Tips to Choose the Budget-Friendly System of Energy

Newly arrived at your new home, the first thing is to make sure that you are going to pay the bill for the area that is in your use. That’s why the first day in your new home is advisable to take the meter reading. Good time to introduce yourself to the president of the community … or whoever wants to keep the keys of the accounting room. This advice also applies to gas, water, and other supplies whether it’s new construction or used housing, you should take a meter reading.  Look for iselect energy website! When moving, the first thing is to take note of the different counters (light, water, gas) in order to take responsibility only for what you are going to consume.

When moving, the first thing is to take note of the different counters (light, water, gas) in order to take responsibility only for what you are going to consume.

Your freedom of choice is sacred

It is very important that you know that you are always entitled to choose your electric company freely. You decide you send.  You have bought a house, or you are renting, this is a right of every consumer to choose the budget-friendly ways for electricity consumption. It is so legitimate that you are interested in changing or continuing with the electric company that you are hired.

What can you choose?

 The company that will send your electricity bill, that is, the electric energy trader.

What can you not choose?

The company that is responsible for providing the energy to your home, that is, the distributor. You do not choose it because you have to choose the one that corresponds to your place of residence.

When you arrive at a new house, it may happen that:

  1. The light is discharged, and both the power and the rate seem appropriate:

If so, and if you want to continue being a client of the same marketer, all you have to do is change the owner of the contract. This procedure is simple, fast and free.

  1. The light is discharged, but the power seems excessive or insufficient

You will have to make a change of power. This procedure costs money, although lowering the power can save a lot on your bill.

  1. The electricity connection is registered, but you want to change the tariff

When you arrive, you can “inherit” a contract with a certain company and a certain rate. If what you find does not convince you, you are free to change your electric energy provider. It is your choice, which service you want to choose for your home.

  1. The light has no connection to the electricity network

If your supply point has not been used for more than 3 years, this procedure costs money. The contract of registration is processed with the distributor, but it is the distributor that installs the meter and activates the supply. For this reason, the payment of this procedure will be made to the distributor in the first invoice.

The payment procedure for the efficient electricity providers is very simple and easy for the consumers. You can pay your bills and others online via credit and debit card.

Moving Grate Incineration: Preferred WTE Technology

Incineration is the most popular waste treatment method that transforms waste materials into useful energy. The incineration process converts waste into ash, flue gas, and heat. The type of thermal WTE technology most commonly used worldwide for municipal solid waste is the moving grate incineration. These moving grate incinerators are even sometimes referred to as as the Municipal Solid Waste Incinerators (MSWIs). As of August 2013, of more than 1000 of 1200 Waste-to-Energy plants (among 40 different countries) there is no pre-treatment of the MSW before it is combusted using a moving grate. The hot combustion gases are commonly used in boilers to create steam that can be utilized for electricity production. The excess energy that can’t be used for electricity can possibly be used for industrial purposes, such as desalination or district heating/cooling

Benefits of Moving Grate

The moving grate incineration technology is lenient in that it doesn’t need prior MSW sorting or shredding and can accommodate large quantities and variations of MSW composition and calorific value. With over 100 years of operation experience, the moving grate incineration system has a long track record of operation for mixed MSW treatment. Between 2003 and 2011, it was reported that at least 106 moving grate incineration plants were built worldwide for MSW treatment. Currently, it is the main thermal treatment used for mixed MSW.

Compared to other thermal treatment technologies, the unit capacity and plant capacity of the moving grate incineration system is the highest, ranging from 10 to 920 tpd and 20 to 4,300 tpd. This system is able to operate 8,000 hours per year with one scheduled stop for inspection and maintenance of a duration of roughly one month. Today, the moving grate incineration system is the only treatment type which has been proven to be capable of treating over 3,000 tpd of mixed MSW without requiring any pretreatment steps. Being composed of six lines of furnace, one of the world’s largest moving grate incineration plants has a capacity of 4,300 tpd and was installed in Singapore by Mitsubishi in 2000

Working Principle

Moving-grate incineration requires that the grate be able to move the waste from the combustion chamber to allow for an effective and complete combustion. A single incineration plant is able to process thirty-five metric tons of waste per hour of treatment.

