Waste Management Challenges in Middle East

garbage-middle-eastMiddle East is one of the most prolific waste generating regions worldwide with per capita waste production in several countries averaging more than 2 kg per day . High standards of living, ineffective legislation, infrastructural roadblocks, indifferent public attitude and lack of environmental awareness are the major factors responsible for growing waste management problem in the Middle East. Lavish lifestyles are contributing to more generation of waste which when coupled with lack of waste collection and disposal facilities have transformed ‘trash’ into a liability.

Major Hurdles

The general perception towards waste is that of indifference and apathy. Waste is treated as ‘waste’ rather than as a ‘resource’. There is an urgent need to increase public awareness about environmental issues, waste management practices and sustainable living. Public participation in community-level waste management initiatives is lackluster mainly due to low level of environmental awareness and public education. Unfortunately none of the countries in the region have an effective source-segregation mechanism.

Waste management in Middle East is bogged down by deficiencies in waste management legislation and poor planning. Many countries lack legislative framework and regulations to deal with wastes. Insufficient funds, absence of strategic waste management plans, lack of coordination among stakeholders, shortage of skilled manpower and deficiencies in technical and operational decision-making are some of the hurdles experienced in implementing an integrated waste management strategy in the region. In many countries waste management is the sole prerogative of state-owned companies and municipalities which discourage participation of private companies and entrepreneurs.

Many Middle East nations lack legislative framework and regulations to deal with urban wastes.

Many Middle East nations lack legislative framework and regulations to deal with urban wastes.

Due to lack of garbage collection and disposal facilities, dumping of waste in open spaces, deserts and water bodies is a common sight across the region. Another critical issue is lack of awareness and public apathy towards waste reduction, source segregation and waste management.

A sustainable waste management system demands high degree of public participation, effective laws, sufficient funds and modern waste management practices/technologies. The region can hope to improve waste management scenario by implementing source-segregation, encouraging private sector participation, deploying recycling and waste-to-energy systems, and devising a strong legislative and institutional framework.

The Way Forward

In recent year, several countries, like Qatar, UAE and Oman, have established ambitious solid waste management projects but their efficacy is yet to be ascertained. On the whole, Middle East countries are slowly, but steadily, gearing up to meet the challenge posed by waste management by investing heavily in such projects, sourcing new technologies and raising public awareness. However the pace of progress is not matched by the increasing amount of waste generated across the region. Sustainable waste management is a big challenge for policy-makers, urban planners and other stake-holders, and immediate steps are needed to tackle mountains of wastes accumulating in cities throughout the Middle East.

15 Simple Ways Your Family Can Save the Planet

Life, the miracle of the universe, appeared about 4 billion years ago, and we, humans – only 200,000 years ago. But we have already succeeded in destroying the balance that is so important for the life on Earth. What do we actually know about life on Earth? The tenth part? Or maybe the hundredth? Earth is a real miracle. Life remains a mystery.

Trees grow towards the sun, which feeds their foliage. Animals are adapted to their pastures, and their pastures are adapted to them. As a result, everyone wins. Animals satisfy hunger, and plants flourish again. In this great life journey on Earth, each species has a particular function and takes a certain place. There are no useless creatures. They are all balanced.

And Homo sapiens – a man of sense – enters the arena of history. He received a fabulous inheritance that the Earth has carefully preserved for 4 billion years. He is only 200,000 years old, but he has already changed the face of the world. Despite his vulnerability, he captured all the habitats and conquered the territory like no other species before him. Today, life – our life – is only a link in the chain of countless lives following one another on Earth for 4 billion years.

For a long time, the relationship between people and the planet were fairly balanced and resembled a natural and equal union. Now, we rarely think about global issues, being lost in everyday concerns. Meanwhile, we are on the verge of a disaster. Thanks to the achievements of science and technology, people learned to satisfy their needs, but some inventions brought us much more harm than good. We are killing our planet gradually but purposefully.

Planting more trees and vegetation will go a long way in reducing heat in urban settings.

These 15 simple tips do not require you either time or extra effort. Only by changing your habits quite a bit, you and your loved one can make the world cleaner and safer.

