Circular Economy: Past, Present and Future

For a society accustomed to the achievements of a linear economy, the transition to a circular economic system is a hard task even to contemplate. Although the changes needed may seem daunting, it is important to remember that we have already come a long way. However, the history of the waste hierarchy has taught that political perseverance and unity of approach are essential to achieving long term visions in supply chain management.

Looking back, it is helpful to view the significance of the Lansink’s Ladder in the light of the sustainability gains it has already instigated. From the outset, the Ladder encountered criticism, in part because the intuitive preference order it expresses is not (and has never been put forward as) scientifically rigorous. Opposition came from those who feared the hierarchy would impede economic growth and clash with an increasingly consumerist society. The business community expressed concerns about regulatory burdens and the cost of implementing change.

Circular-Economy

However, such criticism was not able to shake political support, either in Holland where the Ladder was adopted in the Dutch Environmental Protection Act of 1979, or subsequently across Europe, as the Waste Hierarchy was transposed into national legislation as a result of the revised Waste Framework Directive.

Prevention, reuse and recycling have become widely used words as awareness has increased that our industrial societies will eventually suffer a shortage of raw materials and energy. So, should we see the waste hierarchy as laying the first slabs of the long road to a circular economy? Or is the circular economy a radical new departure?

Positive and negative thinking

There have been two major transitionary periods in waste management: public health was the primary driver for the first, from roughly 1900 to 1960, in which waste removal was formalised as a means to avoid disease. The second gained momentum in the 1980s, when prevention, reuse and recovery came on the agenda. However, consolidation of the second transition has in turn revealed new drivers for a third. Although analysing drivers is always tricky – requiring a thorough study of causes and effects – a general indication is helpful for further discussion. Positive (+) and negative (-) drivers for a third transition may be:

(+) The development of material supply chain management through the combination of waste hierarchy thinking with cradle to cradle eco design;

(+) The need for sustainable energy solutions;

(+) Scarcity of raw materials necessary for technological innovation; and

(+) Progressive development of circular economy models, with increasing awareness of social, financial and economic barriers.

(-) Growth of the global economy, especially in China and India, and later in Africa;

(-) Continued growth in global travel;

(-) Rising energy demand, exceeding what can be produced from renewable energy sources and threatening further global warming;

(-) Biodiversity loss, causing a further ecological impoverishment; and

(-) Conservation of the principle of ownership, which hinders the development of the so-called ‘lease society’. 

A clear steer

As the direction, scale and weight of these drivers are difficult to assess, it’s necessary to steer developments at all levels to a sustainable solution. The second transition taught that governmental control appears indispensable, and that regulation stimulates innovation so long as adequate space is left for industry and producers to develop their own means of satisfying their legislated responsibilities.

The European Waste Framework Directive has been one such stimulatory piece of legislation. Unfortunately, the EC has decided to withdraw its Circular Economy package, which would otherwise now be on track to deliver the additional innovation needed to achieve its goals – including higher recycling targets. Messrs. Juncker and Timmermans must now either bring forward the more ambitious legislation they have hinted at, or explain why they have abandoned the serious proposals of their predecessors.

Perhaps the major differences between Member States and other countries may require a preliminary two-speed policy, but any differences in timetable between Western Europe and other countries should not stand in the way of innovation, and differences of opinion between the European Parliament and the Commission must be removed for Europe to remain credible.

Governmental control requires clear rules and definitions, and for legislative terminology to be commensurate with policy objectives. One failing in this area is the use of the generic term ‘recovery’ to cover product reuse, recycling and incineration with energy recovery, which confuses the hierarchy’s preference order. The granting of R1 status to waste incineration plants, although understandable in terms of energy diversification, turns waste processors into energy producers benefiting from full ovens. Feeding these plants reduces the scope for recycling (e.g. plastics) and increases COemissions. When relatively inefficient incinerators still appear to qualify for R1 status, it offers confusing policy signals for governments, investors and waste services providers alike.

The key role for government also is to set clear targets and create the space for producers and consumers to generate workable solutions. The waste hierarchy’s preference order is best served by transparent minimum standards, grouped around product reuse, material recycling or disposal by combustion. For designated product or material categories, multiple minimum standards are possible following preparation of the initial waste streams, which can be tightened as technological developments allow.

Where the rubber meets the road

As waste markets increase in scale, are liberalised, and come under international regulation, individual governmental control is diminished. These factors are currently playing out in the erratic prices of secondary commodities and the development of excess incinerator capacity in some nations that has brought about a rise in RDF exports from the UK and Italy. Governments, however, may make a virtue of the necessity of avoiding the minutiae: ecological policy is by definition long-term and requires a stable line; day to day control is an impossible and undesirable task.

The road to the third transition – towards a circular economy – requires a new mind-set from government that acknowledges and empowers individuals. Not only must we approach the issue from the bottom-up, but also from the side and above. Consumer behaviour must be steered by both ‘soft’ and ‘hard’ controls: through information and communication, because of the importance of psychological factors; but also through financial instruments, because both consumers and industry are clearly responsive to such stimuli.

Where we see opposition to deposit return schemes, it comes not from consumers but from industry, which fears the administrative and logistical burden. The business community must be convinced of the economic opportunities of innovation. Material supply chain management is a challenge for designers and producers, who nevertheless appreciate the benefits of product lifetime extensions and reuse. When attention to environmental risks seems to lapse – for example due to financial pressures or market failures – then politics must intervene.