The MSW for a moving grate incinerator does not require pretreatment. For this reason, it is easier to process large variations and quantities. Most of these incineration plants have hydraulic feeders to feed as-received MSW to the combustion chamber (a moving grate that burns the material), a boiler to recover heat, an air pollution control system to clean toxins in the flus gas, and discharge units for the fly ash. The air or water-cooled moving grate is the central piece of the process and is made of special alloys that resist the high temperature and avoid erosion and corrosion.

Working principle of a grate incinerator

The waste is first dried on the grate and then burnt at a high temperature (850 to 950 degrees C) accompanied with a supply of air. With a crane, the waste itself is emptied into an opening in the grate. The waste then moves towards the ash pit and it is then treated with water, cleaning the ash out. Air then flows through the waste, cooling the grate. Sometimes grates can also be cooled with water instead. Air gets blown through the boiler once more (but faster this time) to complete the burning of the flue gases to improve the mixing and excess of oxygen.

Suitability for Developing Nations

For lower income and developing countries with overflowing landfills, the moving grate incinerator seems suitable and efficient. Moving grate incineration is the most efficient technology for a large-scale mixed MSW treatment because it is the only thermal technology that has been able to treat over 3,000 tons of mixed MSW per day. It also seems to be considerably cheaper than conventional technologies.

Compared to other types of Waste-to-Energy technologies, this type of system also shows the highest ability to handle variation of MSW characteristics. As for the other incineration technologies like gasification and pyrolysis technologies, these are either limited in small-scale, limited in material for industrial/hazardous waste treatment, requiring preprocessing of mixed MSW before feeding, which make them not suitable for large-scale mixed MSW treatment.

Conclusion

For the reduction of significant waste volume, treatment using a moving grate incinerator with energy recovery is the most commonly used form of waste-to-energy (WTE) technology. The moving grate’s ability to treat significant volumes of waste efficiently, while not requiring pre-treatment or sorting is a major advantage that makes this suitable for developing countries. This technology could provide many other benefits to such nations. Implementing moving grate incinerators is most suitable for developing nations because not only will it reduce waste volume, but it would also reduce the demand for landfills, and could recover energy for electricity.

References

 “A Rapidly Emerging WTE Technology: Circulating Fluid Bed Combustion”. Huang, Qunxing, Yong Chi1, and Nickolas J. Themelis. Proceedings of International Thermal Treatment Technologies (IT3), San Antonio, TX, October 2013. Columbia University. Available: http://www.seas.columbia.edu/earth/wtert/sofos/Rapid_Emerging_Tech_CFB.pdf accessed on 29 March 2016.
“Incineration.” Waste Management Resources. Waste Management Resources. Available: http://www.wrfound.org.uk/articles/incineration.html accessed on 29 March 2016.
Kamuk, Bettina, and Jørgen Haukohl. ISWA Guidelines: Waste to Energy in Low and Middle Income Countries. Rep. International Solid Waste Association, 2013. Print.
“Municipal Solid Waste Management and Waste-to-Energy in the United States, China and Japan.” Themelis, Nickolas J., and Charles Mussche. 2nd International Academic Symposium on Enhanced Landfill Mining, Houthalen and Helchteren, Belgium, 4-16 October 2013.  Enhanced Landfill Mining. Columbia University.
“Review of MSW Thermal Treatment Tecnologies.” Lai, K.C.K., I.M.C. Lo, and T.T.Z. Liu. Proceedings of the International Conference on Solid Waste 2011- Moving Towards Sustainable Resource Management, Hong Kong SAR, P.R. China, 2 – 6 May 2011. Hong Kong SAR, P.R. China. 2011. 317-321. Available: http://www.iswa.org/uploads/tx_iswaknowledgebase/10_Thermal_Technology.pdf. accessed on 14 April 2016.
UN-HABITAT, 2010. Collection of Municipal Solid Waste in Developing Countries. United Nations Human Settlements Programme (UN-HABITAT), Nairobi. Available:
http://www.eawag.ch/fileadmin/Domain1/Abteilungen/sandec/E-Learning/Moocs/Solid_Waste/W1/Collection_MSW_2010.pdf.
World Bank, 2012. What a Waste: A Global Review of Solid Waste Management. Urban Development Series Knowledge Papers. Available: http://documents.worldbank.org/curated/en/2012/03/16537275/waste-global-review-solid-wastemanagement. accessed on 14 April 2016.

