead to regular food wastage if the portion provided is too big for a particular pet; indeed, this is a problem I am experiencing with my own cat, whose appetite seems to fluctuate wildly. Re-sealable packaging that allows owners to dish out meals in accordance with the changing appetites of their pets is therefore preferable.

The material that packaging is made of is also significant: for example, relatively heavy tins are recyclable, whereas lightweight plasticised plastic foil packets are not. Pet food and its packaging can be pushed up the waste hierarchy by simply choosing a recyclable and resealable container which will allow them to adequately provide for the appetite of their pet. However, these issues are likely to be given less weight compared with health, convenience and cost in the minds of most householders. The onus has to be on manufacturers to develop packaging which is both low cost and easily recyclable.

Love pets, hate waste?

People love animals, but are rather less keen to engage with pets as an environmental issue. Leaving aside questions of whether it is sustainable for so many of us to have pets at all, there are clearly ways in which we can reduce their impact. The convenience of single serving pouches of pet food seems to win out over more recyclable and waste-avoiding alternatives, although pet owners might be willing to change their choices if presented with a better option.

While worrying about recovery options for cat poo might seem somewhat academic, it may be easier to tackle than dog fouling. It might even help to tackle the common psycho-social root of both issues. Cultural distaste perhaps lies behind the lack of information available on dealing with household pet waste, and the persistence of dog fouling as a street scene issue. Things were very different in Victorian London when “pure finders” earned a living by seeking out doggie doo to supply the tanning trade. But for us this kind of waste is a disagreeable fact of life which we deal with as simply and with as little thought as possible. But as a nation of animal lovers, it’s our responsibility to engage with the waste management issues our pets present.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be viewed at this link

Waste Management Progress in Nigeria’s Delta State

waste-nigeriaWaste management is a serious problem in Nigeria, and Delta State is no exception. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern, and you often see people disposing of their household waste in the streets at night. Once the waste gets out into the streets, it’s perceived as the duty of the government to handle it.

However, I have never yet heard of any Nigerian politician making waste management a feature of his or her manifesto during the election campaign process. Having said that, a few of Nigeria’s political leaders deserve to be commended for coming to terms with the fact that waste has to be managed properly, even if such issues were far from their minds when they entered political office.

Legislation and Framework

Nigeria does have a waste legislation framework in place. Its focus has been on the most toxic and hazardous waste: partly in response to some major pollution incidents in the 1980s, the government took powers in relation to Hazardous Waste in 1988. In the same year, the Federal Environmental Protection Agency was established – and was subsequently strengthened by the addition of an inspectorate and enforcement department arm in 1991, with divisions for standard regulation, chemical tracking and compliance monitoring. These laws have since given rise to regulations and guidelines pertaining to environmental and waste management issues.

Under our laws, waste management in each state is the duty of the local governments that fall within it, but few are taking an active approach to implementing and enforcing the sensible measures that the regulations require. A small number of states have taken over this task from local government, and Delta State’s decision to do this has led to significant new investment in waste management.

One of the fruits of that investment is the Delta State Integrated Waste Management Facility at Asaba for treating both household and clinical waste generated locally. It was developed when the Delta State government decided to put an end to the non-sustainable dumping of waste in Asaba, the state capital.

Integrated Waste Management Facility at Asaba

It is described as an integrated waste management facility because it includes a composting department, a recycling department and a (non-WTE) incineration department. Trucks carrying waste are weighed in as they come into the facility. From the weigh bridge, they move to the relevant reception bay – there are separate ones for household and clinical wastes – to tip their load, and are then weighed again on the way out.

Medical waste is taken directly for incineration, but household wastes are sent along conveyors for sorting. Recyclables and compostable materials are, so far as possible, separated both from other waste and from one another. Each recyclable stream ends up in a chamber where it can be prepared for sale. The compostable materials are moved to the composting section, which uses aerated static pile composting.