Government and industry should therefore get a better grip on the under-developed positive drivers of the third transition, such as eco design, secondary materials policy, sustainable energy policy, and research and development in the areas of bio, info, and nanotechnologies. 

Third time’s the charm

Good supply chain management stands or falls with the way in which producers and consumers contribute to the policies supported by government and society. In order that producers and consumers make good on this responsibility, government must first support their environmental awareness.

The interpretation of municipal duty of care determines options for waste collection, disposal and processing. Also essential is the way in which producer responsibility takes shape, and the government must provide a clear separation of private and public duties. Businesses may be liable for the negative aspects of unbridled growth and irresponsible actions. It is also important for optimal interaction with the European legislators: a worthy entry in Brussels is valuable because of the international aspects of the third transition. Finally, supply chain management involves the use of various policy tools, including:

  • Rewarding good behaviour
  • Sharpening minimum standards
  • Development and certification of CO2 tools
  • Formulation and implementation of end-of-waste criteria
  • Remediation of waste incineration with low energy efficiency
  • Restoration or maintenance of a fair landfill tax
  • Application of the combustion load set at zero

‘Seeing is believing’ is the motto of followers of the Apostle Thomas, who is chiefly remembered for his propensity for doubt. The call for visible examples is heard ever louder as more questions are raised around the feasibility of product renewal and the possibilities of a circular economy.

Ultimately, the third transition is inevitable as we face a future of scarcity of raw materials and energy. However, while the direction is clear, the tools to be employed and the speed of change remain uncertain. Disasters are unnecessary to allow the realisation of vital changes; huge leaps forward are possible so long as government – both national and international – and society rigorously follow the preference order of the waste hierarchy. Climbing Lansink’s Ladder remains vital to attaining a perspective from which we might judge the ways in which to make a circle of our linear economy.

Note: The article is being republished with the permission of our collaborative partner Isonomia. The original article can be found at this link.

Progress of Waste-to-Energy in the USA

Rising rates of consumption necessitate an improved approach to resource management. Around the world, from Europe to Asia, governments have adapted their practices and policies to reflect renewability. They’ve invested in facilities that repurpose waste as source of energy, affording them a reliable and cheap source of energy.

This seems like progress, given the impracticality of older methods. Traditional sources of energy like fossil fuels are no longer a realistic option moving forward, not only for their finite nature but also within the context of the planet’s continued health. That said, the waste-to-energy sector is subject to scrutiny.

We’ll detail the reasons for this scrutiny, the waste-to-energy sector’s current status within the United States and speculations for the future. Through a concise analysis of obstacles and opportunities, we’ll provide a holistic perspective of the waste-to-energy progress, with a summation of its positive and negative attributes.

Status of Waste-to-Energy Sector

The U.S. currently employs 86 municipal waste-to-energy facilities across 25 states for the purpose of energy recovery. While several have expanded to manage additional waste, the last new facility opened in 1995. To understand this apparent lack of progress in the area of thermochemical treatment of MSW, budget represents a serious barrier.

One of the primary reasons behind the shortage of waste-to-energy facilities in the USA is their cost. The cost of construction on a new plant often exceeds $100 million, and larger plants require double or triple that figure to build. In addition to that, the economic benefits of the investment aren’t immediately noticeable.

The Palm Beach County Renewable Energy Facility is a RDF-based waste-to-energy (WTE) facility.

The U.S. also has a surplus of available land. Where smaller countries like Japan have limited space to work within, the U.S. can choose to pursue more financially viable options such as landfills. The expenses associated with a landfill are far less significant than those associated with a waste-to-energy facility.

Presently, the U.S. processes 14 percent of its trash in waste-to-energy (WTE) plants, which is still a substantial amount of refuse given today’s rate of consumption. On a larger scale, North America ranks third in the world in the waste-to-energy movement, behind the European nations and the Asia Pacific region.

Future of WTE Sector

Certain factors influence the framework of an energy policy. Government officials have to consider the projected increase in energy demand, concentrations of CO2 in the atmosphere, space-constrained or preferred land use, fuel availability and potential disruptions to the supply chain.

A waste-to-energy facility accounts for several of these factors, such as space constraints and fuel availability, but pollution remains an issue. Many argue that the incineration of trash isn’t an effective means of reducing waste or protecting the environment, and they have evidence to support this.

The waste-to-energy sector extends beyond MSW facilities, however. It also encompasses biofuel, which has seen an increase in popularity. The aviation industry has shown a growing dedication to biofuel, with United Airlines investing $30 million in the largest producer of aviation biofuel.

If the interest of United Airlines and other companies is any indication, the waste-to-energy sector will continue to expand. Though negative press and the high cost of waste-to-energy facilities may impede its progress, advances in technology promise to improve efficiency and reduce expenses.

Positives and Negatives

The waste-to-energy sector provides many benefits, allowing communities a method of repurposing their waste. It has negative aspects that are also important to note, like the potential for pollution. While the sector offers solutions, some of them come at a cost.

It’s true that resource management is essential, and adapting practices to meet high standards of renewability is critical to the planet’s health. However, it’s also necessary to recognize risk, and the waste-to-energy sector is not without its flaws. How those flaws will affect the sector moving forward is critical to consider.