Description of a Biogas Power Plant

A biogas plant is a decentralized energy system, which can lead to self-sufficiency in heat and power needs, and at the same time reduces environmental pollution. The components of a modern biogas (or anaerobic digestion) plant include: manure collection, anaerobic digester, effluent treatment, biogas storage, and biogas use/electricity generating equipment.

Working of a Biogas Plant

The fresh animal manure is stored in a collection tank before its processing to the homogenization tank which is equipped with a mixer to facilitate homogenization of the waste stream. The uniformly mixed waste is passed through a macerator to obtain uniform particle size of 5-10 mm and pumped into suitable-capacity anaerobic digesters where stabilization of organic waste takes place.

In anaerobic digestion, organic material is converted to biogas by a series of bacteria groups into methane and carbon dioxide. The majority of commercially operating digesters are plug flow and complete-mix reactors operating at mesophilic temperatures. The type of digester used varies with the consistency and solids content of the feedstock, with capital investment factors and with the primary purpose of digestion.

Biogas Cleanup

Biogas contain significant amount of hydrogen sulfide (H2S) gas which needs to be stripped off due to its highly corrosive nature. The removal of H2S takes place in a biological desulphurization unit in which a limited quantity of air is added to biogas in the presence of specialized aerobic bacteria which oxidizes H2S into elemental sulfur.

Utilization of Biogas

Biogas is dried and vented into a CHP unit to a generator to produce electricity and heat. The size of the CHP system depends on the amount of biogas produced daily.

Treatment of Digestate

The digested substrate is passed through screw presses for dewatering and then subjected to solar drying and conditioning to give high-quality organic fertilizer.  The press water is treated in an effluent treatment plant based on activated sludge process which consists of an aeration tank and a secondary clarifier. The treated wastewater is recycled to meet in-house plant requirements.

Monitoring of Environmental Parameters

A chemical laboratory is necessary to continuously monitor important environmental parameters such as BOD, COD, VFA, pH, ammonia, C:N ratio at different locations for efficient and proper functioning of the process.

Control System

The continuous monitoring of the biogas plant is achieved by using a remote control system such as Supervisory Control and Data Acquisition (SCADA) system. This remote system facilitates immediate feedback and adjustment, which can result in energy savings.

Waste to Energy Conversion Routes

Teesside-WTE-plantWaste-to-energy is the use of modern combustion and biological technologies to recover energy from urban wastes. There are three major waste to energy conversion routes – thermochemical, biochemical and physico-chemical. Thermochemical conversion, characterized by higher temperature and conversion rates, is best suited for lower moisture feedstock and is generally less selective for products. On the other hand, biochemical technologies are more suitable for wet wastes which are rich in organic matter.

Thermochemical Conversion

The three principal methods of thermochemical conversion are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air. The most common technique for producing both heat and electrical energy from household wastes is direct combustion.

Combined heat and power (CHP) or cogeneration systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity.

WTE_Pathways

Combustion technology is the controlled combustion of waste with the recovery of heat to produce steam which in turn produces power through steam turbines. Pyrolysis and gasification represent refined thermal treatment methods as alternatives to incineration and are characterized by the transformation of the waste into product gas as energy carrier for later combustion in, for example, a boiler or a gas engine. Plasma gasification, which takes place at extremely high temperature, is also hogging limelight nowadays.

Biochemical Conversion

Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas.

Anaerobic digestion is a reliable technology for the treatment of wet, organic waste.  Organic waste from various sources is biochemically degraded in highly controlled, oxygen-free conditions circumstances resulting in the production of biogas which can be used to produce both electricity and heat.

In addition, a variety of fuels can be produced from waste resources including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues. Globally, biofuels are most commonly used to power vehicles, heat homes, and for cooking.

Physico-chemical Conversion

The physico-chemical technology involves various processes to improve physical and chemical properties of solid waste. The combustible fraction of the waste is converted into high-energy fuel pellets which may be used in steam generation. The waste is first dried to bring down the high moisture levels. Sand, grit, and other incombustible matter are then mechanically separated before the waste is compacted and converted into fuel pellets or RDF.

Fuel pellets have several distinct advantages over coal and wood because it is cleaner, free from incombustibles, has lower ash and moisture contents, is of uniform size, cost-effective, and eco-friendly.

