Insights into MSW-to-Energy

You know the saying: One person’s trash is another’s treasure. When it comes to recovering energy from municipal solid waste — commonly called garbage or trash— that treasure can be especially useful. Instead of taking up space in a landfill, we can process our trash to produce energy to power our homes, businesses and public buildings.

In 2015, the United States got about 14 billion kilowatt-hours of electricity from burning municipal solid waste, or MSW. Seventy-one waste-to-energy plants and four additional power plants burned around 29 million tons of MSW in the U.S. that year. However, just 13 percent of the country’s waste becomes energy. Around 35 percent is recycled or composted, and the rest ends up in landfills.

Recovering Energy Through Incineration

The predominant technology for MSW-to-energy plants is incineration, which involves burning the trash at high temperatures. Similarly to how some facilities use coal or natural gas as fuel sources, power plants can also burn MSW as fuel to heat water, which creates steam, turns a turbine and produces electricity.

Several methods and technologies can play a role in burning trash to create electricity. The most common type of incineration plant is what’s called a mass-burn facility. These units burn the trash in one large chamber. The facility might sort the MSW before sending it to the combustion chamber to remove non-combustible materials and recyclables.

These mass-burn systems use excess air to facilitate mixing, and ensure air gets to all the waste. Many of these units also burn the fuel on a sloped, moving grate to mix the waste even further. These steps are vital because solid waste is inconsistent, and its content varies. Some facilities also shred the MSW before moving it to the combustion chamber.

Gasification Plants

Another method for converting trash into electricity is gasification. This type of waste-to-energy plant doesn’t burn MSW directly, but instead uses it as feedstock for reactions that produce a fuel gas known as synthesis gas, or syngas. This gas typically contains carbon monoxide, carbon dioxide, methane, hydrogen and water vapor.

Approaches to gasification vary, but typically include high temperatures, high-pressure environments, very little oxygen and shredding MSW before the process begins. Common gasification methods include:

  • Pyrolysis, which involves little to no oxygen, partial pressure and temperatures between approximately 600 and 800 degrees Celsius.
  • Air-fed systems, which use air instead of pure oxygen and temperatures between 800 and 1,800 degrees Celsius.
  • Plasma or plasma arc gasification, which uses plasma torches to increase temperatures to 2,000 to 2,800 degrees Celsius.

Syngas can be burned to create electricity, but it can also be a component in the production of transportation fuels, fertilizers and chemicals. Proponents of gasification report that it is a more efficient waste-to-energy method than incineration, and can produce around 1,000 kilowatt-hours of electricity from one ton of MSW. Incineration, on average, produces 550 kilowatt-hours.

Challenges of MSW-to-Energy

Turning trash into energy seems like an ideal solution. We have a lot of trash to deal with, and we need to produce energy. MSW-to-energy plants solve both of those problems. However, a relatively small amount of waste becomes energy, especially in the U.S.

Typical layout of MSW-to-Energy Plant

This lack may be due largely to the upfront costs of building a waste-to-energy plant. It is much cheaper in the short term to send trash straight to a landfill. Some people believe these energy production processes are just too complicated and expensive. Gasification, especially, has a reputation for being too complex.

Environmental concerns also play a role, since burning waste can release greenhouse gases. Although modern technologies can make burning waste a cleaner process, its proponents still complain it is too dirty.

Despite these challenges, as trash piles up and we continue to look for new sources of energy, waste-to-energy plants may begin to play a more integral role in our energy production and waste management processes. If we handle it responsibly and efficiently, it could become a very viable solution to several of the issues our society faces.

Optimizing Any Outdoor Venue for Maximum Recycling Potential

Concerts, outdoor festivals and other gatherings with large numbers of people can generate an immense amount of waste. Not only is this wasteful potentially off-putting and unsanitary, but it can cause damage to both the environment and the appeal of the venue.

Many event organizers and planners focus on maximizing the appeal of their events via marketing, big names and other elements designed to draw in crowds. However, any outdoor event in particular must take into account the challenges posed by waste management and recycling in order to ensure sanitary and environmentally-friendly conditions.

In order to maximize the recycling potential of any outdoor venue, the following actions should be considered by any planning team prior to the event.

Partner with Green Waste Removal Companies

One of the biggest ways any event organizer(s) can contribute toward energy efficiency and more environmentally-friendly outcomes is to procure the services of a green waste disposal service.