  1. Make the most of natural ambient light. Turn off the light in the room or the computer monitor when you do not need it. And do not forget about the chargers in the appliance receptacle!
  2. Teach yourself to turn off the water at a time when you do not need it – for example, while brushing your teeth or rubbing the pan with a detergent. On average, according to statistics, 5-10 liters of water (depending on pressure) flows out of the tap per minute. Also, reduce the time spent in the shower for 1-2 minutes.
  3. Replace incandescent bulbs with LED: they save energy and last longer.
  4. Change to a bike. It is cool, fast, and comfortable. Having tried only once, you no longer want to get on the “hot bus” or spend time stuck in traffic jams. In addition, a bicycle is an excellent vehicle as it does not pollute the air with dangerous gases.
  5. Use phosphate-free detergents. On the Internet, there are many resources offering ecological household chemicals.
  6. Buy less plastic bags, go to the store with your eco-bag.
  7. Replace plastic with paper and glass. If you cannot do without disposable tableware – for example, when going on a picnic – use paper plates and cups rather than plastic ones.
  8. Choose cosmetics and chemicals especially carefully. You should give preference to products that have not been tested on animals and do not adversely affect the environment at different stages of production.
  9. Though it is as simple as ABC but very effective – try to bring plastic, glass, and paper for recycling.
  10. Bring batteries to special shops and institutions because this is a dangerous and very toxic type of waste.
  11. Refuse semi-finished products. Experts say that today, the manufacture of these products is fully controlled by monopoly companies that abuse antibiotics, overload the ecosystem, and apply the principles of intensive management for their own profit. Of course, in such conditions, quality suffers. Homemade food is much better. Do not know how to cook? A dating site may be helpful.
  12. Buy local food – the one that is made in your area. This food undergoes less chemical treatment which is sometimes used for long-term transportation.
  13. Use water filters. In this case, you do not need to spend money on bottled drinking water. Thus, you will not only save your family budget but also reduce the environmental impact caused by the production and transportation of plastic bottles.
  14. Plant flowers on window sills and trees in the courtyards. Do not let anyone cut down green spaces near your house.
  15. Support environmental organizations and encourage your family to do it.

“Orbiting Earth, I saw how beautiful our planet is. People, let us preserve and increase this beauty, not destroy it!”

– Yuri Gagarin

Waste-to-Energy in India: An Interview with Salman Zafar

waste-mountainIndia’s waste-to-energy sector, which kicked off in 1987, is still searching for a successful role model, even after tens of millions of dollars of investment. In recent years, many ambitious waste-to-energy projects have been established or are being planned in different parts of the country, and it is hoped that things will brighten up in the coming years. Salman Zafar, CEO of BioEnergy Consult, talks to Power Today magazine on India’s tryst with waste-to-energy and highlights major challenges and obstacles in making waste-to-energy a success story in India.

Power Today: What are the challenges that the Waste to Energy sector faces in the current scenario where there is a rejuvenated interest in clean energy? Do you think the buzz around solar and wind power has relegated the Waste to Energy sector to the back benches?

Salman Zafar: India’s experience with waste-to-energy has been lackluster until now. The progress of waste-to-energy sector in India is hampered by multiples issues including

  1. poor quality of municipal waste,
  2. high capital and O&M costs of waste-to-energy systems,
  3. lack of indigenous technology,
  4. lack of successful projects and failure of several ambitious projects,
  5. lack of coordination between municipalities, state and central governments,
  6. heavy reliance on government subsidies,
  7. difficulties in obtaining long-term Power Purchase Agreements (PPAs) with state electricity boards (SEBs)
  8. lukewarm response of banks and financial institutions and (9) weak supply chain.

Waste-to-energy is different from solar (or wind) as it essentially aims to reduce the colossal amount of solid wastes accumulating in cities and towns all over India. In addition to managing wastes, waste-to-energy has the added advantage of producing power which can be used to meet rapidly increasing energy requirements of urban India. In my opinion, waste-to-energy sector has attracted renewed interest in the last couple of years due to Swachch Bharat Mission, though government’s heavy focus on solar power has impacted the development of waste-to-energy as well as biomass energy sectors.

Power Today: India has a Waste to Energy potential of 17,000 MW, of which only around 1,365 MW has been realised so far. How much growth do you expect in the sector?