Waste Management Outlook for Nigeria

waste-nigeriaNigeria, the most populous country in Africa with population exceeding 182 million people, is grappling with waste management issues. The country generates around 43.2 million tonnes of waste annually. By 2025 with a population of 233.5 million, Nigeria will be generating an estimated 72.46 million tonnes of waste annually at a projected rate of 0.85 kg of waste/capita/day. This means that Nigeria annual waste generation will almost equal its crude oil production which currently stands at approximately 89.63 million tonnes per year.

Also, at an estimated annual waste generation figure of 72.46 million tonnes, Nigeria will be generating about one-fourth of the total waste that will be produced in the whole of Africa. This is scary and if proper attention is not paid to this enormous challenge, Nigeria might become the “Waste Capital of Africa”.

Waste is a Resource for Nigeria

Nonetheless, this challenge can be turned into a blessing because waste is a resource in disguise. If its potential is properly tapped, waste management can create employment, enable power generation, create a waste-based economy and contribute to economic diversification which Nigeria. There is no doubt that this is achievable because we have examples of countries already utilizing their waste judiciously.

Some good examples of sustainable waste management systems that can be implemented in Nigeria includes (1) Shanghai (China) which turn 50% of the waste generated into power generation electrifying 100,000 homes; (2) Incheon (South Korea) where its Sudokwon landfill receives about 20,000 tons of waste daily which is converted into electric power, has a water recycling and desalination facility, and has created more than 200 jobs; (3) Los Angeles (USA) which produces electric power enough for 70,000 homes in its Puente Hills landfill; (4) Germany whose sophisticated waste processing systems through recycling, composting, and energy generation has already saved the country 20% of the cost of metals and 3% of the cost of energy imports; (5) Austria, though a small country, is doing big things in waste management especially through recycling; (6) Sweden, whose recycling is so revolutionary that the country had to import waste; and (7) Flanders, Belgium which possesses the best waste diversion rate in Europe with 75% of their waste being reused, recycled or composted. An interesting fact is that per capita waste generation rate in Flanders is more than twice that of Nigeria at 1.5 kg/day.

Waste Management Outlook for Nigeria

Below are some of the major things the government need to do to judiciously utilize the free and abundant resource available in the form of trash in Nigeria:

Firstly, attention needs to be paid to building the human resource potential of the country to build the required capacity in conceptualizing fit-for-purpose innovative solution to be deployed in tackling and solving the waste challenge.

While knowledge exchange/transfer through international public private partnership is a possible way in providing waste management solution, it is not sustainable for the country especially because there is already an unemployment problem in Nigeria. Hence, funding the training of interested and passionate individuals and entrepreneurs in waste management is a better way of tackling the waste crisis in Nigeria.

Olusosun is the largest dumpsite in Nigeria

The Federal Government through the Petroleum Trust Development Fund (PTDF) and National Information Technology Development Agency (NITDA) of the Ministry of Communication currently sponsor students to study oil and gas as well as information technology related subjects in foreign countries in the hope of boosting manpower in both sectors of the economy. The same approach should be used in the waste management sector and this can be handled through the Federal Ministry of Environment.

Interestingly, waste generation is almost at par with crude oil production in Nigeria. Therefore, equal attention should be paid to waste-to-wealth sector. Needless to say, this is important as there is no university in Nigeria currently offering waste management as a stand-alone course either at undergraduate or postgraduate level.

Secondly, there is an urgent need for a strong National Waste Management Strategy to checkmate the different types of waste that enters the country’s waste stream as well as the quantity of waste being produced. To develop an effective national waste strategy, a study should be carried out to understand the country’s current stream of waste, generation pattern, and existing management approach. This should be championed by the Federal Ministry of Environment in conjunction with State and Local Government waste management authorities.

Once this is done, each State of the Federation will now integrate their own individual State Waste Management Plan into that of the Federal Government to achieve a holistic waste management development in Nigeria. By so doing, the government would also contribute to climate change mitigation because the methane produced when waste degrades is 25 times more potent than carbon dioxide (a major greenhouse gas known to many and contributor to global warming).

Finally, the government needs to support existing waste management initiatives either through tax-holiday on major equipment that need to be imported for their work and/or on their operation for a certain period of time. Also, if workable, the government can float a grant for innovative ideas and provide liberal subsidies in waste management to jumpstart the growth of the sector.

Lastly, the Government of Nigeria can raise a delegation of experts, entrepreneurs, industry professionals, academia, and youngsters to visit countries with sound waste management strategy for knowledge sharing, capacity-building, technology transfer and first-hand experience.

Note: The unedited version of the article can be found at this link

Why Going Green is the Best Thing You Can Do for Your Community

college-greenAs we go about our daily lives, it’s always a good idea to think about how we can contribute to the community we belong to in tangible and appreciable ways. Improving our communities from the inside not only allows us to make things easier and more convenient for ourselves, but also for the people we meet and rely upon in our day-to-day. Besides this, it also helps us think of other people’s needs rather than just our own—an essential need if we’re to live happy and productive lives. One of the best ways of improving our communities is, of course, going green: the act of adopting an environmentally-friendly lifestyle. This means taking active steps to minimize our carbon footprint and reducing waste.

It doesn’t have to start out big—we can start with the smaller things, and work our way up from there. Instead of buying new printer ink cartridges, for example, we can try using compatible ink cartridges instead. These are ink cartridges that are made the same way as new printer ink cartridges, but cost way less to make than branded ones. Instead of throwing away our old or obsolete electronics and electrical goods, we can look into getting them repaired. Another example of that is to refurbish old drones instead of buying new.