Anyone who has organized an outdoor event before – especially in an open space or other area where standard permanent facilities do not exist – understands the need for waste disposal. Companies such as Satellite Industries provide on-site portable restroom services that dispose of waste in efficient and environmentally-friendly ways.

Some companies even use this bio-waste to create clean energy from the output, helping to further minimize its impact on the environment.

Position Recycling Bins Ideally

Virtually every outdoor venue generates large amounts of waste. From bottles and cans to miscellaneous items that find their way onto the ground or in trash cans, it can be a mess. When planning any outdoor event, organizers will have full control over where the flow of traffic is and how/where people congregate.

With this knowledge available, event planners can take steps to ensure that recycling bins and containers are optimally positioned throughout the premises to capture the largest amount of waste possible. Depending on the event and its offerings, you may need separate containers for aluminum, plastic, paper and/or glass.

Ask for Help

Especially true when coordinating events for charities, local organizations and non-profits, a small volunteer force may be both obtainable and very useful in facilitating recycling. With the help of a few volunteers, a team can scour the venue during and after the event in order to retrieve recyclables from the receptacles. In addition, these volunteers can also help with any litter found on the grounds during the event, thereby minimizing the amount of clean-up time after the event has concluded.

Contact Local Recycling Centers

Your local recycling center, landfill or governmental body may have additional resources to provide in the pursuit of improving recycling at an event. Some cities have independent recycling agencies that offer free receptacles and pick-up for recycled goods. Others offer comprehensive guides on how to position recycling areas and maximize participation from event attendees. Even the federal government offers recycling resources to those who wish to improve waste outcomes.

Outdoor festivals, such as Glastonbury, generates a tremendous amount of waste.

Ultimately, this information and assistance can go a long way toward maximizing recycling at any event, as these entities will have plenty of expertise and experience in these areas. Such advice can help further improve environmentally-friendly outcomes and reduce the incidence of waste at any event.

The massive amount of potential waste generated during any outdoor event can be disruptive both to the event and the environment. Event organizers who want to maximize cleanliness and environmental friendliness can take steps to reduce the amount of discarded materials that end up in landfills and other centers. By working with local agencies, procuring volunteers, partnering with waste removal agencies and using recycling bins efficiently, the overall amount of waste at any outdoor event can be substantially reduced.

Towards Sustainable Pharmaceutical Management

The pharmaceutical industry has a substantial impact on the environment, especially when the materials used to make them and the chemicals that comprise make their way directly into the environment. The pharmaceutical industry at large as well as average consumer can take steps to make of use of medicine more sustainable through both significant and relatively minor changes.

Medicines and the Environment

The drugs that we consume naturally enter our environment as our body turns them to waste. This issue becomes exacerbated when people intentionally dispose of unused medicine by flushing it down the drain.

Although our water treatment systems are designed to take contaminants out of our wastewater before we re-introduce to the natural environment, some still get through. These contaminants, which include those in medications, can damage the ecosystems they end up in.

High levels of estrogen in waters due to birth control, for example, can hamper the ability of fish to reproduce, reducing their population size. Once those chemicals find their way into the water, they enter the food chain and eventually impact animals that live on land too, including humans.

Plants will absorb the chemicals from medications. Animals then eat these plants or drink the water and ingest the contaminants. Humans might drink the water or eat the plants or animals, making pollution from pharmaceuticals a human health hazard as well. This problem becomes worse in the summer when livestock such as cattle require two to three times as much water as they do during other times of the year.

Proper Disposal of Medicines

If you have unused medications that you need to get rid of, don’t flush them down the drain or throw them straight into the trash. The U.S. Food and Drug Administration (FDA) recommends one of several other options for the safe and sustainable disposal of medicines.

Some communities have drug take-back programs that the Drug Enforcement Administration (DEA) approves. Some pharmacies also allow you to mail in or dispose of unused medications at kiosks. The DEA also organizes a national drug take-back day.

Although certain medications have recommendations on the label to flush them, you can dispose of the majority of them in your regular trash at home. The FDA recommends mixing them with something unpalatable such as dirt, kitty litter or coffee grounds in a plastic bag that you can seal. This disguises the drugs and prevents pets from getting into them. You can then throw the bag away.

If you are a throwing away a prescription medication container, be sure to scratch out all potentially identifying information to protect your privacy and identity.

Using Medicines More Sustainably

Another option for reducing the impact your use of medicine has on the environment is to use less of it or use more environmentally friendly medications.