Salman Zafar: As per Energy Statistics 2015 (refer to http://mospi.nic.in/Mospi_New/upload/Energy_stats_2015_26mar15.pdf), waste-to-energy potential in India is estimated to be 2,556 MW, of which approximately 150 MW (around 6%) has been harnessed till March 2016.

The progress of waste-to-energy sector in India is dependent on resolution of MSW supply chain issues, better understanding of waste management practices, lowering of technology costs and flexible financial model. For the next two years, I am anticipating an increase of around 75-100 MW of installed capacity across India.

Power Today: On the technological front, what kinds of advancements are happening in the sector?

Salman Zafar: Nowadays, advanced thermal technologies like MBT, thermal depolymerisation, gasification, pyrolysis and plasma gasification are hogging limelight, mainly due to better energy efficiency, high conversion rates and less emissions. Incineration is still the most popular waste-to-energy technology, though there are serious emission concerns in developing countries as many project developers try to cut down costs by going for less efficient air pollution control system.

Power Today: What according to you, is the general sentiment towards setting up of Waste to Energy plants? Do you get enough cooperation from municipal bodies, since setting up of plants involves land acquisition and capital expenditure?

Salman Zafar: Waste-to-energy projects, be it in India or any other developing country, is plagued by NIMBY (not-in-my-backyard) effect. The general attitude towards waste-to-energy is that of indifference resulting in lukewarm public participation and community engagement in such projects.

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Lack of cooperation from municipalities is a major factor in sluggish growth of waste-to-energy sector in India. It has been observed that sometimes municipal officials connive with local politicians and ‘garbage mafia’ to create hurdles in waste collection and waste transport. Supply of poor quality feedstock to waste-to-energy plants by municipal bodies has led to failure of several high-profile projects, such as 6 MW MSW-to-biogas project in Lucknow, which was shut down within a year of commissioning due to waste quality issues.

Power Today: Do you think that government policies are in tandem when it comes to enabling this segment? What policies need to be changed, evolved or adopted to boost this sector?

Salman Zafar: A successful waste management strategy demands an integrated approach where recycling and waste-to-energy are given due importance in government policies. Government should strive to setup a dedicated waste-to-energy research centre to develop a lost-cost and low-tech solution to harness clean energy from millions of tons of waste generated in India.

The government is planning many waste-to-energy projects in different cities in the coming years which may help in easing the waste situation to a certain extent. However, government policies should be inclined towards inclusive waste management, whereby the informal recycling community is not robbed of its livelihood due to waste-to-energy projects.

Government should also try to create favourable policies for establishment of decentralized waste-to-energy plants as big projects are a logistical nightmare and more prone to failure than small-to-medium scale venture.

Note: This interview was originally published in June 2016 edition of Power Today magazine. The unabridged version is available at this link

Waste-to-Energy in China: Perspectives

garbage-chinaChina is the world’s largest MSW generator, producing as much as 175 million tons of waste every year. With a current population surpassing 1.37 billion and exponential trends in waste output expected to continue, it is estimated that China’s cities will need to develop an additional hundreds of landfills and waste-to-energy plants to tackle the growing waste management crisis.

China’s three primary methods for municipal waste management are landfills, incineration, and composting. Nevertheless, the poor standards and conditions they operate in have made waste management facilities generally inefficient and unsustainable. For example, discharge of leachate into the soil and water bodies is a common feature of landfills in China. Although incineration is considered to be better than landfills and have grown in popularity over the years, high levels of toxic emissions have made MSW incineration plants a cause of concern for public health and environment protection.

Prevalent Issues

Salman Zafar, a renowned waste management, waste-to-energy and bioenergy expert was interviewed to discuss waste opportunities in China. As Mr. Zafar commented on the current problems with these three primary methods of waste management used by most developing countries, he said, “Landfills in developing countries, like China and India, are synonymous with huge waste dumps which are characterized by rotting waste, spontaneous fires, toxic emissions and presence of rag-pickers, birds, animals and insects etc.” Similarly, he commented that as cities are expanding rapidly worldwide, it is becoming increasingly difficult to find land for siting new landfills.

