The Role of Biofuel in Low-Carbon Transport

Biofuels offer a solution to climate change that shouldn’t go ignored. In fact, the amount of biofuel used in low-carbon transport has to increase by a factor of seven in order to prevent climate catastrophe, a recent report on 1.5C warming by the Intergovernmental Panel on Climate Change (IPCC) states. The report also places biofuels in the same league of importance as electric vehicles when it comes to replacing unsustainable fossil fuels by 2050.

Biofuels are increasingly being used to power vehicles around the world

Electric cars: benefits and limitations

A typical gas-powered car emits roughly one pound of carbon dioxide per mile traveled. On the other hand, electric cars release zero tailpipe emissions. However, light-duty passenger vehicles represent only 50% of the energy demand in the transportation sector worldwide.

Heavy road vehicles and air, sea, and rail transport make up the rest — electrification of this remaining 50% would be an expensive task. Additionally, demand for transport is expected to increase in the future. Vehicles will need to use even less energy by 2050 to ensure the global transport sector’s total energy demand rises no higher than current levels (100 exajoules).

Biofuel: a necessary solution

Several sustainable, carbon-neutral synthetic fuels are currently in developmental and demonstration stages. For example, synfuels can be produced from carbon dioxide and water via low-carbon electricity. However, this also requires cheap and low-carbon power systems (similar to the ones already running in Quebec and Iceland).

Biodiesel

In 2013, Audi was the first automaker to establish an electrofuel plant — it cost €20M and produces 3.2 MW of synthetic methane from 6 MW of electricity. Additionally, synthetic biofuels can be made from woody residues and crop wastes, which has a lighter environmental footprint than biofuels made from agricultural crops.

Examples of eco-friendly cars

While biofuels continue to be developed, there are plenty of electric cars on the market right now — all of which can help us reduce our individual carbon footprints. For example, the Hyundai Kona Electric is an impressive electric car. This vehicle offers sleek exterior styling, plenty of modern tech features, and has an impressive range of 258 miles in between charges. The price starts at $36,950. Alternatively, the Nissan LEAF is another eco-friendly model priced from $29,990. It’s powered by an 80kW electric motor and runs for 100 miles per charge.

Electric cars and synthetic biofuels are both valuable technological changes. Focusing on developing both of these sustainable options should take utmost priority in the fight against climate change.

Conveyor Systems for Waste Management

Conveyor systems are an integral component of waste management and recycling operations. It works for various types of materials and transports them to different locations.  They play a vital role in the process of sorting waste material and their movements.  Mixed wastes are arranged for inspection over a conveyor, which then moves it from one end to another. While on its way items are sorted and unwanted materials are removed.

Conveyors are also used for carrying recycling materials such as wood or paper wastes to their respective grinding and process centers. Waste conveyors are manufactured with materials that do not get damaged by constant exposure to abrasives. They are also not affected by sticky or greasy liquids and dirt. Belt conveyors and chain conveyors are the most commonly used conveyors in recycling plants.

material-recovery-facility

Mostly non-powered conveyors are used in the industry. However, powered belt and roller conveyors are sometimes used for handling small products. They are typically used for pallet handling.

Conveyors are also used for moving waste materials in long streams so that they can be separated. Vibrating belts are attached which separate materials that require inspection. Waste materials and recycling industry is mostly about dealing with contaminated products and trash. Thus additional cautions are considered for the safety and environmental standards of the workers.

Types of Conveyors

Conveyors vary in shapes and dimensions according to their utility. From being installed in biomass plants, waste sorting plants, material recovery facilities, waste-to-energy plants, to being a prime component at food processing facilities, paper industry, mining, and pharmaceutics, conveyors are used everywhere.

Even at tough job-sites where transfer of materials is required across steep inclinations or large distances conveyors can ease the process. Generally, they are classified as belt conveyors and screw conveyors.

Waste_Conveyor

Screw Conveyors

Screw conveyors were invented by Archimedes and its core design hasn’t changed from its original design over these years. They can be vertical or horizontal with an entirely contained, metered space. Screw conveyors are generally used for moving dust-free movement of grains or flakes, powders, sludge, etc. They are made of galvanized metal, carbon steel, stainless steel, tapered screws, discharge chute, or in-feed hoppers.