To use less medicine, only use it when you truly need it and try substituting natural remedies for pharmaceuticals. Reach for naturally derived treatments such as essential oils, vitamins, herbs or a cup of hot tea. Always consult with your doctor before changing your medication regimen.

As a long-term strategy, regular exercise and a healthy diet can do wonders in improving your overall health and decreasing your need to take medicines.

Sustainability from the Industry’s Perspective

Of course, making the pharmaceutical industry more sustainable isn’t the sole responsibility of the consumer. The industry can also change its practices to manage pharmaceuticals in a more environmentally friendly fashion.

One aspect of this involves energy use. The manufacturing and transportation of medications can be extremely energy-intensive. By using energy more efficiently and using cleaner energy, drug companies can reduce their environmental impact.

Pharmaceutical industry can change its practices to manage pharmaceuticals in a more ecofriendly manner.

These corporations can also make an effort to include more eco-friendly substances in their medications. While they may not be able to remove every non-natural chemical from their products, they can offer greener alternatives to consume and look into reducing the presence of damaging substances as much as possible.

This applies not only to the organizations closest to the consumers but to the entire supply chain.

Medications are often vital to our health, but it can also have a negative impact on the health of our environment. Taking steps to manage pharmaceuticals more sustainably can enable us to protect our own well-being as well as that of our environment.

Unending Benefits of Biomass Energy

Biomass is material originating from plant and animal matter. Biomass energy uses biomass to create energy by burning organic materials. The heat energy released through burning these materials can heat homes or water. Heated water produces steam, which in turn can generate electricity. Using organic materials to create heat and power is an eco-friendlier alternative compared to using fossil fuels.

Indefinitely Renewable

The majority of the world’s energy comes from burning fossil fuels. Fossil fuels are a finite resource. Once fossil fuel resources run out, new fuel sources will be needed to meet global energy demands. Biomass offers a solution to meet this need.

Organic waste material from agriculture and logging operations, animal manure, and sludge from wastewater treatment are all viable fuels for generating biomass energy. As long as the earth is inhabited, these materials will be readily available.

Reduce, Reuse, Recycle

Waste organic material that would typically be disposed of in landfills could be redirected for biomass energy use. This reduces the amount of material in landfills and slows the rate at which landfills are filled. Some of the most common waste products used for biomass energy are wood chips and agricultural waste products. Wood materials can easily be converted from already existing wood structures that will be destroyed, such as wooden furniture and log cabins, preferably both would also come from responsible logging and practices as well.

As more organic material is diverted from landfills, the number of new landfills needed would be reduced. Older landfills are at risk for leaking leachate. Leachate contains many environmental pollutants that can contaminate groundwater sources.

Burning fossil fuel releases carbon into the atmosphere which was previously trapped below ground. Trapped carbon isn’t at risk for contributing to global climate change since it can’t interact with air. Each time fossil fuels are burned, they allow previously trapped carbon to enter the atmosphere and contribute to global climate change. In comparison, biofuel is carbon-neutral.

The materials used to create biomass energy naturally release carbon into the environment as they decompose. Living plants and trees use carbon dioxide to grow and release oxygen into the atmosphere. Carbon dioxide released by burning organic material will be absorbed by existing plants and trees. The biomass cycle is carbon-neutral as no new carbon is introduced to the system.

Smaller Carbon Footprint

The amount of unused farmland is increasing as agriculture becomes more efficient. Maintaining open land is expensive. As a result, farmers are selling off their property for new developments. Unused open agricultural land could be used to grow organic material for biofuels.

Converting open tracts of land to developed areas increases the amount of storm-water runoff. Storm-water runoff from developed areas contains more pollutants than storm-water runoff from undeveloped areas. Using open areas to grow biomass sources instead of creating new developments would reduce water pollution.

Biomass-Resources

A quick glance at popular biomass resources

Forested areas also provide sources of biofuel material. Open land converted to sustainable forestry would create new animal habitats and offset carbon emissions from existing fossil fuel sources as more plants and trees would be available to absorb carbon dioxide.

Societal Benefits

Burning fossil fuels releases sulfur dioxide, mercury and particulate matter into the atmosphere which can cause asthma, cancer and respiratory problems. Biomass energy emits less harmful byproducts compared to fossil fuels, which means cleaner air and healthier people.

Biofuel can improve rural economies by providing more people with unused land the opportunity to grown biomass material for energy use. Workers would be needed to harvest and process the materials needed to generate biofuel.