On incineration, Zafar asserted that this type of waste management method has also become a controversial issue due to emission concerns and high technology costs, especially in developing countries. Many developers try to cut down costs by going for less efficient air pollution control systems”. Mr. Zafar’s words are evident in the concerns reflected in much of the data ­that waste management practices in China are often poorly monitored and fraudulent, for which data on emission controls and environmental protection is often elusive.

Similarly, given that management of MSW involves the collection, transportation, treatment and disposal of waste, Zafar explains why composting has also such a small number relative to landfills for countries like China. He says, “Composting is a difficult proposition for developing countries due to absence of source-segregation. Organic fraction of MSW is usually mixed with all sorts of waste including plastics, metals, healthcare wastes and industrial waste which results in poor quality of compost and a real risk of introduction of heavy metals into agricultural soils.” Given that China’s recycling sector has not yet developed to match market opportunities, even current treatment of MSW calls for the need of professionalization and institutionalization of the secondary materials industry.

While MSW availability is not an issue associated with the potential of the resource given its dispersion throughout the country and its exponential increase throughout, around 50 percent of the studies analyzed stated concerns for the high moisture content and low caloric value of waste in China, making it unattractive for WTE processes.

Talking about how this issue can be dealt with, Mr. Zafar commented that a plausible option to increase the calorific value of MSW is to mix it with agricultural residues or wood wastes. Thus, the biomass resources identified in most of the studies as having the greatest potential are not only valuable individually but can also be processed together for further benefits.

Top Challenges

Among the major challenges on the other hand, were insufficient or elusive data, poor infrastructure, informal waste collection systems and the lack of laws and regulations in China for the industry. Other challenges included market risk, the lack of economic incentives and the high costs associated with biomass technologies. Nevertheless, given that the most recurring challenges cited across the data were related to infrastructure and laws and regulations, it is evident that China’s biomass policy is in extreme need of reform.

China’s unsustainable management of waste and its underutilized potential of MSW feedstock for energy and fuel production need urgent policy reform for the industry to develop. Like Mr. Zafar says, “Sustainable waste management demands an integration of waste reduction, waste reuse, waste recycling, and energy recovery from waste and landfilling. It is essential that China implements an integrated solid waste management strategy to tackle the growing waste crisis”.

Future Perspectives

China’s government will play a key role in this integrated solid waste management strategy. Besides increased cooperation efforts between the national government and local governments to encourage investments in solid waste management from the private sector and foster domestic recycling practices, first, there is a clear need to establish specialized regulatory agencies (beyond the responsibilities of the State Environmental Protection Administration and the Ministry of Commerce) that can provide clearer operating standards for current WTE facilities (like sanitary landfills and incinerators) as well as improve the supervision of them.

It is essential that China implements an integrated solid waste management strategy to tackle the growing waste crisis

It is essential that China implements an integrated solid waste management strategy to tackle the growing waste crisis

Without clear legal responsibility assigned to specialized agencies, pollutant emissions and regulations related to waste volumes and operating conditions may continue to be disregarded. Similarly, better regulation in MSW management for efficient waste collection and separation is needed to incentivize recycling at the individual level by local residents in every city. Recycling after all is complementary to waste-to-energy, and like Salman Zafar explains, countries with the highest recycling rates also have the best MSW to energy systems (like Germany and Sweden).

Nevertheless, without a market for reused materials, recycling will take longer to become a common practice in China. As Chinese authorities will not be able to stop the waste stream from growing but can reduce the rate of growth, the government’s role in promoting waste management for energy production and recovery is of extreme importance.

Solid Waste Management in Pakistan

Karachi-Garbage-DumpSolid waste management situation in Pakistan is a matter of grave concern as more than 5 million people to die each year due to waste-related diseases. In Pakistan roughly 20 million tons of solid waste is generated annually, with annual growth rate of about 2.4 percent. Karachi, largest city in the country, generates more than 9,000 tons of municipal waste daily. All major cities, be it Islamabad, Lahore or Peshawar, are facing enormous challenges in tackling the problem of urban waste. The root factors for the worsening garbage problem in Pakistan are lack of urban planning, outdated infrastructure, lack of public awareness and endemic corruption.