The remaining waste is conveyed into the three incinerators – moving grate, rotary kiln and fixed end– for combustion. The resulting ash is recycled by mixing it with cement and sharp sand and moulding it into interlocking tiles. The stacks of the three incinerators are fitted with smoke cleaning systems to reduce emissions. The process produces wastewater, which is channelled to a pit where it is treated and reused. Overall, 30% of the waste is composted, 15% recycled and 55% incinerated.

There are many examples of sophisticated waste infrastructure being built in developing countries, but failing because the necessary collection systems were not in place to support them. To ensure that this problem is avoided at Asaba, the Delta State government is working with a group known as the Private Sector Participants (PSP).

Each member of this group has trucks assigned to them and has been directed to collect household waste from different parts of the city, for delivery to the facility for treatment. The arrangements made by each PSP are different: some collect from outside individual properties, and some from communal sites; most collect waste that is found in the streets; and while each is subsidised by the state, households also have to pay towards the cost.

Before the Asaba facility was developed, most of the wastes generated in Asaba were disposed of at a dumpsite just adjacent to the Delta State Airport. This created a pungent odour, as well as visual disamenity for people nearby. A great deal of remediation work is now taking place at the dumpsite, which is vastly improving the local environmental quality.

War on Waste

Of course, although this is an improvement there remains more to do. First on the list is education. People do not know how sustainable waste management can impact positively in their lives, reducing their exposure to toxins as well as improving their surroundings. Nor do they understand that recycling a beverage can or a plastic bottle will cost less than producing one from virgin materials and will have a lesser environmental impact. There remains a good deal of cultural change and environmental education that is needed before people will stop throwing waste and litter on the streets – but there are few countries where, to some extent, the same would not be true.

Next is the lack of infrastructure. Nigeria has 36 states and a federal capital, yet the facility in Asaba is the first publicly commissioned one of its kind in the country; there are also some privately owned incinerators that a few companies in Port Harcourt use to treat wastes from vessels (ships), hospitals and industries. Lagos state and Abuja are relatively advanced, simply by virtue of having put in place a few managed landfills, but they are still far from having the level of facility that Asaba can now boast.

The backbone of Asaba’s progress is the state government’s commitment to put a proper waste management solution in place. We’ve seen the impact in the form of infrastructure, collections and remediation, and law enforcement work is starting to change people’s perception about waste management in Delta State. At the moment, plans are being concluded to setup another facility in Warri, Delta State’s industrial hub, which will be twice the size of the Asaba facility.?

My hope is that the progress made by Delta State will be a beacon for other states’ governments. The example we are providing of cleaner, hygienic, more environmentally responsible waste management, and the positive changes that is bringing about, should inspire new development elsewhere in the country, which could equal or even exceed Delta State’s results. So whilst Nigeria’s track record on waste may leave a lot to be desired, the path ahead could be a great deal more promising.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be found at this link.

Titanium – An Environmental Vanguard Among Metals

When titanium was first brought into widespread usage, it was lauded for its strong and weathering-resistant properties. Due to energy costs, production declined over the past 10 years; however, a new process established by the UK’s Dstl has reduced titanium processing time by 50%. The result –  Cheap, low-energy titanium production.

Titanium is used in a startlingly diverse array of applications, too. From paint, to bikes, to eco friendly party glitter, you will likely encounter titanium in your day-to-day life more frequently than you’d notice. It’s good news, then, that titanium is being used to support positive environmental change in numerous ways.

Titanium taking over plastic

One of the foremost ways in which titanium is helping to improve our natural environment is through offering alternatives to polluting items. A great example of this is plastic replacement.

According to clean ocean advocates The Ocean Cleanup, there’s over 80m tonnes of plastic in the oceans. A large contributor to this is the plastic straw, which features at 11th in the list of Get Green’s most commonly littered plastics. Many manufacturers, by utilizing the non-rusting and sturdy quality of titanium tubes, have opted to replace drinking straws with titanium. Given the possibility of cheap, low energy tubes, this means ocean cleanliness can be improved and carbon emissions mitigated.

Taking titanium to the next level

The material properties of titanium are being taken to the next level by modern science. Another huge cause of carbon emissions and pollution is the plastic bottle. A key target for environmental plans, the reusable bottle industry grew to $7.6bn last year, according to Nielson.