Since biofuel is a renewable energy source, energy providers can receive tax credits and incentives. Countries with land resources will be less reliant on foreign fossil fuel providers and can improve their local economies.

Increasing biofuel energy usage can reduce forest fires. Selectively reducing brush can still reduce the risk of wildfires spreading. Exposing underbrush and groundcover to rainfall decreases the change of it drying out and creating optimal, fire spreading conditions.

Denmark and Biomass Energy

Denmark is an example of how effective biomass energy can be in developing energy efficiency. Approximately 70 percent of renewable-energy consumption in Denmark comes from biomass.

Woody biomass creates an increasing percentage of heating from combined heat and power (CHP) plants with a goal to for 100 percent of hearing to be derived from woody biomass by 2035. Another form of biomass is agricultural biomass. This form utilizes materials such as straw and corn to create end-products like electricity, heating and biofuels.

The Danish Energy Agency has developed a plan including four scenarios that will help Denmark become fossil fuel free by 2050. The biomass scenario involves CHP for electricity and district heating, indicating that biomass energy is important in Denmark’s energy sector today and will play an increasingly important role in the future.

Biomass offers an eco-friendly and renewable method of reducing pollution and the effects of global climate change. And, like other forms of renewable energy, the products needed to develop biomass energy are readily available.

Product Life-Cycle Assessment: Closing the Loop

product-life-cycle-assessmentIf you’re interested in green and environmental issues you may have heard the phrase ‘life-cycle assessment’ in relation to a particular product. It can be difficult to ascertain exactly what this life-cycle assessment involves – so we’re hoping to shed some light on the process, the different types of assessment that take place and explain what’s involved with each step.

A look at the bigger picture

Essentially, a product life-cycle assessment takes an overall view of that item’s impact on the environment – and in doing so, offers a true picture of how green that product really is. The aim is for consumers, manufacturers and policy makers to be given a true environmental picture of any product.

Although it’s an example that divides the opinion of environmentalists around the world, the Toyota Prius provides an interesting picture of why the product life-cycle assessment is required in a world driven by a company’s desire to be seen as green. The Prius is an electric-hybrid car which Toyota claims delivers an impressive 60 miles per gallon of fuel – a statistic that puts it as a firm environmental favourite.

However, there are claims that the construction methods used to create the batteries that power the Prius are hugely detrimental to the environment – with some sources saying the manufacturing plant impacts the environment so greatly that by the time a Prius is driven from the showroom – it’s already had the environmental impact it would take any other car 1,000 gallons of fuel to match.

What’s the verdict?

So, is the Prius good or bad? That’s not for us to decide – and we’re not suggesting one way or another, we’re simply using this as an illustration of how complex any environmental consideration can be in a product with such an intensive manufacturing process and prolonged lifespan. At the other end of the calculation you’d have to consider how long the Prius will run for – and whether that balances a supposedly negative building method.

Ingredients of product life-cycle assessment

The assessment is ordinarily broken down into different stages:

Extraction and processing of raw materials

This is a full understanding of the journey from source to point of manufacture that the building blocks of any product take. For example, in the manufacture of a table you would begin by looking at the trees that provide the wood, the logging process that takes them from forest to timber yard and the impact of the machinery used throughout that process.

You would repeat this process for every raw material that goes into the table’s manufacture.

Manufacturing

Next comes the manufacturing itself – if machinery or any industrial process is used to piece our table together then resources used in that process must be considered when we look at the overall impact of the product on the environment.

Packaging

The packaging that a product is delivered in is effectively another product in itself. Although unlikely in our table example, it’s not uncommon for extravagant packaging to represent 10-20% of a product’s recommended retail price. Curtis Packaging, an award-winning UK based sustainable packaging company suggest manufacturers pay careful consideration to the impact of packaging on a product’s overall green credentials – from raw materials to the point of disposal, the packing that adorns your product can have serious environmental considerations.

Marketing

At first glance you could be forgiven for thinking marketing a product comes with no environmental impact – but you’d be wrong. From the printing of advertising materials – to the sales team’s 20,000 annual miles in company vehicles – there can be a lot of resource put into any marketing process. However, measurement is no mean feat – companies can find it difficult to differentiate between their overall carbon footprint and that associated with any one product.