Contributing Factors

Being the 6th most populated country in the world; there is a lot of consumerism and with it a great deal of waste being produced. Like other developing countries, waste management sector in Pakistan is plagued by a wide variety of social, cultural, legislative and economic issues.  In the country, more waste is being produced than the number of facilities available to manage it. Some of the major problems are:

  • There is no proper waste collection system
  • Waste is dumped on the streets
  • Different types of waste are not collected separately
  • There are no controlled sanitary landfill sites. Opening burning is common.
  • Citizens are not aware of the relationship between reckless waste disposal and resulting environmental and public health problems

As a result of these problems, waste is accumulating and building up on roadsides, canals, and other common areas and burning trash is common, causing hazardous toxins to be exposed thereby threatening human and environmental health. Among the already few landfill sites that are present, even fewer are in operation. Even within Pakistan’s capital, Islamabad, there are no permanent landfills to be found.

The waste on the roads allows for an ideal environment for various flies to thrive which effects both human health and the health of the environment for other species. The poor solid waste management in Pakistan has caused numerous diseases and environmental problems to rise.

Waste Management Situation in Lahore

In Lahore, the capital of Punjab and the second largest city in Pakistan, there are currently no controlled waste disposal facilities are formal recycling systems, though roughly 27% of waste (by weight) is recycled through the informal sector, Lahore does not have very high performing governmental management in the waste management situation. Instead, the City District Government Lahore established the Lahore Waste Management Company and left the responsibility of the Solid Waste Management in Lahore to them. Beginning in 2011, Lahore Waste Management Company strives to develop a system of SWM that ensures productive collection, recovery, transportation, treatment and disposal of the waste in Lahore.

Lahore Waste Management Company (LWMC) has over 10,000 field workers involved in waste collection and disposal. Though the LWMC is working in phases, 100% collection rates are not seen yet. Lahore currently only has three disposal sites which are no more than dumps, where illegal dumping and trash burning is common. However, there is some resource recovery taking place. It is estimated that 27% of dry recyclables are informally recycled within the city. Additionally a composting plant converts 8% of waste into compost.

In general, the governance over the Waste Management in Lahore is hardly present. Though there are current projects and plans taking place, by the Lahore Waste Management Company for example, in order to achieve a productive and sustainable system in the city it is necessary for all service providers (formal, private, and informal) to take part in decisions and actions.

Current Activities and Projects

According to the United Nations Environment Program, there are six current activities and plans taking place towards an efficient Waste Management System. These current activities are as follows:

  • Solid Waste Management Guidelines (draft) prepared with the support of Japan International Cooperation Agency (JICA), Japan.
  • Converting waste agricultural biomass into energy/ material source – project by UNEP, IETC Japan.
  • North Sindh Urban Services Corporation Limited (NSUSC) – Assisting the district government in design and treatment of water supply, sanitation and solid waste management
  • The URBAN UNIT, Urban Sector Policy & Management Unit P & D Department, Punjab. Conducting different seminars on awareness of waste water, sanitation & solid waste management etc.
  • Lahore Compost (Pvt.) Ltd. only dealing with the organic waste with the cooperation of city district government Lahore, Pakistan. The company is registered as a CDM project with UNFCCC.
  • Different NGOs are involved at small scale for solid waste collection, and recycling.

Additionally, in November 2013 a German company, agreed to invest in the installation of a 100 megawatt power plant which generates energy from waste from Lahore. Progress is being made on the country’s first scientific waste disposal site in Lakhodair. With this in mind, the Lahore Waste Management Company considered other possible technologies for their Waste-to-Energy project. They opened up applications for international companies to hire as the official consultant for LWMC and their project. The results of the feasibility study results showed that the power plant has the potential to process 1035 tons of municipal waste daily, and generate 5.50 megawatt electricity daily.

The Way Forward

Although SWM policies do exist, the levels at which they are implemented and enforced lack as a result of the governmental institutions lacking resources and equipment. These institutions are primarily led by public sector workers and politicians who are not necessarily the most informed on waste management. For improvements in municipal solid waste management, it is necessary for experts to become involved and assist in the environmental governance.