Belt Conveyors

Belt conveyors have a wide-open frame which enables them to contain and move high loads of material over long distances. This is why they are commonly used in the mining industry and other places where heavy materials are required to be transported.  Structurally they are rugged loops that run over two or more pulleys. Additional rolls are also added in between to provide support in long belts.

Materials ranging from garbage to fine grains and powders and be carried over belt conveyors. They are also used for the movement of commercial waste including paper, plastic, or aluminum cans.

Belt material, configuration, and dimension differ according to its application. Various designs of belts are used nowadays, for example, magnetic belts, flat belts, trough belts, rubber belts, etc. Moreover, conveyors are also designed in shapes such as to carry fluids including sludge and water. Key manufacturing materials for these belts are cotton, canvas, leather, nylon, polyester, silicone, and steel. Dimension, design and materials can be easily customized depending on its application and to meet customer requirements.

4 Benefits of Studying Supply Chain and Logistics Management

The business world is quite dynamic. You need to have a comprehensive understanding of how it operates. It’s essential to learn the process within and between an organization. Its where supply chain and logistics management comes in. It’s an exciting course that you can take online. Here are the top fascinating benefits of studying supply chain and logistics management.

1. Improve the organization’s profitability

There’re numerous job opportunities within supply chain management. Supply chain management recruitment organizations are searching for individuals who can contribute to their financial success. They need someone who can analyze cost efficiencies, maintain proper inventory levels as well as decrease operating expenses

Working as a supply chain manager is beneficial as you get to do what you enjoy. You contribute to the company’s goal of increasing sales, infiltrating new markers as well as making a difference. It’s a chance to make the company gain a competitive advantage as well as increase shareholder value. Engaging in online management courses is the ideal way to prepare you for the responsibilities that lie ahead.

2. Logistics as well as decision making

Businesses continue to experience significant changes, and the global supply chain continues to become dated. Its causing businesses to keep struggling when they have to adapt to manufacturing location changes and using cost-effective techniques

Companies keep looking for individuals who have logistic management training. Its because these individuals can spot a complication. They then proceed to provide the best possible solution. It’s nice to study a course that is quite relevant to business dynamics.

3. Proper system implementation

Studying supply chain and logistics management is a suitable career investment. It enables you to work around the technology. You stand to benefit from implementing new technology into a company’s current operations. It is because these technological advancements minimize cost as well as streamline the processes.

Being a supply chain manager means you will be at the forefront of applying the best possible technology. You must undertake a course that will enable you to be part of the movers and shakers of the organization.

4. Keep up with challenges and trends

When you choose to study supply chain and logistics management, you get to know how to handle trends in the industry. It’s an excellent opportunity to deal with what clients want and calculating the company’s books.

It’s time to embrace new technology and spearhead it within an organization. You get to keep a close eye on each further advancement and offer excellent communication to clients, vendors, and the company. In the current world, you need to take a thrilling course that will enable you to stay relevant in the ever-changing business environment

The beauty of studying supply chain and logistics management is that there are plenty of job opportunities. You get to possess an educational background to work as an enterprise process engineer, an analyst as well as a scheduling manager. You can take up various online management courses to further your career. It’s a convenient time to enhance a company’s responsiveness, offer value to clients, develop networking resilience, and so much more.

Sustainable Innovations in Train Stations

The growing urgency around climate change and energy consumption has prompted a significant response from the rail industry over the past decade. It has responded with major initiatives around the globe. For example, in Germany, national rail company Deutsche Bahn has replaced tens of thousands of incandescent lights with LEDs. In the United Kingdom, rail managers have upgraded existing lines, like the HS1, to run entirely on renewable energy.

Another major change is that train stations themselves are becoming more eco-friendly and energy-efficient. These are some of the most significant changes transit authorities have made to reduce the environmental impact of train stations and cut down on emissions caused by rail travel and freight.

Green Innovations at a New Bay Area Rapid Transit Station

In 2017, Bay Area Rapid Transit (BART) officially opened a new station in Fremont, in California’s East Bay. The new Warm Springs/South Fremont Station was billed as BART’s most sustainable station yet, built with several eco-friendly features “baked in” to the station design.

Among other features, the new Fremont station includes solar panels on the station’s roof, charging stations for electric vehicles and biological water filtration systems called “bioswales.”