Product use, re-use and maintenance

This is where the impact of a product moves from the manufacturer and into the hands of the consumer. What does typical use look like? How long is a product being used for? Does one person’s use vary compared to another’s? For our example table, the answers could be fairly simple – on the other hand, there’s a huge amount of variation when you look at a broad range of car drivers.

Packaging that adorns your product can have serious environmental impact.

Packaging that adorns your product can have serious environmental impact.

For any product that requires maintenance, the LCA just became much more complex (again!) – just as packaging represented an entirely separate product that requires its own assessment – a similar process is required when a car receives a tank of fuel, a top up of coolant, brake fluid, spark plugs, brake pads… hopefully you get the picture (hint – it’s complex and sprawling!)

However difficult it might be to anticipate, it’s an environmental imperative that big industry is aware of the impact they have – even when their product has left their hands.

Recycling, disposal and waste at the end of the product’s life

From pizza boxes to old cars, it’s easy to think of their job as being done when they’re waved off to a recycling bin or breaker’s yard – but environmentally this could just be the beginning of their impact.

In terms of recycling – the effort and impact of the process must be outweighed by the benefit of the salvaged material, it’s often in life-cycle assessments that decisions are made around what is worth recycling – and what should be destined for landfill. If landfill is the ultimate resting place for any product, what does the deterioration process look like and what does that mean to the environment in the short, medium and long-term?

Then, to bring the assessment cycle full circle – any product that can be processed and re-used re-enters the assessment cycle back at the extraction and processing of raw materials stage…

Ultimately, what is the life-cycle assessment done for?

There’s no one reason that a life-cycle assessment is done. For some companies, they’re keen to explain the full back-story of the product. For others, it can be an exercise in understanding the full process and highlighting any areas that can be financially streamlined – it certainly provides a solid baseline from which improvements can be made.

For the most environmentally ethical companies, the life-cycle assessment gives a true picture of the impact they have on the well-being of the planet – and offers a chance to get a full and honest picture of the moves they and their partners can make in creating a product that fulfils the requirements of the environment – as well as those of the customer and shareholders.

Waste-to-Energy in Saudi Arabia

waste-jeddahUrban waste management has emerged as a big challenge for the government and local bodies in Saudi Arabia. The country generates more than 15 million tons of municipal solid waste each year with per capita waste production estimated to be 2 kg per day, among the highest worldwide. Municipal waste production in three largest cities – Riyadh, Jeddah and Dammam – exceeds 6 million tons per annum which gives an indication of the enormity of the problem faced by civic bodies.

The Problem of Waste

Municipal waste generation in Saudi Arabia is increasing at an unprecedented rate. Due to high population growth rate, rapid urbanization and fast-paced economic development, MSW generation is expected to cross 30 million tons per year by 2033. More than 75 percent of Kingdom’s population is concentrated in urban areas, and collected garbage is thrown in landfills or dumpsites without any processing or treatment.

Most of the landfills in Saudi Arabia are non-sanitary and prone to problems like leachate, vermin, flies and spontaneous fires, apart from greenhouse gas emissions.  It has become necessary for the Saudi government to devise an integrated waste management strategy, using international best practices and modern technologies, to tackle heaps of garbage accumulating across the country.

Promise of Waste-to-Energy

Waste-to-energy provides a cost-effective and eco-friendly solution to both energy demand and MSW disposal problems in Saudi Arabia. Increasing waste generation, inability of existing solutions to tackle waste and expansion of cities into ex-dump sites are strong drivers for large-scale deployment of WTE systems in the Kingdom.

Saudi Arabia has tremendous waste-to-energy potential due to plentiful availability of good quality municipal waste. Modern waste-to-energy technologies, such as RDF-based incineration, gasification, pyrolysis and anaerobic digestion have the ability to transform power demand and waste management scenario in the country.

A typical 250 – 300 tons per day garbage-to-energy plant can produce around 3 – 4 MW of electricity and a network of such plants in cities around the country can make a real difference in waste management as well as energy sectors.  In fact, such plants also produce tremendous about of heat energy which can be utilized in process industries and district cooling systems, further maximizing their usefulness.

Key Challenges

Around the world, waste-to-energy finds wide acceptance as a tool to manage urban wastes, with more than 1,000 waste-to-energy plants in operation globally, especially in Europe, China and the Asia-Pacific. However, waste-to-energy is struggling to get off-the-ground in Saudi Arabia due to several issues, the main reason being the cheap and plentiful availability of oil which prevents decision-makers to set effective regulations for waste-to-energy development in the country.