By taking up these eco-friendly practices, our communities will become cleaner, more energy-efficient, and much healthier places to live in, alongside other very practical and tangible benefits that everyone will appreciate.

Not convinced? Well, hopefully listing out those benefits in full below will convince you. Read on as we go through all the biggest reasons why going green is the best thing you can do for your community.

A healthier community

Enacting green and eco-friendly practices in your community will have the immediate effect of making it healthier for the individuals who live in it, enabling them to live longer, happier, and more productive lives. This can be considered as the most important benefit, seeing as we can tie so many health conditions and diseases to having an environmentally-negligent lifestyle. By going green, you can avoid these potential risks from taking hold in your community.

For example, recycling and minimizing trash or garbage helps makes your immediate surroundings cleaner and more attractive to look at. This causes disease-carrying pests such as insects and rodents to be driven away from your community, which then results in less people catching those diseases.

Another example is having the vehicles in your community switch to more eco-friendly fuel types will result in cleaner and healthier air, as well as reduce the chances of children and the elderly from getting respiratory diseases. These and a whole lot more are attainable by going green.

Savings on utility bills and other expenses

One of the main tenets of going green is to be conservative when it comes to the usage of utilities, such as electricity, gas, water, and so on. It goes without saying that using too much of these obviously strains the environment.

For example, the excessive and unnecessary use of electricity when it’s clearly not needed increases the power demand from power plants, which in turn increases the amount of fuel being used to supply that energy. This uses up our remaining fossil fuels at an alarming rate, while also depositing more pollutants into the atmosphere and environment. The same goes for gas and other utilities.

By being smarter and more conscious about using these precious resources in our homes, we can reduce the impact we have on the environment by quite a large degree. It will help ease the strain our environment is currently experiencing in providing us these resources and ensure that they don’t run out as quickly as they would have if we continued being unnecessarily wasteful with our usage.

Besides this, conserving energy and resources also helps us save on our utility bills. Obviously, the less power, water, and gas we use in our day-to-day, the less we’ll be charged when our monthly bills come in. Up to 20% of expanses per household, according to the US Environmental Protection Agency, are saved, especially if we adopt changes such as using solar panels rather than relying on our electrical grid. This is a huge chunk of money no matter how you slice it!

Durable and stronger homes and and structures

Let’s not mince words about it: eco-friendly and environmentally-conscious “green” products are more expensive than the brands that have an easier time fitting into our budget. However, we must consider that the former is also much more durable than the latter, which will inevitably result in a lot of savings in the long run.

This can be seen the most in construction building materials, especially those involved in the building and repair of homes. For example, recycled decking, which is made from recycled plastic and wooden fibers, have been tested to last five times longer than traditional decking.

Bamboo, a self-sustaining perennial grass that can grow up to three feet in 24 hours, is lighter than most building materials and yet has greater compressive strength than brick and concrete. The best part about it is that it grows faster than it can be harvested, meaning that there’s no danger of running out of it anytime soon, no matter how extensively it’s used.

By creating your community’s homes and structures using these eco-friendly materials, you can help save the environment while also ensuring that the homes and shelters will last for as long as they’re needed.

A self-sufficient community

It’s a fact of life that we have to rely on big companies to get us the modern conveniences and essentials we need to get through the day. However, by going green, we can help reduce our reliance on them and become more independent in our lives.

For example, taking the initiative to install solar panels in every home in your community will allow it to become less dependent on the power that companies provide you with electricity. With enough time, your community will be generating enough excess power that the same company will be paying you for that excess. There’s also the fact that if something goes wrong with the power plant, your community won’t be subjected to the same annoying and disruptive blackout that other surrounding neighborhoods will be, as you’ll have enough solar power to last you the entire time.

Let’s say you’re not quite at that level yet, in terms of going green. How about supporting your local markets rather than your nearby supermarket? By doing so, you ensure that the food-growing sector of your community continues to earn a living while also retaining the ability to keep growing natural and organic produce. Doing so also cuts down on harmful emissions, as you won’t have to travel by car just to get the fresh food you need. Your community retains its independence while helping the environment.

Conclusion

There are many ways to improve one’s community from the inside, with one of the major and more effective ones being able to adopt eco-friendly and environmentally-conscious practices. By doing so, not only does the community benefit hugely in the end in terms of health, sustainability, and independence from big companies, but the environment as well.

Unending Benefits of Recycling Cooking Oil

Disposal of cooking oil is not an easy task. If you try to drain it, it will block your sink drains and cause you immense plumbing problems. Throwing it away is also not a good idea because it causes damage to the environment. Cooking oil cannot go to your usual recycle trash bin like other trash because the processes of recycling it are different. However, there are better ways of recycling cooking oil without harming the environment. You can have it recycled. If you are not able to do it by yourself, there are companies that offer cooking oil recycling services.

Benefits of recycling cooking oil

Recycling companies, like MBP Solutions, turn cooking oil into other products like stock feed, cosmetics and biofuel.  They also filter the oil for reuse. If you are not in any position to recycle your cooking oil, do not drain it down the sink or throw it in your waste bin. Wrap your cooking oil in a tight jar, make sure there are no spills and call the right people to come and collect it. MBP Solutions recycles both commercial and residential cooking oils.