Bioswales are stormwater runoff management systems made out of native grasses, pebbles, shrubs, swan hill oak trees and similar landscaping elements. These systems pull in and filter rainwater that would typically run off roofs and paved surfaces, carrying pollutants with them to local waterways.

green-train-station

At the new station, rainwater is captured in an underground surge basin after being filtered through the bioswale system. The water there can then be used in the station itself or slowly released in a way that won’t overwhelm local drainage areas.

The station isn’t the only BART initiative that aims to improve the eco-friendliness of Bay Area transit. In 2013, the system announced that it would use more than 1,300 tons of recycled waste tires to reduce vibration on an extension project near Fremont.

The project, which used shredded tires in place of gravel, is one recent example of how used car parts can be recycled and put to use.

Hong Kong Rail Station Features Garden Roof

Other, more recent projects have also used landscaping and natural design elements to improve sustainability.

For example, the new Hong Kong West Kowloon railway station, which opened in September 2018, features a curved “green roof” dotted with more than 700 trees.

Built to function as both a public space and transit hub, the station is also remarkably sustainable. The green roofscape, in addition to being aesthetically pleasing, also captures and filters rainwater, much like the Fremont station in California.

Deutsche Bahn’s “Green Station” Initiative

Germany has been a world leader in the adoption of green tech and transportation practices. One of the best examples of this has been the “Green Station” initiative led by Deutsche Bahn, the private railway company owned by the German federal government.

The project made headlines in the mid-2010s when the company produced the world’s first zero-carbon train station in Kerpen-Horrem, in western Germany.

This was an early example of how modern stations are compatible with eco-friendly design decisions. For example, the station in Kerpen-Horrem has an energy-efficient lighting system that uses a combination of LEDs, natural light and light-reflecting architecture to provide consistent illumination to the station with minimal energy consumption.

deutsche-bahn-energy-efficiencyEntlang eines Solarparks in Baiersdorf – ein Zug der Baureihe ET 442 unterwegs als S-Bahn

Since then, Deutsche Bahn has continued to make major strides in sustainable railway management and design, powering 33 of the company’s stations with entirely renewable energy and aiming for a companywide target of 100% carbon neutrality by 2050.

Reinventing Train Stations to Improve Sustainability

These new train stations show how transit providers are rethinking design to improve sustainability. Innovations like solar power arrays, electric charging stations and biofilters can all make a structure significantly more sustainable — and they’re becoming more common in station design.

Matthew Stone, Renovare Fuels: Next Generation Renewables

Renewable fuels are playing an ever-increasing role in the UK transport industry. Driven by the UK Government’s efforts to reduce Greenhouse Gas (GHG) emissions, the Renewable Transport Fuel Obligation (RTFO) stipulates that, from January 2021, fuel suppliers will be required to increase the proportion of renewables within their total sales.

Led by a management team of experienced professionals that includes Business Development Director Duncan Clark, Renovare Fuels could play a pivotal role in helping UK fuel companies meet the strict new criteria being imposed.

renewable-diesel

Biofuels are increasingly being used to power vehicles around the world

The UK transport industry generated 28% of total UK pollution in 2019, making it the country’s most polluting sector. The robust RTFO scheme was implemented to drive sustainability in the industry through the reduction of GHG emissions.

Under the scheme, transport fuel providers who provide more than 450,000 litres of petrol, gas oil or diesel must incorporate a prescribed amount of renewable fuels within their overall fuel sales, or forfeit a per-litre penalty.

Under the terms of the RTFO, the amount of renewables fuel suppliers must include in their products rises every year. The strategy forms an integral part of UK Government efforts to reduce the amount of carbon produced by the transport sector – a vital element of bringing total GHG emissions to net zero by 2050. Fuel suppliers will be required to increase development of renewable fuel components to at least 10.68% of their total supply levels in 2021.

Introduced in the 1980s, standard renewables like biodiesel and bioethanol produce similar levels of carbon dioxide emissions to fossil fuels when they are burned. However, rather than being produced from finite resources, they are derived from biomass feedstocks. These are typically grown specifically for the production of fuel or produced using waste products from other industries, such as agriculture and food. Although biomass produces CO2 when burned, this is offset by carbon dioxide absorbed by feedstock during the production process, effectively creating a closed loop process.

biofuel-powered-vehicle

Lower GHG emissions and empowerment of rural economy are major benefits associated with bioethanol

In 2019, advanced development fuels were added to the terms of the RTFO, enabling fuel companies to integrate next generation biofuels into market supplies in addition to standard renewables.