Titanium has entered the market through a  clever flexible bottle, with titanium a key component. The metal has again been chosen due to its resistant quality and the improving environmental impact of producing it.

Tackling the oxides

Oxides have been the main use of titanium for a while. Paint, ink, sunscreen, medicines, paper – there are countless products that use titanium oxide. Historically, the process for oxide extraction has been environmentally damaging, as has the product itself; for example, the USA’s National Park Service states that various sunscreens with Ti oxide will damage coral.

Many manufacturers are replacing plastic drinking straws with titanium.

Now, Titanium Oxide is likely to be brought into the green sphere, too. A novel new study published in the Journal for Pharmaceutical Sciences found that titanium oxide can be synthesized using bacteria, and that this could spell a much brighter future for the historically damaging extraction.

Conclusion

Titanium is a versatile and well renowned metal used in a huge range of applications. As such it’s not an easy proposition to remove it from the market on the grounds of environmentalism. However, through determined scientific study and consumer action, it’s becoming a figurehead in helping the public to use its quality and simultaneously protect the planet.

Foam Packaging: Take the Bull by the Horns

foam-packaging-wasteNew York City and Oxford are two prominent examples of local authorities that have tried to restrict the use of foam packaging for takeaway food and drink, arguing that doing so would reduce the environmental impact of waste in a way that alternative approaches could not. In both cases, the intervention of packaging manufacturers has lifted or watered down the rules. Other administrations might well be put off the idea of similar measures – but the argument for cracking down on foam packaging that almost unavoidably gives rise to regional waste management problems, as well as wider environmental degradation through its contribution to litter, remains hard to ignore. Bans, however, may not be the only option.

Menace of Foam Packaging

A particular target for action has been expanded polystyrene (EPS). It’s rigid and a good insulator, and yet a great deal of it is air, making it very lightweight: it’s little wonder that EPS trays, cups and ‘clamshells’ are staples of the industry. It’s also widely used in pre-moulded form in the packaging of electronics, and as loose fill packaging in the form of ‘peanuts’.

While no-one would deny its convenience, for waste managers, EPS is a challenge, for many of the same reasons that it is popular. It’s light and difficult to compact, so it fills up bins and collection vehicles quickly; and takes up a great deal of space if you try to bulk and haul it for recycling.

It’s easy to see, then, why in 2013 New York City’s council voted unanimously to prohibit the use of EPS by all restaurants, food carts, and stores. Yet from the outset, the ban proposal faced stiff opposition from retailers and manufacturers, with packaging giant Dart Container Corp. and the American Chemistry Council reportedly organising a million dollars’ worth of lobbying against the legislation. Once it took effect, the industry quickly managed to overturn it in the courts last month.

Ban on the Run

The city had found that the recycling of EPS was not, in fact, environmentally effective, economically feasible and safe, and NYC was declared EPS-free in July 2015. But in a widely reported ruling, Justice Margaret Chan deemed the decision “arbitrary and capricious”: the complex case turned on the question of whether there was a recycling market for EPS, and the judge decided that Commissioner Kathryn Garcia of the city’s Department of Sanitation had failed to take account of evidence supplied by the industry that such a market did exist.

Although it lacked the courtroom drama of the New York City case, a similar story played out in Oxford last year. The city council proposed to use its licensing powers to require street traders to use only “biodegradable and recyclable” packaging and utensils. The move was stymied by semantics: the Foodservice Packaging Association lobbied for the phrasing of the proposed licensing rule to be amended to ‘biodegradable or recyclable’. That tiny change allowed continued use of expanded polystyrene, as it is technically recyclable (though certainly not biodegradable).

Oxford’s traders are also required to arrange for the correct disposal of EPS takeaway packaging from their premises. This is an odd requirement given that take-away food is usually – well – taken away, and then disposed of in street bins, household bins, or in no bin at all. Unfortunately, Oxford City Council – like almost every other council in the country – isn’t currently able to send EPS for recycling, so the EPS it collects will in practice end up in the residual stream. The EPS litter that escapes will linger in the environment for centuries to come.