Trends in Utilization of Biogas

The valuable component of biogas is methane (CH4) which typically makes up 60%, with the balance being carbon dioxide (CO2) and small percentages of other gases. The proportion of methane depends on the feedstock and the efficiency of the process, with the range for methane content being 40% to 70%. Biogas is saturated and contains H2S, and the simplest use is in a boiler to produce hot water or steam.

The most common use is where the biogas fuels an internal combustion gas engine in a Combined Heat and Power (CHP) unit to produce electricity and heat. In Sweden the compressed gas is used as a vehicle fuel and there are a number of biogas filling stations for cars and buses. The gas can also be upgraded and used in gas supply networks. The use of biogas in solid oxide fuel cells is also being researched.

Biogas can be combusted directly to produce heat. In this case, there is no need to scrub the hydrogen sulphide in the biogas. Usually the process utilize dual-fuel burner and the conversion efficiency is 80 to 90%. The main components of the system are anaerobic digester, biogas holder, pressure switch, booster fan, solenoid valve, dual fuel burner and combustion air blower.

The most common method for utilization of biogas in developing countries is for cooking and lighting. Conventional gas burners and gas lamps can easily be adjusted to biogas by changing the air to gas ratio. In more industrialized countries boilers are present only in a small number of plants where biogas is used as fuel only without additional CHP. In a number of industrial applications biogas is used for steam production.

Burning biogas in a boiler is an established and reliable technology. Low demands are set on the biogas quality for this application. Pressure usually has to be around 8 to 25 mbar. Furthermore it is recommended to reduce the level of hydrogen sulphide to below 1 000 ppm, this allows to maintain the dew point around 150 °C.

CHP Applications

Biogas is the ideal fuel for generation of electric power or combined heat and power. A number of different technologies are available and applied. The most common technology for power generation is internal combustion. Engines are available in sizes from a few kilowatts up to several megawatts. Gas engines can either be SI-engines (spark ignition) or dual fuel engines. Dual fuel engines with injection of diesel (10% and up) or sometimes plant oil are very popular in smaller scales because they have good electric efficiencies up to guaranteed 43%.

The biogas pressure is turbo-charged and after-cooled and has a high compression ratio in the gas engines. The cooling tower provides cooling water for the gas engines. The main component of the system required for utilizing the technology are anaerobic digester, moisture remover, flame arrester, waste gas burner, scrubber, compressor, storage, receiver, regulator, pressure switch and switch board.

Gas turbines are an established technology in sizes above 500 kW. In recent years also small scale engines, so called micro-turbines in the range of 25 to 100kW have been successfully introduced in biogas applications. They have efficiencies comparable to small SI-engines with low emissions and allow recovery of low pressure steam which is interesting for industrial applications. Micro turbines are small, high-speed, integrated power plants that include a turbine, compressor, generator and power electronics to produce power.

New Trends

The benefit of the anaerobic treatment will depend on the improvement of the process regarding a higher biogas yield per m3 of biomass and an increase in the degree of degradation. Furthermore, the benefit of the process can be multiplied by the conversion of the effluent from the process into a valuable product. In order to improve the economical benefit of biogas production, the future trend will go to integrated concepts of different conversion processes, where biogas production will still be a significant part. In a so-called biorefinery concept, close to 100% of the biomass is converted into energy or valuable by-products, making the whole concept more economically profitable and increasing the value in terms of sustainability.

Typical layout of a modern biogas facility

One example of such biorefinery concept is the Danish Bioethanol Concept that combines the production of bioethanol from lignocellulosic biomass with biogas production of the residue stream. Another example is the combination of biogas production from manure with manure separation into a liquid and a solid fraction for separation of nutrients. One of the most promising concepts is the treatment of the liquid fraction on the farm-site in a UASB reactor while the solid fraction is transported to the centralized biogas plant where wet-oxidation can be implemented to increase the biogas yield of the fiber fraction. Integration of the wet oxidation pre-treatment of the solid fraction leads to a high degradation efficiency of the lignocellulosic solid fraction.

Your Choices for Alternative Energy

renewables-investment-trendsWhile using alternative sources of energy is a right way for you to save money on your heating and cooling bills, it also allows you to contribute in vital ways to both the environment and the economy.  Alternative energy sources are renewable, environmentally sustainable sources that do not create any by-products that are released into the atmosphere like coal and fossil fuels do.