Recycling cooking oil comes with several benefits. The technology used to recycle the oil is advanced and the final products help in both businesses and homes.

Below are some of the major benefits of recycling of cooking oil:

Renewable energy

Recycling cooking oil turns it into renewable energy used in many manufacturing firms for processing their products. One of the most notable fuels is biodiesel, which is from used oils, grease, animal fats and vegetable oils among others. Vehicles that use diesel can use this fuel effectively and businesses that use diesel-powered machines can use the fuel without any fear of harmful emissions.

Cleaner environment

We all need a clean environment and it is not what we always get. Fuels are some of the major contributor to health hazards because of emissions. Petro-diesel is very toxic as compared to biodiesel. Biodiesel is eco-friendly and does not damage a vehicle’s engine. Petro-diesel on the other hand, produces chemical compounds like sulphur that are acidic. This acid can spoil the engine. Biodiesel is a result of green technology and keeps everything safe.

Saves costs

Recycling cooking oil saves costs in many ways. At home, you can reduce your disposal costs by calling a recycling company to come for your waste oil. If you try to dispose of the oil by yourself, you may end up spending more on extra waste bins, transportation and special disposal procedures.

Companies that use recycled oil have a chance of preventing their equipment from spoiling faster than they did before the recycled oil. Maintenance costs go down and recycled oil like biodiesel is much cheaper as compared to the other kinds of imported fuels.

Creates jobs

Disposing of waste materials and recycling them is one way of creating jobs for the masses. Instead of using that money to import petro-diesel, the government uses the money to employ more people to recycle oil into more beneficial biodiesel.

Make money out of it

You can make an extra buck out of disposing your used oil. Instead of throwing your oil away, look for companies that recycle the oil and pay you for it. This will also save you on transport costs to go and dispose of your oil, because the recycling companies come to pick it up.

Wrapping it up

The most important factor about recycling is that we are working towards one goal. That goal is to maintain a greener, healthier and cleaner environment. That is our goal and recycling cooking oil is one way of doing that.

Insights into MSW-to-Energy

You know the saying: One person’s trash is another’s treasure. When it comes to recovering energy from municipal solid waste — commonly called garbage or trash— that treasure can be especially useful. Instead of taking up space in a landfill, we can process our trash to produce energy to power our homes, businesses and public buildings.

In 2015, the United States got about 14 billion kilowatt-hours of electricity from burning municipal solid waste, or MSW. Seventy-one waste-to-energy plants and four additional power plants burned around 29 million tons of MSW in the U.S. that year. However, just 13 percent of the country’s waste becomes energy. Around 35 percent is recycled or composted, and the rest ends up in landfills.

Recovering Energy Through Incineration

The predominant technology for MSW-to-energy plants is incineration, which involves burning the trash at high temperatures. Similarly to how some facilities use coal or natural gas as fuel sources, power plants can also burn MSW as fuel to heat water, which creates steam, turns a turbine and produces electricity.

Several methods and technologies can play a role in burning trash to create electricity. The most common type of incineration plant is what’s called a mass-burn facility. These units burn the trash in one large chamber. The facility might sort the MSW before sending it to the combustion chamber to remove non-combustible materials and recyclables.

These mass-burn systems use excess air to facilitate mixing, and ensure air gets to all the waste. Many of these units also burn the fuel on a sloped, moving grate to mix the waste even further. These steps are vital because solid waste is inconsistent, and its content varies. Some facilities also shred the MSW before moving it to the combustion chamber.

Gasification Plants

Another method for converting trash into electricity is gasification. This type of waste-to-energy plant doesn’t burn MSW directly, but instead uses it as feedstock for reactions that produce a fuel gas known as synthesis gas, or syngas. This gas typically contains carbon monoxide, carbon dioxide, methane, hydrogen and water vapor.

Approaches to gasification vary, but typically include high temperatures, high-pressure environments, very little oxygen and shredding MSW before the process begins. Common gasification methods include:

  • Pyrolysis, which involves little to no oxygen, partial pressure and temperatures between approximately 600 and 800 degrees Celsius.
  • Air-fed systems, which use air instead of pure oxygen and temperatures between 800 and 1,800 degrees Celsius.
  • Plasma or plasma arc gasification, which uses plasma torches to increase temperatures to 2,000 to 2,800 degrees Celsius.

Syngas can be burned to create electricity, but it can also be a component in the production of transportation fuels, fertilizers and chemicals. Proponents of gasification report that it is a more efficient waste-to-energy method than incineration, and can produce around 1,000 kilowatt-hours of electricity from one ton of MSW. Incineration, on average, produces 550 kilowatt-hours.

Challenges of MSW-to-Energy

Turning trash into energy seems like an ideal solution. We have a lot of trash to deal with, and we need to produce energy. MSW-to-energy plants solve both of those problems. However, a relatively small amount of waste becomes energy, especially in the U.S.

Typical layout of MSW-to-Energy Plant

This lack may be due largely to the upfront costs of building a waste-to-energy plant. It is much cheaper in the short term to send trash straight to a landfill. Some people believe these energy production processes are just too complicated and expensive. Gasification, especially, has a reputation for being too complex.

Environmental concerns also play a role, since burning waste can release greenhouse gases. Although modern technologies can make burning waste a cleaner process, its proponents still complain it is too dirty.