Waste-to-Energy is widely accepted as a part of sustainable waste management strategy worldwide.

Waste-to-Energy is widely accepted as a part of sustainable waste management strategy worldwide.

Policy-makers in KSA should consider waste-to-energy as a sustainable waste management solution, rather than as a power-producing industry. Unlike Western countries, waste management services are practically free-of-cost for the waste generators which act as a deterrent for governmental investment in new waste management solutions and technologies, such as waste-to-energy. Infact, waste collection, transport and disposal methods in Saudi Arabia do not match the standards of a developed country.

Future Outlook

Vision 2030, touted as most comprehensive economic reform package in Saudi history, puts forward a strong regulatory and investment framework to develop Saudi waste-to-energy sector. An ambitious target of 3GW of energy from waste is to be achieved by 2025.  A methodical introduction of modern waste management techniques like material recovery facilities, waste-to-energy systems and recycling infrastructure can significantly improve waste management scenario and can also generate good business opportunities.

To sum up, environmental issues associated with non-sanitary landfills, ineffectiveness of prevalent waste management model and rising energy demand are key drivers for development of waste-to-energy sector in Saudi Arabia.

Solid Waste Management in South Asia: Key Lessons

swm-south-asiaSolid waste management is already a significant concern for municipal governments across South Asia. It constitutes one of their largest costs and the problem is growing year on year as urban populations swell. As with all waste management experiences, we have learned lessons and can see scope for improvement.

Collection and Transportation

There are two factors which have a significant impact on the costs and viability of a waste management system as it relates to collection and transportation: first, the distance travelled between collection and disposal point; and second, the extent to which ‘wet’ kitchen waste can be kept separate from dry waste much of which can be recycled. Separating waste in this way reduces the costs of manual sorting later on, and increases the prices for recyclable materials.

In many larger towns distances become too great for door-to-door collectors to dispose waste directly at the dump site. Arrangements are made to dispose of waste at secondary storage points (large skips) provided by the municipality. However, where these are not regularly emptied, the waste is likely to be spread beyond the bins, creating a further environmental hazard.

Ideally, and if suitable land can be found, a number of smaller waste disposal sites located around a town would eliminate this problem. With significant public awareness efforts on our part, and continual daily reminders to home-owners, we were able to raise the rate of household separation to about 60%, but once these reminders became less frequent, the rate dropped rapidly back to around 25%. The problem is compounded in larger cities by the unavailability of separated secondary storage bins, so everything is mixed up again at this point anyway, despite the best efforts of householders.

If rates are to be sustained, it requires continual and on-going promotion in the long term. The cost of this has to be weighed against the financial benefit of cleaner separated waste and reduced sorting costs. Our experience in Sri Lanka shows how important a role the Local Authority can play in continuing to promote good solid waste management practices at the household level.

Home Composting

Our experience with home composting shows that complete coverage, with every household using the system, is very unlikely to be achieved. Where we have promoted it heavily and in co-operation with the Local Authority we have found the sustained use of about 65% of the bins. Even this level of coverage, however, can have an important impact on waste volumes needing to be collected and disposed of. At the same time it can provide important, organic inputs to home gardening, providing a more varied and nutritious diet for poor householders.

Waste to Compost and Energy

The variety of technologies we have demonstrated have different advantages and disadvantages. For some, maintenance is more complicated and there can be issues of clogging. For the dry-fermentation chambers, there is a need for a regular supply of fresh waste that has not already decomposed. For other systems requiring water, quite large amounts may be needed. All of these technical challenges can be overcome with good operation and maintenance practices, but need to be factored in when choosing the appropriate technology for a given location.

The major challenge for compost production has been to secure regular sales. The market for compost is seasonal, and this creates an irregular cash flow that needs to be factored in to the business model. In Bangladesh, a significant barrier has been the need for the product to be officially licensed. The requirements for product quality are exacting in order to ensure farmers are buying a product they can trust. However, the need for on-site testing facilities may be too prescriptive, creating a barrier for smaller-scale operations of this sort. Possibly a second tier of license could be created for compost from waste which would allow sales more easily but with lower levels of guarantees for farmers.

Safe Food Production and Consumption

Community people highly welcomed the concept of safe food using organic waste generated compost. In Sri Lanka, women been practicing vertical gardening which meeting the daily consumption needs became source of extra income for the family. Female organic fertilizer entrepreneurs in Bangladesh are growing seasonal vegetables and fruits with compost and harvesting more quality products. They sell these products with higher price in local and regional markets as this is still a niche market in the country. The safe food producers require financial and regulatory support from the government and relevant agencies on certification and quality control to raise and sustain market demand.