Burning coal to produce electricity releases particulates and substances such as mercury, arsenic, sulfur and carbon monoxide into the air, all of which can cause health problems in humans.

Other by-products from burning coal are acid rain, sludge run-off and heated water that is released back into the rivers and lakes nearby the coal-fired plants.  While efforts are being made to create “clean coal,” businesses have been reluctant to use the technology due to the high costs associated with changing their plants.

If you are considering taking the plunge and switching to a renewable energy source to save money on your electric and heating bills or to help the environment, you have a lot of decisions to make. The first decision you need to make is which energy source to use in your home or business.  Do you want to switch to solar energy, wind power, biomass energy or geothermal energy?

Emissions from homes using heating oil, vehicles, and electricity produced from fossil fuels also pollute the air and contribute to the number of greenhouse gases that are in the atmosphere and depleting the ozone layer.  Carbon dioxide is one of the gases that is released into the air by the burning of fossil fuels to create energy and in the use of motor vehicles.  Neither coal nor fossil fuels are sources of renewable energy.

Replacing those energy sources with solar, biomass or wind-powered generators will allow homes and businesses to have an adequate source of energy always at hand.  While converting to these systems can sometimes be expensive, the costs are quickly coming down, and they pay for themselves in just a few short years because they supply energy that is virtually free.  In some cases, the excess energy they create can be bought from the business or the homeowner.

While there are more than these three alternative energy options, these are the easiest to implement on an individual basis.  Other sources of alternative energy, for instance, nuclear power, hydroelectric power, and natural gas require a primary power source for the heat so it can be fed to your home or business.  Solar, wind, biomass and geothermal energy can all have power sources in your home or business to supply your needs.

Solar Energy

Solar power is probably the most widely used source of these options.  While it can be expensive to convert your home or business over to solar energy, or to an alternative energy source for that matter, it is probably the most natural source to turn over to.  You can use the sun’s energy to power your home or business and heat water.  It can be used to passively heat or light up your rooms as well just by opening up your shades.

Wind Power

You need your wind turbine to power your home or office, but wind energy has been used for centuries to pump water or for commercial purposes, like grinding grain into flour.  While many countries have wind farms to produce energy on a full-scale basis, you can have your wind turbine at home or at your business to provide electricity for your purposes.

The cost of alternative energy systems has dropped sharply in recent years

Biomass Energy

Biomass energy has rapidly become a vital part of the global renewable energy mix and account for an ever-growing share of electric capacity added worldwide. Biomass is the material derived from plants that use sunlight to grow which include plant and animal material such as wood from forests, material left over from agricultural and forestry processes, and organic industrial, human and animal wastes. Biomass comes from a variety of sources which include wood from natural forests and woodlands, agricultural residues, agro-industrial wastes, animal wastes, industrial wastewater, municipal sewage and municipal solid wastes.

Geothermal Energy

A heat pump helps cool or heat your home or office using the earth’s heat to provide the power needed to heat the liquid that is run through the system to either heat your home in the winter or cool it off in the summer.  While many people use it, it doesn’t provide electricity, so you still need an energy source for that.

Biomethane Utilization Pathways

biomethane-transportBiogas can be used in raw (without removal of CO2) or in upgraded form. The main function of upgrading biogas is the removal of CO2 (to increase the energy content) and H2S (to reduce risk of corrosion). After upgrading, biogas possesses identical gas quality properties as  natural gas, and can thus be used as natural gas replacement. The main pathways for biomethane utilization are as follows:

  • Production of heat and/or steam
  • Electricity production / combined heat and power production (CHP)
  • Natural gas replacement (gas grid injection)
  • Compressed natural gas (CNG) & diesel replacement – (bio-CNG for transport fuel usage)
  • Liquid natural gas (LNG) replacement – (bio-LNG for transport fuel usage)

Prior to practically all utilization options, the biogas has to be dried (usually through application of a cooling/condensation step). Furthermore, elements such as hydrogen sulphide and other harmful trace elements must be removed (usually trough application of an activated carbon filter) to prevent adverse effects on downstream processing equipment (such as compressors, piping, boilers and CHP systems).

Although biogas is perfectly suitable to be utilized in boilers (as an environmental friendlier source for heat and steam production), this option is rather obsolete due to the abundance of alternative sources from solid waste origin.