Despite these challenges, as trash piles up and we continue to look for new sources of energy, waste-to-energy plants may begin to play a more integral role in our energy production and waste management processes. If we handle it responsibly and efficiently, it could become a very viable solution to several of the issues our society faces.

Optimizing Any Outdoor Venue for Maximum Recycling Potential

Concerts, outdoor festivals and other gatherings with large numbers of people can generate an immense amount of waste. Not only is this wasteful potentially off-putting and unsanitary, but it can cause damage to both the environment and the appeal of the venue.

Many event organizers and planners focus on maximizing the appeal of their events via marketing, big names and other elements designed to draw in crowds. However, any outdoor event in particular must take into account the challenges posed by waste management and recycling in order to ensure sanitary and environmentally-friendly conditions.

In order to maximize the recycling potential of any outdoor venue, the following actions should be considered by any planning team prior to the event.

Partner with Green Waste Removal Companies

One of the biggest ways any event organizer(s) can contribute toward energy efficiency and more environmentally-friendly outcomes is to procure the services of a green waste disposal service.

Anyone who has organized an outdoor event before – especially in an open space or other area where standard permanent facilities do not exist – understands the need for waste disposal. Companies such as Satellite Industries provide on-site portable restroom services that dispose of waste in efficient and environmentally-friendly ways.

Some companies even use this bio-waste to create clean energy from the output, helping to further minimize its impact on the environment.

Position Recycling Bins Ideally

Virtually every outdoor venue generates large amounts of waste. From bottles and cans to miscellaneous items that find their way onto the ground or in trash cans, it can be a mess. When planning any outdoor event, organizers will have full control over where the flow of traffic is and how/where people congregate.

With this knowledge available, event planners can take steps to ensure that recycling bins and containers are optimally positioned throughout the premises to capture the largest amount of waste possible. Depending on the event and its offerings, you may need separate containers for aluminum, plastic, paper and/or glass.

Ask for Help

Especially true when coordinating events for charities, local organizations and non-profits, a small volunteer force may be both obtainable and very useful in facilitating recycling. With the help of a few volunteers, a team can scour the venue during and after the event in order to retrieve recyclables from the receptacles. In addition, these volunteers can also help with any litter found on the grounds during the event, thereby minimizing the amount of clean-up time after the event has concluded.

Contact Local Recycling Centers

Your local recycling center, landfill or governmental body may have additional resources to provide in the pursuit of improving recycling at an event. Some cities have independent recycling agencies that offer free receptacles and pick-up for recycled goods. Others offer comprehensive guides on how to position recycling areas and maximize participation from event attendees. Even the federal government offers recycling resources to those who wish to improve waste outcomes.

Outdoor festivals, such as Glastonbury, generates a tremendous amount of waste.

Ultimately, this information and assistance can go a long way toward maximizing recycling at any event, as these entities will have plenty of expertise and experience in these areas. Such advice can help further improve environmentally-friendly outcomes and reduce the incidence of waste at any event.

The massive amount of potential waste generated during any outdoor event can be disruptive both to the event and the environment. Event organizers who want to maximize cleanliness and environmental friendliness can take steps to reduce the amount of discarded materials that end up in landfills and other centers. By working with local agencies, procuring volunteers, partnering with waste removal agencies and using recycling bins efficiently, the overall amount of waste at any outdoor event can be substantially reduced.

Towards Sustainable Pharmaceutical Management

The pharmaceutical industry has a substantial impact on the environment, especially when the materials used to make them and the chemicals that comprise make their way directly into the environment. The pharmaceutical industry at large as well as average consumer can take steps to make of use of medicine more sustainable through both significant and relatively minor changes.

Medicines and the Environment

The drugs that we consume naturally enter our environment as our body turns them to waste. This issue becomes exacerbated when people intentionally dispose of unused medicine by flushing it down the drain.

Although our water treatment systems are designed to take contaminants out of our wastewater before we re-introduce to the natural environment, some still get through. These contaminants, which include those in medications, can damage the ecosystems they end up in.

High levels of estrogen in waters due to birth control, for example, can hamper the ability of fish to reproduce, reducing their population size. Once those chemicals find their way into the water, they enter the food chain and eventually impact animals that live on land too, including humans.

Plants will absorb the chemicals from medications. Animals then eat these plants or drink the water and ingest the contaminants. Humans might drink the water or eat the plants or animals, making pollution from pharmaceuticals a human health hazard as well. This problem becomes worse in the summer when livestock such as cattle require two to three times as much water as they do during other times of the year.

Proper Disposal of Medicines

If you have unused medications that you need to get rid of, don’t flush them down the drain or throw them straight into the trash. The U.S. Food and Drug Administration (FDA) recommends one of several other options for the safe and sustainable disposal of medicines.

Some communities have drug take-back programs that the Drug Enforcement Administration (DEA) approves. Some pharmacies also allow you to mail in or dispose of unused medications at kiosks. The DEA also organizes a national drug take-back day.

Although certain medications have recommendations on the label to flush them, you can dispose of the majority of them in your regular trash at home. The FDA recommends mixing them with something unpalatable such as dirt, kitty litter or coffee grounds in a plastic bag that you can seal. This disguises the drugs and prevents pets from getting into them. You can then throw the bag away.

If you are a throwing away a prescription medication container, be sure to scratch out all potentially identifying information to protect your privacy and identity.

Using Medicines More Sustainably

Another option for reducing the impact your use of medicine has on the environment is to use less of it or use more environmentally friendly medications.