Foam Suit

It seems that both courts and councillors have been impressed by the manufacturers’ argument: ‘Why ban a highly efficient product when you can invest in recycling it instead?’ However, there are three important points that count against this contention.

The first is that, whilst EPS can technically be recycled, the economics of doing so remain tenuous. Zero Waste Scotland’s report on Plastic Recycling Business Opportunities found that polystyrene waste compacting and collection was the only one of five options considered that did not represent a viable business opportunity in Scotland.

In order to make the finances of collecting EPS for recycling stack up in New York, Dart Corporation and Plastics Recycling Inc. had to offer to provide the city with $500,000 of sorting technology; pay for four staff; and guarantee to buy the material at $160 per tonne for five years. Without this (time limited) largesse, New York’s ban would likely have stood.

They also provided a list of 21 buyers, who they claimed would purchase dirty EPS – although when the city did a market test, it could find no realistic market for the material. It’s hard to know whose view of the US market is correct; however, in the UK, the market is definitely weak.

Of the 34 EPS recyclers listed by the BPF Expanded Polystyrene Group, 12 only accept clean EPS – ruling out post-consumer fast food waste. Another dozen will only accept compacted EPS, creating an extra processing cost for anyone attempting to separate EPS for recycling. That leaves a maximum of ten UK outlets: not enough to handle the potential supply, and leaving large tracts of the country out of economic haulage range for such a bulky, lightweight material.

Foam fatale

The second is that it’s difficult to get a high percentage of takeaway food containers into the recycling stream. Food eaten on the go is likely, at best, to go into a litter bin. And if it’s littered, because it’s light, EPS can also easily be blown around the streets, contributing to urban, riverine and ultimately marine litter. It’s also very slow to break down in the natural environment. Polystyrene has been found to make up 8% of marine litter washed up on North East Atlantic beaches; in all, plastics account for three quarters of this litter. The cost, particularly for coastal and island nations, is only beginning to be recognised.

That leads on to the third argument: while EPS undoubtedly works, less damaging alternatives are clearly available. Vegware, for example, allows takeaway boxes to be moved up the waste hierarchy – from disposal to composting. Reducing impacts was clearly a consideration in Oxford: in the words of Councillor Colin Cooke:

“It is about making the waste that we do have to get rid of more user-friendly and sustainable.”

The economic and technical difficulty in recycling EPS, combined with the long-term impacts of its littering and disposal, led Michelle Rose Rubio to conclude, in an Isonomia article last year, that environmentally minded people – and perhaps governments – should perhaps avoid it altogether.

Silver Lining

Despite the discouraging events in New York and Oxford, there’s better news from elsewhere. Bans remain in place in Toronto and Paris (both dating from 2007), while Muntinlupa in the Philippines, and the coastal state of Malaka in Malaysia have imposed charges, fines, and biodegradable replacements for EPS food packaging, eventually leading to bans.

Scottish Environment Secretary Richard Lochhead has indicated that the Scottish Government is: “considering a number of options in line with the commitment in the national litter strategy to influence product design of frequently littered items to reduce their environmental impact… [W]e note a number of US cities have introduced bans on Styrofoam products, most recently New York City. We are keen to learn from these cities’ experience of introducing and implementing such bans.”

In Wales, a polystyrene ban petition lodged last year by Friends of Barry Beaches has been picking up support. The Foodservice Packaging Association’s pre-emptive opposition to the notion certainly suggests we haven’t heard the last of EPS food packaging bans in the UK.

However, bans are not the only way to deter the use of problem products. England has just joined the ranks of countries to impose a charge for single use plastic bags. Belgium has a tax on disposable cutlery, and Malta taxes numerous products on environmental grounds, including chewing gum and EPS clamshells. Whilst beyond the powers of local authorities, fiscal measures could drive change while being a bit less of a blunt instrument than a ban.

While EPS manufacturers may have scored some recent successes, they haven’t won the overarching argument. As we push towards a more circular economy, the pressure to reduce our reliance on materials that are inherently hard to recycle, which tend to escape into the environment, and which don’t decompose naturally, will grow. For EPS fast food packaging, the chips could soon be well and truly down.