Most Palm Oil Mills are already self-reliant with respect to heat and steam production due to the combustion of their solid waste streams (such as EFB and PKS). Consequently, conversion to electricity (by means of a CHP unit) or utilization as natural gas, CNG or LNG replacement, would be a more sensible solution.

The biogas masterplan as drafted by the Asia Pacific Biogas Alliance foresees a distribution in which 30% of the biomethane is used for power generation, 40% for grid injection and 30% as compressed/liquefied fuel for transportation purpose (Asian Pacific Biogas Alliance, 2015).

For each project, the most optimal option has to be evaluated on a case to case basis. Main decision-making factors will be local energy prices and requirements, available infrastructure (for gas and electricity), incentives and funding.

For the locations where local demand is exceeded, and no electricity or gas infrastructure is available within a reasonable distance (<5-10 km, due to investment cost and power loss), production of CNG could offer a good solution.

Moreover, during the utilization of biogas within a CHP unit only 40-50% of the energetic content of the gas is converted into electricity. The rest of the energy is transformed into heat. For those locations where an abundance of heat is available, such as Palm Oil Mills, this effectively means that 50-60% of the energetic content of the biogas is not utilized. Converting the biogas into biomethane (of gas grid or CNG quality) through upgrading, would facilitate the transportation and commercialisation of over 95%  of the energetic content of the biogas.

Within the CNG utilization route, the raw biogas will be upgraded to a methane content of >96%, compressed to 250 bar and stored in racks with gas bottles. The buffered gas (bottles) will be suitable for transportation by truck or ship. For transportation over large distances (>200km), it will be advised to further reduce the gas volume by converting the gas to LNG (trough liquefaction).

Overall the effects and benefits from anaerobic digestion of POME and utilization of biomethane can be summarized as follows:

  • Reduction of emissions i.e. GHG methane and CO2
  • Reduced land use for POME treatment
  • Enhanced self-sufficiency trough availability of on-site diesel replacement (CNG)
  • Expansion of economic activities/generation of additional revenues
    • Sales of surplus electricity (local or to the grid)
    • Sales of biomethane (injection into the natural gas grid)
    • Replacement of on-site diesel usage by CNG
    • Sales of bottled CNG
  • Reducing global and local environmental impact (through fuel replacement)
  • Reducing dependence on fossil fuel, and enhances fuel diversity and security of energy supply
  • Enhancement of local infrastructure and employment
    • Through electrical and gas supply
    • Through Fuel (CNG) supply

Co-Authors: H. Dekker and E.H.M. Dirkse (DMT Environmental Technology)

Note: This is the second article in the special series on ‘Sustainable Utilization of POME-based Biomethane’ by Langerak et al of DMT Environmental Technology (Holland). The first article can be viewed at this link

Analysis of Agro Biomass Projects

The current use of agro biomass for energy generation is low and more efficient use would release significant amounts of agro biomass resources for other energy use. Usually, efficiency improvements are neglected because of the non-existence of grid connections with agro-industries.

Electricity generated from biomass is more costly to produce than fossil fuel and hydroelectric power for two reasons. First, biomass fuels are expensive. The cost of producing biomass fuel is dependent on the type of biomass, the amount of processing necessary to convert it to an efficient fuel, distance to the energy conversion plant, and supply and demand for fuels in the market place. Biomass fuel is low-density and non-homogeneous and has a small unit size.

Consequently, biomass fuel is costly to collect, process, and transport to facilities.  Second, biomass-to-energy facilities are much smaller than conventional fossil fuel-based power plants and therefore cannot produce electricity as cost-effectively as the fossil fuel-based plants.

Agro biomass is costly to collect, process, and transport to facilities.

The biomass-to-energy facilities are smaller because of the limited amount of fuel that can be stored at a single facility. With higher fuel costs and lower economic efficiencies, solid-fuel energy is not economically competitive in a deregulated energy market that gives zero value or compensation for the non-electric benefits generated by the biomass-to-energy industry.

Biomass availability for fuel usage is estimated as the total amount of plant residue remaining after harvest, minus the amount of plant material that must be left on the field for maintaining sufficient levels of organic matter in the soil and for preventing soil erosion. While there are no generally agreed-upon standards for maximum removal rates, a portion of the biomass material may be removed without severely reducing soil productivity.