With the exception of segregated fats and oils and renewable fuels of non-biological origin (RFNBOs), development fuels are synthesised from residual feedstock or sustainable waste. To qualify under the scheme, a development fuel must have a GHG saving of at least 60% more than that offset by fossil fuels. Renewable diesel must be blendable at a rate of at least 25% with conventional diesel, while still meeting the EN590 fuel specification. Fuels which possess these superior carbon neutrality credentials are eligible for double the amount of Renewable Transport Fuel Certificates per kilo or litre compared with standard renewable fuels.

As Matthew Stone – Renovare Fuels’ Chairman – explains, development biofuels overcome many limitations associated with first-generation biofuels. From a physical and chemical perspective, Renovare Fuels’ next generation biofuels are closer to conventional fossil fuels, particularly in terms of performance and end product quality, while producing just three grams of CO2 per megajoule of biomass – which is just 3% of that generated by fossil fuels.

Standard biofuels have a limited impact in reducing GHG emissions, chiefly due to the type of feedstock used and low fuel quality. In contrast, development fuels are much more efficient, since they are specifically designed to eliminate emissions throughout the production process, as well as radically reducing those produced when used as an end fuel. As Matthew Stone points out, next generation development fuels show vast potential, supporting the UK Government’s GHG reduction goals.

An Introduction to Biomethane

Biogas that has been upgraded by removing hydrogen sulphide, carbon dioxide and moisture is known as biomethane. Biomethane is less corrosive than biogas, apart from being more valuable as a vehicle fuel. The typical composition of raw biogas does not meet the minimum CNG fuel specifications. In particular, the COand sulfur content in raw biogas is too high for it to be used as vehicle fuel without additional processing.

biogas-vehicle

Liquified Biomethane

Biomethane can be liquefied, creating a product known as liquefied biomethane (LBM). Biomethane is stored for future use, usually either as liquefied biomethane or compressed biomethane (CBM) or  since its production typically exceeds immediate on-site demand.

Two of the main advantages of LBM are that it can be transported relatively easily and it can be dispensed to either LNG vehicles or CNG vehicles. Liquid biomethane is transported in the same manner as LNG, that is, via insulated tanker trucks designed for transportation of cryogenic liquids.

Compressed Biomethane

Biomethane can be stored as CBM to save space. The gas is stored in steel cylinders such as those typically used for storage of other commercial gases. Storage facilities must be adequately fitted with safety devices such as rupture disks and pressure relief valves.

The cost of compressing gas to high pressures between 2,000 and 5,000 psi is much greater than the cost of compressing gas for medium-pressure storage. Because of these high costs, the biogas is typically upgraded to biomethane prior to compression.

Applications of Biomethane

The utilization of biomethane as a source of energy is a crucial step toward a sustainable energy supply. Biomethane is more flexible in its application than other renewable sources of energy. Its ability to be injected directly into the existing natural gas grid allows for energy-efficient and cost-effective transport. This allows gas grid operators to enable consumers to make an easy transition to a renewable source of gas. The diverse, flexible spectrum of applications in the areas of electricity generation, heat provision, and mobility creates a broad base of potential customers.

Biomethane can be used to generate electricity and heating from within smaller decentralized, or large centrally-located combined heat and power plants. It can be used by heating systems with a highly efficient fuel value, and employed as a regenerative power source in gas-powered vehicles.

Biomethane to Grid

Biogas can be upgraded to biomethane and injected into the natural gas grid to substitute natural gas or can be compressed and fuelled via a pumping station at the place of production. Biomethane can be injected and distributed through the natural gas grid, after it has been compressed to the pipeline pressure. In many EU countries, the access to the gas grid is guaranteed for all biogas suppliers.

One important advantage of using gas grid for biomethane distribution is that the grid connects the production site of biomethane, which is usually in rural areas, with more densely populated areas. This enables the gas to reach new customers. Injected biomethane can be used at any ratio with natural gas as vehicle fuel.

Biomethane is more flexible in its application than other renewable sources of energy.

The main barriers for biomethane injection are the high costs of upgrading and grid connection. Grid injection is also limited by location of suitable biomethane production and upgrading sites, which have to be close to the natural gas grid.

Several European nations have introduced standards (certification systems) for injecting biogas into the natural gas grid. The standards, prescribing the limits for components like sulphur, oxygen, particles and water dew point, have the aim of avoiding contamination of the gas grid or the end users. In Europe, biogas feed plants are in operation in Sweden, Germany, Austria, the Netherlands, Switzerland and France.