Note: This article is being republished with the permission of our collaborative partner Isonomia. The original article can be found at this link.

Waste Management in Iraq

Iraq is one of the most populous Arab countries with population exceeding 32 million. Rapid economic growth, high population growth, increasing individual income and sectarian conflicts have led to worsening problem of solid waste management problem in Iraq. The country is estimated to produce 31,000 tons of solid waste every day with per capita waste generation exceeding 1.4 kg per day. Baghdad alone produces more than 1.5 million tons of solid wastes each year.

Rapid increase in waste generation is putting tremendous strain on Iraqi waste handling infrastructure which have heavily damaged after decades of conflict and mismanagement. In the absence of modern and efficient waste handling and waste disposal infrastructure most of the wastes are disposed in unregulated landfills across Iraq, with little or no concern for both human health and environment. Spontaneous fires, groundwater contamination, surface water pollution and large-scale greenhouse gas emissions have been the hallmarks of Iraqi landfills.

The National Solid Waste Management Plan (NSWMP) for Iraq was developed in 2007 by collaboration of international waste management specialist. The plan contains the recommendations for development and which explains the background for decisions.

The plan states that Iraq will build 33 engineered landfills with the capacity of 600 million m3 in all of the 18 governorates in Iraq by 2027. In addition to constructing landfills the plan also focuses on the collection and transportation, disposable, recycling and reuses systems. Environment education was also taken into consideration to ensure provision of educational system which supports the participation of both communities and individuals in waste management in Iraq.

Besides Iraqi national waste management plan, the Iraqi ministry of environment started in 2008 its own comprehensive development program which is part of the ministry of environment efforts to improve environmental situation in Iraq. Ministry of Municipalities and Public Work, in collaboration with international agencies like UN Habitat, USAID, UNICEF and EU, are developing and implementing solid waste management master plans in several Iraqi governorates including Kirkuk, Anbar, Basra, Dohuk, Erbil, Sulaimaniya and Thi Qar.

Recent Progress

Kirkuk was the first city in Iraq to benefit from solid waste management program when foreign forces initiated a solid-waste management program for the city in 2005 to find an environmentally safe solution to the city’s garbage collection and disposal dilemma. As a result the first environmentally engineered and constructed landfill in Iraq was introduced in Kirkuk In February 2007. The 48-acre site is located 10 miles south of Kirkuk, with an expected lifespan of 10–12 years and meets both the U.S. Environmental Protection Agency and European Union Landfill Directive standards.

The Iraqi city of Basra also benefited from international aid with the completion of the first landfill that is compliant with international environmental standards has been completed. Basra solid waste management program developed by UNICEF will not only restore efficient waste collection systems in the city but will also create informal “recycling schools” that will help in spreading environmental awareness in in the city’s society by launching a campaign to educate the public about effective waste disposal practices.

In addition, Basra city program plans to establish a regional treatment and disposal facility and initiate street sweeping crews. Basrah city waste management program is part of the UNICEF program supported by the European Union to develop Iraq’s water and sanitation sector.

Erbil’s solid waste management master plan has also been developed by UNICEF with funding from the European Union. Recently a contract was signed by the Kurdistan Region’s Ministry of Municipalities and Tourism and a Canadian company to recycle the city’s garbage which will involve the construction of two recycling plants in the eastern and western outskirts of Erbil.

UNICEF has also developed a master plan to improve the management of solid waste in Dohuk Governorate which has been finalized in June 2011. Solid waste management master plans for Anbar, Sulaimaniya and Thi Qar governorates are also a part of UNICEF and EU efforts to attaining Iraq’s Millennium Development Goal targets of ensuring environmental sustainability by 2015.

Even though all of the effort by the international organizations are at local level and still not enough to solve solid waste management problem in Iraq, however these initiatives have been able to provide a much needed information regarding the size of the issue and valuable lessened learned used later by the Iraqi government to develop the Iraqi national waste management plan with the support of organizations such as UN Habitat, UNDG Iraq Trust Fund and USAID. The Iraqi national waste management plan is expected to ease the solid waste management problem in Iraq in the near future.