The concept of safe food using organic waste generated compost is picking up in South Asia

The concept of safe food using organic waste generated compost is picking up in South Asia

Conclusion

Solid waste management is an area that has not received the attention it deserves from policy-makers in South Asia nations. There are signs this may change, with its inclusion in the SDGs and in many INDCs which are the basis of the Paris Climate Agreement. If we are to meet the challenge, we will need new approaches to partnerships, and the adoption of different kinds of systems and technologies. This will require greater awareness and capacity building at the Local Authority level. If national climate or SDG targets are to be met, they will need to be localised through municipalities. Greater knowledge sharing at national and regional levels through municipal associations, regional bodies such as SAARC and regional local authority associations such as Citynet, will be an important part of this.

Practical Action’s key messages for regional and national policy makers, based on our experience in the region in the last 5 years, are about the need for:

  • creating new partnerships for waste collection with NGOs and the informal sector,
  • considering more decentralised approaches to processing and treatment, and
  • recognising the exciting potential for viable technologies for generating more value from waste

Barcode as a Tool to Reduce Plastic Pollution

plastic-worldThe measures implemented by the current recycling model, which are focused on producer responsibility and final consumer awareness, are not enough to prevent the continued accumulation of plastic waste in the oceans. For example, the Mediterranean Sea currently experience high levels of plastic pollution even if its coastline meets advanced countries.

“Barcode v/s Plastic Waste” continues forward the argument, including and controlling a crucial and forgotten player in the current model of consumption: retail or supermarkets. “Barcode vs Plastic Waste” offers an efficient, win-win-win model: a sustainable and dynamic circle, a cradle to cradle controlled process for this currently destructive material.

Consumers must continue recycling, but reality shows clear that the potential to decrease plastic waste could not depend only upon consumer awareness. A high percentage of plastic waste passes through supermarkets and, subsequently, the entire distribution channel.

While supermarkets do hold responsibility for ENCOURAGING THE USE of plastic and packaging, they also have the potential, although never considered before, to encourage and provide incentives to producers and consumers to reduce their plastic quantities or eliminate it all together.

Following “Barcode v/s Plastic Waste”, Governments should request supermarkets to be responsible for all plastic recollection associated with products they sell, while Public Administration would maintain the duty of control: the barcode which identifies any item sold, offers the possibility to track and account all plastics, containers or packaging by simply adding these information into the barcode.

Having the package information -weight and material composition- inside the barcode will offer an extremely easy way to obtain the necessary data to apply follow-up control over its recollection. We would be able to monitor the recyclable materials per gram through the entire transaction system in real-time, allowing us to review any cash register day by day. Having the package information (weight and material composition) inside the same barcode will offer an extremely easy way to obtain the necessary data to apply follow-up control over its recollection. (i.e. PET 2/45gr. – PET5/75gr. – etc.)

Supermarkets should be responsible for all plastic recollection associated with products they sell

Supermarkets should be responsible for all plastic recollection associated with products they sell

This new recycling process could reach the full capacity in three years, requesting 30% of plastic recollection quantity the first year, 60% the second 90-100% the third.

Considering that from the very first year, supermarkets would very likely push producers to introduce dispensers with refilling containers wherever possible, we would have a considerable reduction of single use plastic at the very beginning.

Along with a necessary law, just new software and a new logistic inside supermarkets will be enough to produce the change. By simply adding future trash into the same barcode already used on any item sold, we would transform millions of negative actions into positive, preventing the loss of tons of raw material with a final reduction of petrol demand. This information would be provided just as the cash register’s account balance appears at the end of the day. Supermarket cash registers are the last control in the commercial process.

Full length proposal is available here

Waste Management in SAARC: Priorities and Cooperation

waste-dump-bangladeshWaste management in the SAARC countries has occasionally been raised as an area for regional co-operation. It fits in with other more pressing regional concerns such as environmental degradation, food safety, power generation, poverty alleviation and trans-boundary technology transfer. The Dhaka Declaration on Waste Management of 2004, for example, recognises the environmental imperative to promote more effective waste management systems ‘with special attention to addressing the needs of the poor’.