Technically, biomass removal rates of up to 60 to 70 percent are achievable, but in practice, current residue collection techniques generally result in relatively low recovery rates in developing countries. The low biomass recovery rate is the result of a combination of factors, including collection equipment limitations, economics, and conservation requirements. Modern agricultural equipment can allow for the joint collection of grain and residues, increased collection rates to up to 60 percent, and may help reduce concerns about soil compaction.

Palm Kernel Shells: An Attractive Biomass Fuel for Europe

palm-kernel-shellsEurope is targeting an ambitious renewable energy program aimed at 20% renewable energy in the energy mix by 2020 with biomass energy being key renewable energy resource across the continent. However, the lack of locally-available biomass resources has hampered the progress of biomass energy industry in Europe as compared with solar and wind energy industries. The European biomass industry is largely dependent on wood pellets and crop residues.

Europe is the largest producer of wood pellets, which is currently estimated at 13.5 million tons per year while its consumption is 18.8 million tons per year. The biggest wood pellet producing countries in Europe are Germany and Sweden. Europe relies on America and Canada to meet its wood pellet requirements and there is an urgent need to explore alternative biomass resources. In recent years, palm kernel shells (popularly known as PKS) from Southeast Asia has emerged has an attractive biomass resources which can replace wood pellets in biomass power plants across Europe.

What are Palm Kernel Shells

Palm kernel shells are the shell fractions left after the nut has been removed after crushing in the Palm Oil mill. Kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres.

Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%. Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content.

Press fibre and shell generated by the palm oil mills are traditionally used as solid fuels for steam boilers. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a palm oil mill.

Advantages of Palm Kernel Shells

PKS has almost the same combustion characteristics as wood pellets, abundantly available are and are cheap. Indonesia and Malaysia are the two main producers of PKS. Indonesian oil palm plantations cover 12 million hectares in Indonesia and 5 million hectares in Malaysia, the number of PKS produced from both countries has exceeded 15 million tons per year. Infact, the quantity of PKS generated in both countries exceeds the production of wood pellets from the United States and Canada, or the two largest producers of wood pellets today.

Interestingly, United States and Canada cannot produce PKS, because they do not have oil palm plantations, but Indonesia and Malaysia can also produce wood pellets because they have large forests. The production of wood pellets in Indonesia and Malaysia is still small today, which is less than 1 million tons per year, but the production of PKS is much higher which can power biomass power plants across Europe and protect forests which are being cut down to produce wood pellets in North America and other parts of the world.

PKS as a Boiler Fuel

Although most power plants currently use pulverized coal boiler technology which reaches around 50% of the world’s electricity generation, the use of grate combustion boiler technology and fluidized bed boilers is also increasing. Pulverized coal boiler is mainly used for very large capacity plants (> 100 MW), while for ordinary medium capacity uses fluidized bed technology (between 20-100 MW) and for smaller capacity with combustor grate (<20 MW). The advantage of boiler combustion and fluidized bed technology is fuel flexibility including tolerance to particle size.

When the pulverized coal boiler requires a small particle size (1-2 cm) like sawdust so that it can be atomized on the pulverizer nozzle, the combustor grate and fluidized bed the particle size of gravel (max. 8 cm) can be accepted. Based on these conditions, palm kernel shells has a great opportunity to be used as a boiler fuel in large-scale power plants.

Use of PKS in pulverized coal boiler

There are several things that need to be considered for the use of PKS in pulverized coal boilers. The first thing that can be done is to reduce PKS particle size to a maximum of 2 cm so that it can be atomized in a pulverized system. The second thing to note is the percentage of PKS in coal, or the term cofiring. Unlike a grate and a fluidized bed combustion that can be flexible with various types of fuel, pulverized coal boilers use coal only. There are specific things that distinguish biomass and coal fuels, namely ash content and ash chemistry, both of which greatly influence the combustion characteristics in the pulverized system.

PKS-biomass

PKS has emerged as an attractive biomass commodity in Japan

Coal ash content is generally greater than biomass, and coal ash chemistry is very different from biomass ash chemistry. Biomass ash has lower inorganic content than coal, but the alkali content in biomass can change the properties of coal ash, especially aluminosilicate ash.