Solutions for Maritime Industry Emissions

Until 2018, the maritime industry did not have a climate plan. While this may seem surprising, shipping tends to stay quiet about the environmental impacts of a global economy. Additionally, unlike other carbon-intensive sectors, it tends to quietly sail along unnoticed by consumers. It was not included in the Paris Agreement in 2016 and was not held accountable for its contribution to increased greenhouse gas emissions.

The International Maritime Organization laid out plans to cut emissions in half by 2050, an ambitious goal by one of the world’s main polluters. One of the main strategies to reduce CO2 emissions is to transition to more efficient fuel types. Most large shipping vessels operate with heavy fuel oil, which is rich in sulfur and extremely polluting. The International Maritime Organization is seeking to replace heavy fuel oil in 60,000 shipping vessels.

emissions-shipping-sector

However, consumer awareness surrounding the environmental cost of international shipping, coupled with innovative technology, may reduce the amount of pollution produced. The most likely solutions for reducing emissions from the maritime industry include transitioning to a more low-carbon fuel source, changing transport speeds, adopting sustainable shipping waste disposal strategies, transitioning to renewable energy and optimizing travel routes.

The Price of International Shipping

Shipping emissions are expected to grow exponentially between now and 2050. International shipping accounts for the majority of industrial pollution. Maritime regulations are significantly behind those for other carbon-intensive industries. It can be legally complicated to assign accountability to certain countries, especially in international waters. A handful of mega-ships can have the same level of greenhouse gas emissions as millions of cars, accounting for an incalculable portion of air and water pollution.

Our economy is global. When you look at the tags on your furniture, appliances, clothes and electronics, you may see dozens of countries around the world. Even our food, including perishable items like avocados and lettuce, are shipped internationally. Fresh produce can be shipped thousands of miles without spoiling using different refrigeration systems, such as air compressor technology. While these technologies make it easier to transport food, they come with a high-carbon impact. However, there are energy-efficient solutions to reduce carbon emissions in the shipping industry.

Energy-Efficient Solutions

Low-carbon technology is available in the shipping industry, but how it works in practice may be a different story. For example, switching from a high sulfur fuel oil to a low carbon option may have the greatest impact on reducing greenhouse gas emissions. Lowering sulfur oxide emissions is key to reducing the effects of international shipping.

However, switching oils will require the industry to identify pollution from the whole lifecycle, meaning that the use of fuel is only one part of its environmental impact. Accounting for this will be crucial in finding a sustainable solution for maritime industry emissions.

Another solution that is easier to implement than changing fuels is a practice called slow steaming. Slow steaming simply refers to slowing boats down, sometimes only by a few degrees. While it may not sound like much, changing a ship’s speed by a couple of kilometers can result in an 18% increase in fuel savings, which could be a gamechanger. However, industry leaders are worried that simply slowing down ships is not the answer, since it will result in a need for more vessels to keep the global economy moving.

Other energy-efficient solutions to maritime industry emissions include route optimization, renewable energy such as wind-assist technology and transitioning to all-electric ships. Norway, a main exporter in the petroleum and fish industries, has already tested an all-electric vessel and is actively working to optimize this technology to transition more ships away from fuel oil.

Time for Maritime to Go Green

The effort by the maritime industry to reduce greenhouse gas emissions is significant. Effective solutions to help curb climate change include transitioning to low sulfur fuel oils, changing ship speeds and investing in new technology such as renewable energy. However, consumer awareness will also play a vital role in the future of international shipping. The cost of a global economy is significant. Finding more sustainable methods of transporting goods across the ocean is imperative.

Best Cars Scanners to Check Efficiency of Your Motor

One of the easiest ways to check the efficiency of your car’s engine and its components is to use an OBD2 scanner. An OBD2 scanner is a diagnostic tool that is used to read and clear codes, run system checks, and sometimes make adjustments to a car’s CPU.

Most OBD2 diagnostic scanners also include a feature called live data, or data stream, which is what you’re looking for if you need to do some efficiency checks. A diagnostic scanner with a live data function is the best thing to use to check the efficiency of your motor.

car-scanner-diagnostic

We can use the live data function to look into fuel economy, thermal efficiency and general engine performance. Using OBD2 scanners to delve into the live data of your car is a much cheaper alternative than sending the vehicle off for testing, and you can get a good idea of how the engine is performing just by using the scanner. This of course saves a lot of time and money.