To use less medicine, only use it when you truly need it and try substituting natural remedies for pharmaceuticals. Reach for naturally derived treatments such as essential oils, vitamins, herbs or a cup of hot tea. Always consult with your doctor before changing your medication regimen.

As a long-term strategy, regular exercise and a healthy diet can do wonders in improving your overall health and decreasing your need to take medicines.

Sustainability from the Industry’s Perspective

Of course, making the pharmaceutical industry more sustainable isn’t the sole responsibility of the consumer. The industry can also change its practices to manage pharmaceuticals in a more environmentally friendly fashion.

One aspect of this involves energy use. The manufacturing and transportation of medications can be extremely energy-intensive. By using energy more efficiently and using cleaner energy, drug companies can reduce their environmental impact.

Pharmaceutical industry can change its practices to manage pharmaceuticals in a more ecofriendly manner.

These corporations can also make an effort to include more eco-friendly substances in their medications. While they may not be able to remove every non-natural chemical from their products, they can offer greener alternatives to consume and look into reducing the presence of damaging substances as much as possible.

This applies not only to the organizations closest to the consumers but to the entire supply chain.

Medications are often vital to our health, but it can also have a negative impact on the health of our environment. Taking steps to manage pharmaceuticals more sustainably can enable us to protect our own well-being as well as that of our environment.

Unending Benefits of Biomass Energy

Biomass is material originating from plant and animal matter. Biomass energy uses biomass to create energy by burning organic materials. The heat energy released through burning these materials can heat homes or water. Heated water produces steam, which in turn can generate electricity. Using organic materials to create heat and power is an eco-friendlier alternative compared to using fossil fuels.

Indefinitely Renewable

The majority of the world’s energy comes from burning fossil fuels. Fossil fuels are a finite resource. Once fossil fuel resources run out, new fuel sources will be needed to meet global energy demands. Biomass offers a solution to meet this need.

Organic waste material from agriculture and logging operations, animal manure, and sludge from wastewater treatment are all viable fuels for generating biomass energy. As long as the earth is inhabited, these materials will be readily available.

Reduce, Reuse, Recycle

Waste organic material that would typically be disposed of in landfills could be redirected for biomass energy use. This reduces the amount of material in landfills and slows the rate at which landfills are filled. Some of the most common waste products used for biomass energy are wood chips and agricultural waste products. Wood materials can easily be converted from already existing wood structures that will be destroyed, such as wooden furniture and log cabins, preferably both would also come from responsible logging and practices as well.

As more organic material is diverted from landfills, the number of new landfills needed would be reduced. Older landfills are at risk for leaking leachate. Leachate contains many environmental pollutants that can contaminate groundwater sources.

Burning fossil fuel releases carbon into the atmosphere which was previously trapped below ground. Trapped carbon isn’t at risk for contributing to global climate change since it can’t interact with air. Each time fossil fuels are burned, they allow previously trapped carbon to enter the atmosphere and contribute to global climate change. In comparison, biofuel is carbon-neutral.

The materials used to create biomass energy naturally release carbon into the environment as they decompose. Living plants and trees use carbon dioxide to grow and release oxygen into the atmosphere. Carbon dioxide released by burning organic material will be absorbed by existing plants and trees. The biomass cycle is carbon-neutral as no new carbon is introduced to the system.

Smaller Carbon Footprint

The amount of unused farmland is increasing as agriculture becomes more efficient. Maintaining open land is expensive. As a result, farmers are selling off their property for new developments. Unused open agricultural land could be used to grow organic material for biofuels.

Converting open tracts of land to developed areas increases the amount of storm-water runoff. Storm-water runoff from developed areas contains more pollutants than storm-water runoff from undeveloped areas. Using open areas to grow biomass sources instead of creating new developments would reduce water pollution.

Biomass-Resources

A quick glance at popular biomass resources

Forested areas also provide sources of biofuel material. Open land converted to sustainable forestry would create new animal habitats and offset carbon emissions from existing fossil fuel sources as more plants and trees would be available to absorb carbon dioxide.

Societal Benefits

Burning fossil fuels releases sulfur dioxide, mercury and particulate matter into the atmosphere which can cause asthma, cancer and respiratory problems. Biomass energy emits less harmful byproducts compared to fossil fuels, which means cleaner air and healthier people.

Biofuel can improve rural economies by providing more people with unused land the opportunity to grown biomass material for energy use. Workers would be needed to harvest and process the materials needed to generate biofuel.

Since biofuel is a renewable energy source, energy providers can receive tax credits and incentives. Countries with land resources will be less reliant on foreign fossil fuel providers and can improve their local economies.

Increasing biofuel energy usage can reduce forest fires. Selectively reducing brush can still reduce the risk of wildfires spreading. Exposing underbrush and groundcover to rainfall decreases the change of it drying out and creating optimal, fire spreading conditions.

Denmark and Biomass Energy

Denmark is an example of how effective biomass energy can be in developing energy efficiency. Approximately 70 percent of renewable-energy consumption in Denmark comes from biomass.

Woody biomass creates an increasing percentage of heating from combined heat and power (CHP) plants with a goal to for 100 percent of hearing to be derived from woody biomass by 2035. Another form of biomass is agricultural biomass. This form utilizes materials such as straw and corn to create end-products like electricity, heating and biofuels.

