Top Ways to Save Energy at School

The issue of saving energy amid the exponential advancement of the technology-dependent studying process is one of the critical challenges school systems face today. Modern students are avidly embracing energy-powered tools in class, from learning the techniques of successful essay writing on popular websites like EssayShark, to sharing their studying notes with peers via file storage services like Google Drive.

On that account, the matter of energy efficiency at schools has taken on unprecedented urgency, weighing heavily on school boards to be absorbed in how to minimize electricity consumption. This has led school authorities to employ a great variety of solutions aimed at mitigating the destructive impact of environmental pollution. And, following the universal eco-inspired trend of reducing the use of electricity, we handpicked the most productive ways of saving energy for you to employ at your school!

Utilize LED Lighting

Replacing incandescent light bulbs with more innovative and energy-efficient alternatives like LED or CBL lamps is the perfect solution to start saving energy at your school. Powered by light emitting diodes, which is what this acronym stands for, LED lamps consume a lot less energy than traditional fluorescent lighting and have a much longer lifespan. This makes this type of lighting highly efficient for school. While incandescent light produces too much heat, LED light bulbs preserve it, preventing you from splurging money on cooling.

Give Preference to Natural Light

Not only will sunlight cut the electricity costs your school pays, but it will also create a favorable learning environment for students as opposed to light bulbs. Following several comprehensive studies, sunlight allows people to stay focused on their tasks longer and is thus one of the key factors in promoting a healthy studying process. In order to make the best of natural light, you can equip your classrooms appropriately, such as using suitable blinds or curtains.

Consider Advantageous Cooling Options

Air conditioning provides total salvation for people when it’s boiling hot outside. And its role gets especially critical when it comes to a score of students sharing a stuffy home room during scorching weather. But, no matter how beneficial the effect produced by an air conditioner might be, this system consumes way too much electricity. Adopting effective cooling solutions is the key to saving energy and keeping it cool in your educational institution.

college-green

Use Sensors to Regulate Lighting

For safety reasons, many schools keep the lights on in the premises for the entire day. This is by far the least reasonable option to adhere to if you want to minimize electricity consumption. As an efficient alternative of providing your students with constant lighting, you can contemplate using motion sensors. These devices can make the lights go on only if there’s someone in the room and off once the room is empty. Motion sensors are designed to detect motion and can thus automatically trigger lighting if there’s a need, instead of keeping the lighting unrestrained for the whole day.

Keep the Doors Closed

As another effective trick for reducing thermal loss in your classroom, keeping the doors closed will also maintain the coolness of the room. Thus, this practice can save you some good cash you would be forced to spend on a high-end air conditioning system.

Modernize the Kitchen

The school kitchen is veritably the hub of its electric appliances. Here you have ovens, a microwave, fridges, freezers, and the works. All these devices use a great deal of electricity and, based on the funding schools get from the government, most of them are probably old, which doubles their energy inefficiency. For this reason, replacing your kitchen appliances with newer and more cost-effective models will resolve some of the school’s energy consumption issues.

Drawing the Line

By following today’s all-embracing path toward saving energy, school authorities demonstrate their regard for environmental problems as well as their money management acumen. The modern technology-driven world offers us a variety of options to create a more energy-effective environment, improving the quality of our lives. And the essentials we have provided in this article will help make your school routine less costly and more up-to-date.

Biomethane Utilization Pathways

biomethane-transportBiogas can be used in raw (without removal of CO2) or in upgraded form. The main function of upgrading biogas is the removal of CO2 (to increase the energy content) and H2S (to reduce risk of corrosion). After upgrading, biogas possesses identical gas quality properties as  natural gas, and can thus be used as natural gas replacement. The main pathways for biomethane utilization are as follows:

  • Production of heat and/or steam
  • Electricity production / combined heat and power production (CHP)
  • Natural gas replacement (gas grid injection)
  • Compressed natural gas (CNG) & diesel replacement – (bio-CNG for transport fuel usage)
  • Liquid natural gas (LNG) replacement – (bio-LNG for transport fuel usage)

Prior to practically all utilization options, the biogas has to be dried (usually through application of a cooling/condensation step). Furthermore, elements such as hydrogen sulphide and other harmful trace elements must be removed (usually trough application of an activated carbon filter) to prevent adverse effects on downstream processing equipment (such as compressors, piping, boilers and CHP systems).

Although biogas is perfectly suitable to be utilized in boilers (as an environmental friendlier source for heat and steam production), this option is rather obsolete due to the abundance of alternative sources from solid waste origin.