You can find lots of information about various OBD tools at https://obdstation.com, who regularly review different OBD2 scanners. Head there to find out about the best OBD2 scan tools that have live data functions included, which you can use the check the efficiency of your car’s engine components.

If you already have an OBD2 scan tool and want to investigate your car’s efficiency, then there’s a few key things that you’ll want to look into. The first is fuel economy.

Fuel Economy

You want to make sure that your engine is using fuel at the correct rate for your vehicle. If an engine is using too much fuel, then the engine will have a very low economy and be more expensive to run. If an engine is overusing fuel, then this could suggest a few different problems with the fuel system, which we’ll talk about later.

So, how can you use an OBD2 scanner to investigate fuel economy? Well, part of the live data stream from an OBD2 diagnostic scan tool that is displayed is a reading called Fuel Trim. Fuel trims basically refer to how much fuel is being released into the engine by the fuel delivery system. Fuel trims are represented on the OBD2 screen by a percentage, where a percentage of 0.0% suggests that the fuel system is working perfectly, with the right amount of fuel being released into the engine.

If the reading is a positive number, so above 0.0%, then this means that too much fuel is being released. If the reading is negative, below 0.0%, then there is too little fuel being released. An OBD2 scanner will give two values for fuel trims, a long term fuel trim (LTFT) and a short term fuel trim (STFT). They both represent the same thing, LTFT is just calculated over a longer period of time, so is more of an average value.

Of course nothing is perfect, so you probably won’t be seeing readings of 0.0% for both STFT and LTFT. However, you’d expect a healthy engine with a properly functioning fuel injection system to have an STFT reading between -10.0% and 10.0%, and an LTFT reading between -5.0% and 5.0%.

If the fuel trims are both too high, then your car is using too much fuel, which means it’s not at its best efficiency. The problem could be caused by the fuel injection system overcompensating for a vacuum leak for example. Having said that it’s also a problem if the values are too low. Even though the engine is using too little fuel, this will be made up by issues in other areas, which will result in a less efficient engine and therefore a more costly one to run.

Engine RPM

Another indicator of how efficiently your engine is operating is its revolutions per minute (RPM). Even a basic OBD2 device should display the idle RPM of the engine. Note that the RPM will change if you touch the throttle, so we’re focussing on the idle RPM here.

Most cars have idle speeds of between 600 and 1000rpm, whilst for trucks its around 600rpm, and motorbikes are higher at around 1200rpm. Be sure to check the car manufacturers handbook or research your vehicle online to find out what RPM its engine should be at.

If the RPM is too high, then this will definitely result in your engine being less efficient. If it’s too low, then it won’t be generating the right amount of power, so again will be less efficient. If your RPM is too high or too low, then it’s probably down to an issue with idle control valve, or a vacuum leak.

Manifold Absolute Pressure (MAP Sensor)

Manifold Absolute Pressure is another factor that can have quite a big influence on how efficient an engine is operating.

The MAP sensor data readings are usually specific to fuel injected engines. MAP sensors measure the air pressure in the intake manifold, which helps the engine CPU decide on the correct air/fuel ratio. Having a correct balance is key for efficiency, so that the engine isn’t using too much or too little fuel.

Like the Ignition sensors, faulty MAP sensors will lead to an incorrect fuel/air balance, resulting in excessive fuel consumption, lack of power, and failed emissions tests. Again, this is useful data to indicate possible problems with your car.

What is an OBD Scanner?

An OBD Scanner is a car diagnostic device used by mechanics to read vehicle trouble codes, turn off the check engine light, install third party components, run system checks and include lots of other advanced features. OBD scanners are an essential tool for the workshop, and save mechanics a lot of time and cash.

They are effective tools for looking into an engine’s efficiency and performance.

How Can an OBD Scanner Help your Cars Efficiency?

Although an OBD scanner won’t solve any problems by itself, it is a fantastic investigation tool that will show you how efficiently your engine is operating and will highlight any problems with the engine that will be reducing its efficiency.

You can gain lots of information about fuel economy, thermal efficiency, and engine performance, The ease of use that an OBD2 tool will offer makes it a great alternative to sending vehicles off for complex testing.

What is the best auto scanner for the money?

There are lots of great scanners out there. The most important feature to look out for if you want to check your motor’s efficiency is live data streaming. The best OBD scanners will all offer this service.