The Danish Energy Agency has developed a plan including four scenarios that will help Denmark become fossil fuel free by 2050. The biomass scenario involves CHP for electricity and district heating, indicating that biomass energy is important in Denmark’s energy sector today and will play an increasingly important role in the future.

Biomass offers an eco-friendly and renewable method of reducing pollution and the effects of global climate change. And, like other forms of renewable energy, the products needed to develop biomass energy are readily available.

Product Life-Cycle Assessment: Closing the Loop

product-life-cycle-assessmentIf you’re interested in green and environmental issues you may have heard the phrase ‘life-cycle assessment’ in relation to a particular product. It can be difficult to ascertain exactly what this life-cycle assessment involves – so we’re hoping to shed some light on the process, the different types of assessment that take place and explain what’s involved with each step.

A look at the bigger picture

Essentially, a product life-cycle assessment takes an overall view of that item’s impact on the environment – and in doing so, offers a true picture of how green that product really is. The aim is for consumers, manufacturers and policy makers to be given a true environmental picture of any product.

Although it’s an example that divides the opinion of environmentalists around the world, the Toyota Prius provides an interesting picture of why the product life-cycle assessment is required in a world driven by a company’s desire to be seen as green. The Prius is an electric-hybrid car which Toyota claims delivers an impressive 60 miles per gallon of fuel – a statistic that puts it as a firm environmental favourite.

However, there are claims that the construction methods used to create the batteries that power the Prius are hugely detrimental to the environment – with some sources saying the manufacturing plant impacts the environment so greatly that by the time a Prius is driven from the showroom – it’s already had the environmental impact it would take any other car 1,000 gallons of fuel to match.

What’s the verdict?

So, is the Prius good or bad? That’s not for us to decide – and we’re not suggesting one way or another, we’re simply using this as an illustration of how complex any environmental consideration can be in a product with such an intensive manufacturing process and prolonged lifespan. At the other end of the calculation you’d have to consider how long the Prius will run for – and whether that balances a supposedly negative building method.

Ingredients of product life-cycle assessment

The assessment is ordinarily broken down into different stages:

Extraction and processing of raw materials

This is a full understanding of the journey from source to point of manufacture that the building blocks of any product take. For example, in the manufacture of a table you would begin by looking at the trees that provide the wood, the logging process that takes them from forest to timber yard and the impact of the machinery used throughout that process.

You would repeat this process for every raw material that goes into the table’s manufacture.

Manufacturing

Next comes the manufacturing itself – if machinery or any industrial process is used to piece our table together then resources used in that process must be considered when we look at the overall impact of the product on the environment.

Packaging

The packaging that a product is delivered in is effectively another product in itself. Although unlikely in our table example, it’s not uncommon for extravagant packaging to represent 10-20% of a product’s recommended retail price. Curtis Packaging, an award-winning UK based sustainable packaging company suggest manufacturers pay careful consideration to the impact of packaging on a product’s overall green credentials – from raw materials to the point of disposal, the packing that adorns your product can have serious environmental considerations.

Marketing

At first glance you could be forgiven for thinking marketing a product comes with no environmental impact – but you’d be wrong. From the printing of advertising materials – to the sales team’s 20,000 annual miles in company vehicles – there can be a lot of resource put into any marketing process. However, measurement is no mean feat – companies can find it difficult to differentiate between their overall carbon footprint and that associated with any one product.

Product use, re-use and maintenance

This is where the impact of a product moves from the manufacturer and into the hands of the consumer. What does typical use look like? How long is a product being used for? Does one person’s use vary compared to another’s? For our example table, the answers could be fairly simple – on the other hand, there’s a huge amount of variation when you look at a broad range of car drivers.

Packaging that adorns your product can have serious environmental impact.

Packaging that adorns your product can have serious environmental impact.

For any product that requires maintenance, the LCA just became much more complex (again!) – just as packaging represented an entirely separate product that requires its own assessment – a similar process is required when a car receives a tank of fuel, a top up of coolant, brake fluid, spark plugs, brake pads… hopefully you get the picture (hint – it’s complex and sprawling!)

However difficult it might be to anticipate, it’s an environmental imperative that big industry is aware of the impact they have – even when their product has left their hands.

Recycling, disposal and waste at the end of the product’s life

From pizza boxes to old cars, it’s easy to think of their job as being done when they’re waved off to a recycling bin or breaker’s yard – but environmentally this could just be the beginning of their impact.

In terms of recycling – the effort and impact of the process must be outweighed by the benefit of the salvaged material, it’s often in life-cycle assessments that decisions are made around what is worth recycling – and what should be destined for landfill. If landfill is the ultimate resting place for any product, what does the deterioration process look like and what does that mean to the environment in the short, medium and long-term?

Then, to bring the assessment cycle full circle – any product that can be processed and re-used re-enters the assessment cycle back at the extraction and processing of raw materials stage…

Ultimately, what is the life-cycle assessment done for?

There’s no one reason that a life-cycle assessment is done. For some companies, they’re keen to explain the full back-story of the product. For others, it can be an exercise in understanding the full process and highlighting any areas that can be financially streamlined – it certainly provides a solid baseline from which improvements can be made.

For the most environmentally ethical companies, the life-cycle assessment gives a true picture of the impact they have on the well-being of the planet – and offers a chance to get a full and honest picture of the moves they and their partners can make in creating a product that fulfils the requirements of the environment – as well as those of the customer and shareholders.