Due to the multiple factors contributing to the solid waste accumulation, the problem has become so large it is beyond the capacity of municipalities. The former director of the Pakistan Council of Scientific and Industrial Research, Dr. Mirza Arshad Ali Beg, stated, “The highly mismanaged municipal solid waste disposal system in Pakistan cannot be attributed to the absence of an appropriate technology for disposal but to the fact that the system has a lot of responsibility but no authority.” Laws and enforcement need to be revised and implemented. The responsibility for future change is in the hands of both the government, and the citizens.

Waste practices in the Pakistan need to be improved. This can start with awareness to the public of the health and environment impacts that dumped and exposed waste causes. It is imperative for the greater public to become environmentally educated, have a change in attitude and take action.











Green SMEs: Catalyst for Green Economy

Green SMEsWith ‘green’ being the buzzword across all industries, greening of the business sector and development of green skills has assumed greater importance all over the world. SMEs, startups and ecopreneurs are playing a vital role in the transition to a low-carbon economy by developing new green business models for different industrial sectors. Infact, young and small firms are emerging as main drivers of radical eco-innovation in the industrial and services sectors.

What are Green SMEs

Green SMEs adopt green processes and/or those producing green goods using green production inputs. A judicious exploitation of techno-commercial opportunities and redevelopment of business models, often neglected by established companies, have been the major hallmarks of green SMEs.

For example, SMEs operating in eco-design, green architecture, renewable energy, energy efficiency and sustainability are spearheading the transition to green economy across a wide range of industries. The path to green economy is achieved by making use of production, technology and management practices of green SMEs. Impact investment platforms, such as Swell Investing, allows individuals to invest in environmentally sustainable companies.

Categories of Green Industries

Environmental Protection Resource Management
Protection of ambient air Water management
Protection of climate Management of forest resources
Wastewater management Management of flora and fauna
Waste management Energy management
Noise and vibration abatement Management of minerals
Protection of biodiversity and landscape Eco-construction
Protection against radiation Natural resource management activities
Protection of soil, groundwater and surface water Eco-tourism
Environmental Monitoring and Instrumentation Organic agriculture
Research and Development Research and Development

Key Drivers

The key motivations for a green entrepreneur are to exploit the market opportunity and to promote environmental sustainability. A green business help in the implementation of innovative solutions, competes with established markets and creates new market niches. Green entrepreneurs are a role model for one and all as they combine environmental performance with market targets and profit outcomes, thus contributing to the expansion of green markets.

Some of the popular areas in which small green businesses have been historically successful are renewable energy production (solar, wind and biomass), smart metering, building retrofitting, hybrid cars and waste recycling.

As far as established green industries (such as waste management and wastewater treatment) are concerned, large companies tend to dominate, however SMEs and start-ups can make a mark if they can introduce innovative processes and systems. Eco-friendly transformation of existing practices is another attractive pathway for SMEs to participate in the green economy.

The Way Forward

Policy interventions for supporting green SMEs, especially in developing nations, are urgently required to overcome major barriers, including knowledge-sharing, raising environmental awareness, enhancing financial support, supporting skill development and skill formation, improving market access and implementing green taxation.

In recent decades, entrepreneurship in developing world has been increasing at a rapid pace which should be channeled towards addressing water, energy, environment and waste management challenges, thereby converting environmental constraints into business opportunities.

Why Steel Is An Environmentally-Friendly Building Material

If you are thinking about building a new home or office block, it is important that you are considering the effect that it will have on the environment. There are many different building materials that you can choose from but only some are energy efficient in the way that they are made. Here, we are going to look at some of the reasons why steel is a very environmentally-friendly building material. Keep reading to find out more about this material.

Less Waste

One of the most important reasons why steel is an environmentally-friendly building material is the fact that it tends to produce less waste. When you order steel from a company like Armstrong Steel, for example, you are only ordering exactly what you need. Their steel building kits provide you with the exact materials you need to assemble, so if you have any spare parts you’ve done something wrong!

This can mean that there is little to no waste in comparison to other building materials such as brick or wood. This is a great reason to consider using steel in your home.

Reduced Energy Usage

When you invest in steel as a building material, you are also ensuring that energy usage and costs are going to be much less in the future. This is great for those who are going to be living in the building or using it, as well as the environment as a whole.

Steel is a material that can be effectively insulated and so you don’t need to worry about losing any energy. This means that this building material is much more environmentally-friendly.