How Modern Technology is Transforming Urban Development

Australia is famous the whole world over for its incredible scenery and stunning countryside, from the arid yet beautiful outback to the shimmering sands of the Gold Coast, but the country is also home to some of the world’s favourite cities. Australia’s population is growing, and so urban development and planning is becoming ever more important. The way we plan, design and build our urban centres has changed rapidly over the last decades thanks to evolving needs, environmental concerns and rapidly advancing technology.

It is this combination that is helping Australian towns and cities lead the way when it comes to urban generation and regeneration.

More Accurate Surveying

Thorough surveying is the key to successful development, and it was once a laborious and time-consuming process, and therefore by necessity, an expensive one too. One modern invention has transformed this task completely, as the most forward thinking planners now utilise unmanned aerial surveying techniques.

Using the latest high-powered drones, planners and developers can now get a much more accurate and holistic picture of the land that they plan to build on. The highly detailed maps produced from the air allow clients to make more informed decisions quicker than they would otherwise have been able to, thus helping to ensure that projects come in on time and on budget.

Greener Developments

Many Australians are becoming increasingly concerned about the effect that mankind is having upon the environment, and the effects of climate change can be seen across this nation and beyond. That’s why surveyors and designers have to be very careful when planning urban developments, as it’s imperative that expanding urban centres don’t adversely impact upon our ecology or the incredible animal life that also calls Australia its home.

Today’s leading urban surveying companies put green issues at the heart of the work, using the latest computer modelling techniques to thoroughly assess the impact of an urban development upon the environment surrounding it; in this way, it’s possible to maintain the equilibrium between the need to develop new urban spaces and the need to protect our ecosystems.

Bringing Greater Benefits to Urban Dwellers

There are many factors to be considered when planning an urban development, as well as the green concerns mentioned above. It’s essential for planners to be able to make accurate assessments of what benefits their development will bring to the people who live within it and upon its neighbourhood, and this involves careful study of a wide range of metrics and projections.

The highly detailed maps produced from the air allow clients to make more informed decisions quicker

Whilst this remains a specialist and highly important job, the appearance of specialist computer programmes now allow planners to make an economic and demographic assessment that’s more accurate than ever before.

Expert urban planners know how essential it is to use all of the technological innovations now available to them, from unmanned aerial surveying, to high tech demographic assessment tools and greener planning software. This is why new urban developments bring benefits for residents and businesses, and for the economy as a whole, while still protecting the rural areas and environment that make Australia the envy of the world.

Municipal Solid Waste Management in Oman

Municipal solid waste management is a challenging issue for the Sultanate of Oman because of its adverse impacts on environment and public health. With population of almost 3 million inhabitants, the country produces about 1.9 million tons of solid waste each year. The per capita waste generation in Oman is more than 1.5 kg per day, among the highest worldwide.

Prevalent Scenario

Solid waste in Oman is characterized by very high percentage of recyclables, primarily paper (26%), plastics (12%), metals (11%) and glass (5%). However the country is yet to realize the recycling potential of its municipal waste stream.

The predominant waste disposal method in Oman is landfilling. Most of the solid waste is sent to authorized and unauthorized dumpsites for disposal which is creating environment and health issues. There are several dumpsites which are located in the midst of residential areas or close to catchment areas of private and public drinking water bodies.

Solid waste management scenario in Oman is marked by lack of collection and disposal facilities, as well as lack of public awareness about waste in the country. Solid waste, industrial waste, e-wastes etc are deposited in very large number of landfills scattered across the country. Oman has around 350 landfills/dumpsites which are managed by municipalities. In addition, there are numerous unauthorized dumpsites in Oman where all sorts of wastes are recklessly dumped.

Al Amerat Sanitary Landfill

Al Amerat landfill is the first engineered sanitary landfill in Oman which began its operations in early 2011. The landfill site, spread over an area of 9.6 hectares, consists of 5 cells with a total capacity of 10 million m3 of solid waste and spread over an area of over 9.6 hectares. Each cell has 16 shafts to take care of leachate (contaminated wastewater).