Similarly, the SAARC action plan on Climate Change of 2008 listed waste management as an area for nationally appropriate mitigation actions where regional sharing of best practices could be useful. The 2010 convention on co-operation on the environment, also included waste management among a list of 19 areas for the exchange of best practices and knowledge, and transfer of eco-friendly technology. However, these commitments have rarely turned into concerted action.

Effectively tackling the growing waste management crisis has not proved easy for most municipalities. Their capacity to cope has not kept pace with the increasing quantities of waste generated, and yet waste management can be one of the biggest costs of municipal budgets. Often they are able to collect waste only from limited areas of their towns. For the South Asia region, waste collection rates are on average 65%, with wide variations between towns.

At the same time, there is often a very active recycling system through waste pickers and the informal sector, involving large numbers of poor people. Large schemes to recycle, separate and produce useful end-products such as compost have often run into problems if they relied too heavily on donor inputs. Once these were phased out they failed to generate sufficient income from sales to be sustainable.

A municipal drain choked by garbage in north Indian city of Aligarh

A municipal drain choked by garbage in north Indian city of Aligarh

Two global agreements signed in 2015 may help to raise the profile and stimulate greater action on solid waste management. First, the Sustainable Development Goals which include a goal focused on cities and sustainable urban development. Within this, target 11.6 is to “by 2030, reduce the adverse per capita environmental impact of cities, including by paying special attention to air quality and municipal and other waste management”. This is the first time a global agreement of this sort has included commitments on waste management. Second, the Paris Climate Agreement, with a number of South Asian countries including better management of urban waste as part of their Intended Nationally Determined Contribution.

Solid waste management is already a significant concern for municipal governments across the South Asian region. It constitutes one of their largest costs and the problem is growing year on year as urban populations swell. And yet it is an area that has not received the attention it deserves from policy-makers. There are signs this may change, with its inclusion in the SDGs and in many INDCs which are the basis of the Paris Climate Agreement.

Waste Management Challenges in Middle East

garbage-middle-eastMiddle East is one of the most prolific waste generating regions worldwide with per capita waste production in several countries averaging more than 2 kg per day . High standards of living, ineffective legislation, infrastructural roadblocks, indifferent public attitude and lack of environmental awareness are the major factors responsible for growing waste management problem in the Middle East. Lavish lifestyles are contributing to more generation of waste which when coupled with lack of waste collection and disposal facilities have transformed ‘trash’ into a liability.

Major Hurdles

The general perception towards waste is that of indifference and apathy. Waste is treated as ‘waste’ rather than as a ‘resource’. There is an urgent need to increase public awareness about environmental issues, waste management practices and sustainable living. Public participation in community-level waste management initiatives is lackluster mainly due to low level of environmental awareness and public education. Unfortunately none of the countries in the region have an effective source-segregation mechanism.

Waste management in Middle East is bogged down by deficiencies in waste management legislation and poor planning. Many countries lack legislative framework and regulations to deal with wastes. Insufficient funds, absence of strategic waste management plans, lack of coordination among stakeholders, shortage of skilled manpower and deficiencies in technical and operational decision-making are some of the hurdles experienced in implementing an integrated waste management strategy in the region. In many countries waste management is the sole prerogative of state-owned companies and municipalities which discourage participation of private companies and entrepreneurs.

Many Middle East nations lack legislative framework and regulations to deal with urban wastes.

Many Middle East nations lack legislative framework and regulations to deal with urban wastes.

Due to lack of garbage collection and disposal facilities, dumping of waste in open spaces, deserts and water bodies is a common sight across the region. Another critical issue is lack of awareness and public apathy towards waste reduction, source segregation and waste management.

A sustainable waste management system demands high degree of public participation, effective laws, sufficient funds and modern waste management practices/technologies. The region can hope to improve waste management scenario by implementing source-segregation, encouraging private sector participation, deploying recycling and waste-to-energy systems, and devising a strong legislative and institutional framework.

The Way Forward

In recent year, several countries, like Qatar, UAE and Oman, have established ambitious solid waste management projects but their efficacy is yet to be ascertained. On the whole, Middle East countries are slowly, but steadily, gearing up to meet the challenge posed by waste management by investing heavily in such projects, sourcing new technologies and raising public awareness. However the pace of progress is not matched by the increasing amount of waste generated across the region. Sustainable waste management is a big challenge for policy-makers, urban planners and other stake-holders, and immediate steps are needed to tackle mountains of wastes accumulating in cities throughout the Middle East.