It Can Withstand Harsh Weather

Did you know that steel is an extremely durable material and so it has the ability to withstand harsh weather and stay standing for a long time? This means that you don’t need to worry about the steel building falling down in the event of flooding or snowstorm as it is built to last. With a longer-lasting material, you can be sure that your building will leave behind a much smaller carbon footprint.

Solar Panels Can Be Added

The final reason that steel is an environmentally-friendly building material is that it can have solar panels added very easily. Not every building material has this ability and so solar panels are often ignored for other types of energy.

With more buildings using solar energy to power utilities, the environment will be positively impacted. This is something to consider if you are thinking about building a steel building in the near future.

Final Verdict

Steel is one of the best eco-friendly building materials for buildings across the world for a number of reasons. If you are interested in doing what you can to save the planet then you might want to consider choosing steel for your next project. Think about how durable this material is and remember that steel is recyclable. Try steel in your next building and you will feel much better about your carbon footprint and the effect that you are having on the environment overall.

Waste to Energy Conversion Routes

Teesside-WTE-plantWaste-to-energy is the use of modern combustion and biological technologies to recover energy from urban wastes. There are three major waste to energy conversion routes – thermochemical, biochemical and physico-chemical. Thermochemical conversion, characterized by higher temperature and conversion rates, is best suited for lower moisture feedstock and is generally less selective for products. On the other hand, biochemical technologies are more suitable for wet wastes which are rich in organic matter.

Thermochemical Conversion

The three principal methods of thermochemical conversion are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air. The most common technique for producing both heat and electrical energy from household wastes is direct combustion.

Combined heat and power (CHP) or cogeneration systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity.


Combustion technology is the controlled combustion of waste with the recovery of heat to produce steam which in turn produces power through steam turbines. Pyrolysis and gasification represent refined thermal treatment methods as alternatives to incineration and are characterized by the transformation of the waste into product gas as energy carrier for later combustion in, for example, a boiler or a gas engine. Plasma gasification, which takes place at extremely high temperature, is also hogging limelight nowadays.

Biochemical Conversion

Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas.

Anaerobic digestion is a reliable technology for the treatment of wet, organic waste.  Organic waste from various sources is biochemically degraded in highly controlled, oxygen-free conditions circumstances resulting in the production of biogas which can be used to produce both electricity and heat.

In addition, a variety of fuels can be produced from waste resources including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues. Globally, biofuels are most commonly used to power vehicles, heat homes, and for cooking.

Physico-chemical Conversion

The physico-chemical technology involves various processes to improve physical and chemical properties of solid waste. The combustible fraction of the waste is converted into high-energy fuel pellets which may be used in steam generation. The waste is first dried to bring down the high moisture levels. Sand, grit, and other incombustible matter are then mechanically separated before the waste is compacted and converted into fuel pellets or RDF.

Fuel pellets have several distinct advantages over coal and wood because it is cleaner, free from incombustibles, has lower ash and moisture contents, is of uniform size, cost-effective, and eco-friendly.

Waste Management Challenges in Developing Nations

Waste is the result of collective failure from public, legislative rules, lack of funds and technical support. Public awareness and proper knowledge of waste management and end use of different types of waste, health effects, environmental problems and economic issues that are related to waste management is very important for successful execution of any waste management related practices. Everyone needs to get better knowledge, proper understanding of waste management issues and their practices to curb it. Basic training needs to be initiated from governments in this regard, which can be very effective. Poor knowledge can make the best planned technique questionable.

The increasing cost of waste disposal is a cause of major concern in developing nations

In developing countries, participation level of most citizens in waste management is very low, with residents in urban areas are not actively involved in the process of waste management. Even though it’s low, but very beneficial for future prospect and for more meaningful involvement of majority of public in waste management practices.

People should be educated about sorting out waste based on their type e.g. recyclable waste, hazardous waste, green waste etc. Majority of people across the world are not aware of waste as recycling material, amazingly most of them think plastic is recyclable waste. Involving people who are unaware of waste management practice is extremely difficult.