All the shafts are interconnected, and will help in moving leachate to the leachate pump. The project is part of the government’s initiatives to tackle solid waste in a scientific and environment-friendly manner. Being the first of its kind, Al Amerat sanitary landfill is expected to be an example for the future solid waste management projects in the country.

The Way Forward

Solid waste management is among the top priorities of Oman government which has chalked out a robust strategy to resolve waste management problem in the Sultanate. The country is striving to establish 16 engineered landfills, 65 waste transfer stations and 4 waste treatment plants in different parts of the country.

Modern solid waste management facilities are under planning in several wilayat, especially Muscat and Salalah. The new landfills will eventually pave the way for closure of authorized and unauthorized garbage dumps around the country. However investments totaling Omani Rial 2.5 billion are required to put this waste management strategy into place. Oman is also seriously exploring waste-to-energy as a tool to manage garbage in a sustainable manner.

Solid Waste Management in Kuwait

Kuwait, being one of the richest countries, is among the highest per capita waste generators in the world. Each year more than 2 million tons of solid waste is generated in the tiny Arab nation. High standards of living and rapid economic growth has been a major factor behind very high per capita waste generation of 1.4 to 1.5 kg per day.

Waste Disposal Method

The prevalent solid waste management method in Kuwait is landfill burial. Despite being a small country, Kuwait has astonishingly high number of landfills. There are 18 landfills, of which 14 sites are closed and 4 sites are still in operation. These landfills act as dumpsites, rather than engineered landfills.

Menace of Landfills

Infact, landfill sites in Kuwait are notorious for causing severe public health and environmental issues. Besides piling up huge amounts of garbage, landfill sites generate huge amount of toxic gases (methane, carbon dioxide etc) and plagued by spontaneous fires. Due to fast paced urban development, residential areas have expanded to the edges of landfill sites thus causing grave danger to public health.

The total land area of Kuwait is around 17,820 sq. km, out of which more than 18 sq. km is occupied by landfills. Area of the landfill sites ranges from tens to hundreds of hectares with waste deposition depth varying from 3 to 30 meters.

All kind of wastes, including municipal wastes, food wastes, industrial wastes, construction and demolition debris etc are dumped at these sites. Infact, about 90 percent of the domestic waste is sent to landfills which imply that more landfills will be required to tackle rapidly increasing volumes of solid wastes.

Most of the landfill sites have been closed for more than 20 years due to operational problems and proximity to new residential, commercial and industrial areas. These sites include Sulaibiyah, Kabed, Al Qurain, Shuaiba, Jleeb AI Shuyoukh, West Yarmouk, AI Wafra among others. Migration of leachate beyond landfill site boundaries is a frequent problem noticed across Kuwait. Groundwater contamination has emerged as a serious problem because groundwater occurs at shallow depths throughout the country.

The major landfill sites operated by municipality for solid waste disposal are Jleeb AI Shuyoukh, Sulaibiyah and Al-Qurain. The Qurain landfill, with area of 1 sq. km, was used for dumping of municipal solid waste and construction materials from 1975 until 1985 with total volume of dumped waste being 5 million m3.

The Sulaibiyah landfill site received more than 500 tons of waste per day from 1980 to 2000 with area spanning 3 sq. km. Jleeb AI Shuyoukh, largest landfill site in Kuwait with area exceeding 6 sq. km, received 2500 tons per day of household and industrial waste between 1970 and 1993. Around 20 million m3 of wastes was dumped in this facility during its operational period.

Over the years, most of the dumpsites in Kuwait have been surrounded by residential and commercial areas due to urban development over the years. Uncontrolled dumpsites were managed by poorly-trained staff resulting in transformation of dumpsites in breeding grounds for pathogens, toxic gases and spontaneous fires.

Most of the landfill sites have been forced to close, much before achieving their capacities, because of improper disposal methods and concerns related to public health and environment. Due to fast-paced industrial development and urban expansion, some of the landfills are located on the edges of residential, as is the case of Jleeb Al-Shuyoukh and Al-Qurain sites, endangering the lives of hundreds of thousands of people.