Biomass cofiring with coal in small portions for example 3-5% does not require modification of the pulverized coal power plant. For example, Shinci in Japan with a capacity of 2 x 1,000 MW of supercritical pulverized fuel with 3% cofiring requires 16,000 tons per year of biomass and no modification. Similarly, Korea Southeast Power (KOSEP) 5,000 MW with 5% cofiring requires 600,000 tons per year of biomass without modification.

PKS cofiring in coal-based power plants

Pulverized coal-based power plants are the predominant method of large-scale electricity production worldwide including Europe. If pulverised fuel power plants make a switch to co-firing of biomass fuels, it will make a huge impact on reducing coal usage, reducing carbon emissions and making a transition to renewable energy. Additionally, the cheapest and most effective way for big coal-based power plants to enter renewable energy sector is biomass cofiring. Palm kernel shells can be pyrolyzed to produce charcoal while coal will produce coke if it is pyrolyzed. Charcoal can be used for fuel, briquette production and activated charcoal.

Tips on Writing a Research Paper on Solar Energy

The share of energy received from the Sun is steadily increasing every year. Last year, the global solar market increased by 26%. According to forecasts, in 2018 for the first time, the mark of 100 gigawatts of new installed capacity per year will be passed all over the world. Writing a research paper on solar energy is not an easy assignment, as you will have to deal with lot’s of statistics, results of experiments, and, surprisingly, sociology — the usage of alternative sources of energy are strongly connected with the social issues and moods. In this article, you’ll receive some tips on how to write a stellar research paper on solar energy and impress your professor.

We are sure you know how to structure a research paper, and you won’t forget about an engaging thesis (problem) statement. Our tips will cover the latest trends you should mention and the discussions related to the usage of solar energy, pros, cons and exciting facts.

Pay Attention to the Latest Trends

Analysts have identified trends in the solar energy market in the near future.

  • An increasing number of countries are developing solar energy projects at the national level. In 2016, there were 32 such countries, at the end of last year already 53. Tenders for the development of solar energy are planned in 23 countries.
  • In the United States in the next 4 years, the number of states installing more than 1 gigawatt will reach 18. They will account for 80% of all US photovoltaic plants.
  • Reducing the cost of solar energy can be achieved through the use of more powerful modules, which will reduce the proportion of equipment and maintenance costs.
  • The role of electronics operating at the level of a single photovoltaic panel will grow. Now micro-inventors and current converters for one module are not used very widely.
  • Prices for stationary solar systems in the world are falling, but in the USA they remain at the same level (the cost of watts of power for US home systems is the highest in the world). The price for a “sunny” watt from state to state can vary by 68 cents, and companies will have to look for ways to reduce production costs.

Talk about the Future

Naturally, interest in renewable energy sources will continue to grow. The year 2050 will be the point of no return – it is by this time that most countries will completely switch to clean energy. And in 2018 serious steps will be made in this direction.

The first to be hit will be coal power plants in Europe. To date, 54% of them are not profitable, and there are only for the sake of peak load. In 2018, Finland will ban the use of coal to generate electricity and increase the tax on carbon dioxide emissions. By 2030, the country plans to abandon this fuel completely.

The Indian coal mining company Coal India also plans to close 37 coal mines in March 2018 – their development has become uneconomical due to the growth of renewable energy. The company will save about $ 124 million on this, after which it will switch to solar power and install at least 1 GW of new solar capacity in India.

Don’t Focus Solely on Content

It is a no-brainer that the content of your research paper is the most essential part of your work. However, if you forget about formatting, citations, plagiarism, using valid academic sources, etc., your research paper can fail despite having an amazing thesis statement or the project idea.

When you start doing research, note down every link you use or want to use, every quote you like, every piece of statistical information. At first, it seems very dull and unnecessary — you think you can find this information at any moment. However, days pass, and you fail to make proper references, which can be a reason of being accused of plagiarism. Proofread your research paper several times, use online sources to check grammar and spelling, don’t forget about plagiarism checkers to stay on the safe side.

If you find out that writing a proper research paper on solar energy is too complicated for you now, or you don’t have enough time energy to deal with it, it is a wise choice to get affordable research paper writing by experts who can help you immediately with your assignment. When writing a research paper on solar energy don’t forget to check on the latest numbers and analytical data worldwide. Good luck!