In developing countries, practices of waste management are usually carried by poor, for their survival. It has been estimated that 2% of population in Asia, Latin America and Africa are dependent on waste for their livelihood. Family organized, or individual manual scavengers are often involved with waste management practices with very limited supportive network and facilities with increased risk of health effects. Also, this practice prevents their children from further education.


Despite the bad consequences, it should be kept in mind that this practice keeps them employed and provide livelihood in countries with high unemployed population. But measure need to be taken to provide their better lifestyles, social behaviour towards people involved in waste management practices, provide them with facilities to reduce their health-related risk and increase their working efficiency.

In developing countries, where government support for waste management is scarce, people need to come strongly against their local municipal office or government if they see things are not changing and stacks of waste are piling up. They should protest to protect their environment, health and keep living secure and healthy for their children.

Recycling and Waste-to-Energy Prospects in Saudi Arabia

recycling-Saudi-ArabiaThe Kingdom of Saudi Arabia produces around 15 million tons of municipal solid waste (MSW) each year with average daily rate of 1.4 kg per person. With the current growing population (3.4% yearly rate), urbanization (1.5% yearly rate) and economic development (3.5% yearly GDP rate), the generation rate of MSW will become double (30 million tons per year) by 2033. The major ingredients of Saudi Arabian garbage are food waste (40-51 %), paper (12-28 %), cardboard (7 %), plastics (5-17 %), glass (3-5 %), wood (2-8 %), textile (2-6 %), metals (2-8 %) etc. depending on the population density and urban activities of that area.

In Saudi Arabia, MSW is collected and sent to landfills or dumpsites after partial segregation and recycling. The major portion of collected waste is ends up in landfills untreated. The landfill requirement is very high, about 28 million m3 per year. The problems of leachate, waste sludge, and methane and odor emissions are occurring in the landfills and its surrounding areas due to mostly non-sanitary or un-engineered landfills. However, in many cities the plans of new sanitary landfills are in place, or even they are being built by municipalities with capturing facilities of methane and leachate.

Recycling Prospects in Saudi Arabia

The recycling of metals and cardboard is the main waste recycling practice in Saudi Arabia, which covers 10-15% of the total waste. This recycling practice is mostly carried out by informal sector. The waste pickers or waste scavengers take the recyclables from the waste bins and containers throughout the cities. The waste recycling rate often becomes high (upto 30% of total waste) by waste scavengers in some areas of same cities. The recycling is further carried out at some landfill sites, which covers upto 40% of total waste by the involvement of formal and informal sectors.

The recycled products are glass bottles, aluminum cans, steel cans, plastic bottles, paper, cardboard, waste tire, etc. depending on the area, available facilities and involved stakeholders. It is estimated that 45 thousand TJ of energy can be saved by recycling only glass and metals from MSW stream. This estimation is based on the energy conservation concept, which means xyz amount of energy would be used to produce the same amount of recyclable material.

Waste-to-Energy Potential in Saudi Arabia

The possibilities of converting municipal wastes to renewable energy are plentiful. The choice of conversion technology depends on the type and quantity of waste (waste characterization), capital and operational cost, labor skill requirements, end-uses of products, geographical location and infrastructure. Several waste to energy technologies such as pyrolysis, anaerobic digestion (AD), trans-esterification, fermentation, gasification, incineration, etc. have been developed. WTE provides the cost-effective and eco-friendly solutions to both energy demand and MSW disposal problems.

As per conservative estimates, electricity potential of 3 TWh per year can be generated, if all of the KSA food waste is utilized in biogas plants. Similarly, 1 and 1.6 TWh per year electricity can be generated if all the plastics and other mixed waste (i.e. paper, cardboard, wood, textile, leather, etc.) of KSA are processed in the pyrolysis, and refuse derived fuel (RDF) technologies respectively.


Waste management issues in Saudi Arabia are not only related to water, but also to land, air and the marine resources. The sustainable integrated solid waste management (SWM) is still at the infancy level. There have been many studies in identifying the waste related environmental issues in KSA. The current SWM activities of KSA require a sustainable and integrated approach with implementation of waste segregation at source, waste recycling, WTE and value-added product (VAP) recovery. By 2032, Saudi government is aiming to generate about half of its energy requirements (about 72 GW) from renewable sources such as solar, nuclear, wind, geothermal and waste-to-energy systems.