Most Palm Oil Mills are already self-reliant with respect to heat and steam production due to the combustion of their solid waste streams (such as EFB and PKS). Consequently, conversion to electricity (by means of a CHP unit) or utilization as natural gas, CNG or LNG replacement, would be a more sensible solution.

The biogas masterplan as drafted by the Asia Pacific Biogas Alliance foresees a distribution in which 30% of the biomethane is used for power generation, 40% for grid injection and 30% as compressed/liquefied fuel for transportation purpose (Asian Pacific Biogas Alliance, 2015).

For each project, the most optimal option has to be evaluated on a case to case basis. Main decision-making factors will be local energy prices and requirements, available infrastructure (for gas and electricity), incentives and funding.

For the locations where local demand is exceeded, and no electricity or gas infrastructure is available within a reasonable distance (<5-10 km, due to investment cost and power loss), production of CNG could offer a good solution.

Moreover, during the utilization of biogas within a CHP unit only 40-50% of the energetic content of the gas is converted into electricity. The rest of the energy is transformed into heat. For those locations where an abundance of heat is available, such as Palm Oil Mills, this effectively means that 50-60% of the energetic content of the biogas is not utilized. Converting the biogas into biomethane (of gas grid or CNG quality) through upgrading, would facilitate the transportation and commercialisation of over 95%  of the energetic content of the biogas.

Within the CNG utilization route, the raw biogas will be upgraded to a methane content of >96%, compressed to 250 bar and stored in racks with gas bottles. The buffered gas (bottles) will be suitable for transportation by truck or ship. For transportation over large distances (>200km), it will be advised to further reduce the gas volume by converting the gas to LNG (trough liquefaction).

Overall the effects and benefits from anaerobic digestion of POME and utilization of biomethane can be summarized as follows:

  • Reduction of emissions i.e. GHG methane and CO2
  • Reduced land use for POME treatment
  • Enhanced self-sufficiency trough availability of on-site diesel replacement (CNG)
  • Expansion of economic activities/generation of additional revenues
    • Sales of surplus electricity (local or to the grid)
    • Sales of biomethane (injection into the natural gas grid)
    • Replacement of on-site diesel usage by CNG
    • Sales of bottled CNG
  • Reducing global and local environmental impact (through fuel replacement)
  • Reducing dependence on fossil fuel, and enhances fuel diversity and security of energy supply
  • Enhancement of local infrastructure and employment
    • Through electrical and gas supply
    • Through Fuel (CNG) supply

Co-Authors: H. Dekker and E.H.M. Dirkse (DMT Environmental Technology)

Note: This is the second article in the special series on ‘Sustainable Utilization of POME-based Biomethane’ by Langerak et al of DMT Environmental Technology (Holland). The first article can be viewed at this link

More Reasons To Check Out Alternative Energy Sources

In recent years, the world has seen significant economic progress, which greatly relied on energy fueled by coal and petroleum among others. With the continuously growing demand for energy, it is a fact that these energy sources may be depleted in the near future. Apart from this, there are several other reasons why humankind already needs to find alternative energy sources.

Global Warming

It is a known fact that different manufacturing processes and human activities, such as using vehicles, cause pollution in the atmosphere by releasing carbon dioxide. Carbon dioxide traps heat in the earth, and this phenomenon is known as global warming. Global warming has several harmful impacts such as stronger and more frequent storms, as well as drought and heat waves. Renewable energy sources such as wind, solar, geothermal, hydroelectric, and biomass to name a few, all generate minimal global warming emissions.

Wind power, for instance, has the capability to supply energy with a significantly lower emission compared to burning coal for fuel. This is the reason why wind energy is more beneficial compared to carbon-intensive energy sources. Still, the emissions generated by wind power are even lower compared to other renewable energy sources such as solar, geothermal, and hydroelectric power sources. This makes a huge potential for wind power to sustain the world’s energy demands, while preserving the environment.

Public Health

It goes without saying that the pollution caused by burning coal and fuel not only has an environmental impact, but it also has a significant effect on public health. Various diseases and ailments can be attributed to pollution, which usually affects the respiratory tract. Contaminated water also causes various bacterial infections. Wind power, solar energy, and hydroelectric systems have the capability to generate electricity without emitting air pollutants. Additionally, wind and solar energy sources do not need water to operate, thereby, eliminating the probability of polluting water resources. Clean air and water that is free from pollutants, will have a significant positive impact on public health.