5 Reasons to Choose Rail Travel

Are you debating the best way to get from A to B? Are you considering travelling by rail – but not sure if it offers the most benefits? You’re in the right place. Here, we explore five reasons to choose rail travel.

1. You can be productive

If you’re driving a car, you need to place your undivided attention on the road in front of you. When you take the train, however, you’re free to spend your time onboard as you wish. Whether that’s being productive by getting some work done on your laptop, relaxing with your favourite podcast or refuelling with a bite to eat, you can make the most of your time spent travelling.

2. It’s better for the environment

Studies have shown that public transport can help to tackle climate change – by reducing the reliance on individual car journeys and therefore lowering overall emissions from petrol and diesel. In the US, greenhouse gas emissions caused by transport accounts for around 29% of the country’s total emissions – so by having less cars on the road, emissions can be reduced. This will in turn improve air quality, particularly in urban areas, leading to a healthier population.

3. You can avoid traffic

Have you ever been in a rush to get somewhere, got stuck in a traffic jam and ended up being late? You’re not alone – many of us have been caught out by heavy traffic at one time or another. Travelling by train means you don’t need to worry about getting stuck in traffic, you can simply hop onboard and get from A to B with ease. For instance, if you need to travel by train from Cambridge to Hatfield in rush hour, you’ll typically arrive in less than an hour with no stress about traffic or parking.

4. It’s fast and efficient

Another benefit of travelling by rail is that it’s fast and efficient. Many rail services can travel at impressive high speeds which are much quicker than that of a car on the road. Of course, how fast the train travels will depend on the service and model – but some of the fastest trains in the world include the Shanghai Maglev at 267mph and the Fuxing Hao at 249 mph.

5. It’s cost-effective

Travelling by train may also be a more cost-effective option than travelling by car or plane. This really depends on where you’re travelling to and from, so it’s important to do your research before you book your travel. In some cases, you may be able to take advantage of deals and discounts from the train provider. For instance, you can often get great value fares if you have a railcard or travel at Off-Peak times.

Will you take the train next time you have to travel?

Rationale for Biomass Supply Chain

Biomass resources have been in use for a variety of purposes since ages. The multiple uses of biomass includes usage as a livestock or for meeting domestic and industrial thermal requirements or for the generation of power to fulfill any electrical or mechanical needs. One of the major issues, however, associated with the use of any biomass resources is its supply chain management.

The resource being bulky, voluminous and only seasonally available creates serious hurdles in the reliable supply of the feedstock, regardless of its application. The idea is thus to have something which plugs in this gap between the biomass resource availability and its demand.

The Problem

The supply chain management in any biomass-based project is nothing less than a big management conundrum. The complexity deepens owing to the large number of stages which encompass the entire biomass value chain. It starts right from the resource harvesting and goes on to include the resource collection, processing, storage and eventually its transportation to the point of ultimate utilization.

Owing to the voluminous nature of the resource, its handling becomes a major issue since it requires bigger modes of logistics, employment of a larger number of work-force and a better storage infrastructure, as compared to any other fuel or feedstock. Not only this their lower energy density characteristic, makes it inevitable for the resource to be first processed and then utilized for power generation to make for better economics.

All these hassles associated with such resources, magnify the issue of their utilization when it comes to their supply chain. The seasonal availability of most of the biomass resources, alternative application options, weather considerations, geographical conditions and numerous other parameters make it difficult for the resource to be made consistently available throughout the year. This results in poor feedstock inputs at the utilization point which ends up generating energy in a highly erratic and unreliable manner.

The Solution

Although most of the problems discussed above, are issues inherently associated with the usage of biomass resources, they can be curtailed to a larger extent by strengthening the most important loophole in such projects – The Biomass Resource Supply Chain.

World over, major emphasis has been laid in researching upon the means to improve the efficiencies of such technologies. However, no significant due diligence has been carried out in fortifying the entire resource chain to assure such plants for a continuous resource supply.

The usual solution to encounter such a problem is to have long term contracts with the resource providers to not only have an assured supply but also guard the project against unrealistic escalations in the fuel costs. Although, this solution has been found to be viable, it becomes difficult to sustain such contracts for longer duration since these resources are also susceptible to numerous externalities which could be in the form of any natural disaster, infection from pests or any other socio-political or geographical disturbances, which eventually lead to an increased burden on the producers.