Constant Energy Source

While coal and fossil fuels are on the threshold of depletion, renewable energy sources are inexhaustible. Wind can be a constant energy source and no matter how high the demand for energy will be, the wind will not be depleted. In the same manner, as long as the sun shines bright on earth, there will always be an abundant solar energy source. Fast-moving water that can be translated into hydroelectric energy, the earth’s heat that can be converted into a geothermal power source, as well as abundant plant matter that can be used as biomass, can all be constantly replenished. These can never be fully exhausted no matter how great the energy demand will be. The utilization of a combination of each of these energy sources will prove to be even more beneficial. Additionally, with its continued use, there will no longer be a need for combustible energy sources.

Lower Energy Costs

The cost of electricity continues to be a burden on the earth’s greater population. The use of renewable energy sources to light up the earth is considerably cheaper and inexpensive compared to the cost of burning fossil fuels for electricity and other energy needs. Apart from a cheaper cost, renewable energy sources can help stabilize to cost of energy in the long run, with an unlimited supply being able to cater to greater demand. While it cannot be denied that setting up clean energy technologies comes with a cost, it can be noted that the cost of its operation is significantly lower. Conversely, the cost of coal and fossil fuels for energy consumption fluctuates over a wide range and is greatly affected by the economic and political conditions of its country of origin.

Economic Benefits

Fossil fuel technologies, often, revolve around the capitalistic market. Hence, the use of combustible fuels is often linked to unfavorable labor conditions, and even child labor and slavery. On the other hand, the use of renewable energy sources provides decent jobs, contributing to several economic benefits. For instance, workers are needed to install and maintain solar panels. In the same manner, wind farms employ technicians for maintenance. Thus, jobs are created directly in parallel with the unit of energy produced. This means that more jobs will be produced if more renewable energy sources are utilized.

Reliability

Clean energy sources, specifically wind and solar power, are less susceptible to large-scale failures. The reason behind this is that both wind and solar power both employ distributed and modular systems. This means that electricity will not be totally cut off in instances of extreme weather conditions because the energy sources powering up the electricity is spread out over a wider geographical area. In the same manner, there will still be a continuous supply of energy even if certain equipment in the entire system is damaged because clean fuel technologies are made up of modules such as a number of individual wind turbines or solar panels.

With all the reasons to check out alternative energy sources, it still holds true that there remain several barriers that hinder the full implementation of renewable energy technologies. Some of these challenges are capital costs because of reliability misconceptions, as well as a difficult market entry due to an unequal playing field. Because renewable energy sources are cheap to operate, the bulk of the expenses in its implementation is building the technology. Thereby, the rate of return for capitalists and investors in the market entails a longer waiting period. Adding to this barrier is the hidden political agenda that most governments need to overcome.

Economic progress and advancement in technology are not at all bad. On the contrary, it has brought forth a lot of benefits such as cures for ailments and diseases, resources for deep-sea or space explorations, as well as meaningful collaboration and communication. However, this progress came with a price, and unfortunately, it’s the world’s energy resources that are on the brink of exhaustion. Hence, mitigation has been already necessary and finding alternative energy sources is just one of the probable solutions.

Solar-Powered Pumps are Game-Changing for Agriculture

The first thing that comes to mind when you hear solar power is a solar panel placed on a rooftop for creating electricity for commercial or residential use. However, solar power has another important function – to mine and deliver water to improve productivity.

This is especially applicable in sunny nations like Australia and most countries in Africa since its main industry is agriculture. Still, their productivity is suffering since their fields don’t get sufficient irrigation. Though, using solar pumps, they can double or even triple their profits. These economic gains can improve the lives of many farming communities.

Importance of Water in Agriculture

Our lives depend on clean water. The developed countries can sometimes take water for granted, but the evolving economies understand the significance of this commodity. A solar pump is an ecological option to get water for the crops and deliver drinkable, clean water.

The founder and CEO of the British-American company Ignite Power, Yariv Cohen, confirmed that solar pumps brought more efficiency, leading to bigger disposable income and more employment. Farmers can now grow three seasons per year instead of one. So, disposable income increased by 20% to 30%.

60% of the Sub-Saharan Africa population is employed in agriculture. Therefore, agriculture is accountable for 60% of economic output. This is less productive than the other regions in the world since only a part of the farmland gets constant irrigation – just 6% across Africa. Most farmlands go without irrigation, so most farmers in Africa rely only on rain for the larger lands, while they take care of the smaller areas with manual effort.

What is Solar-Powered Pumping System

The solar-powered pumping systems include a solar panel array, which fuels an electric motor. The motor, in turn, fuels the surface pump. The water is pumped from the stream or ground into a storage tank, utilized to water crops. If the farmland is irrigated consistently with solar pumps, the farmers will double the production compared to farmlands irrigated by rainwater or with manual effort.

Life-changing mechanism

About 600 million who live in Africa don’t have consistent electricity access. This is damaging the economic health of the continent. Everyone knows the ideal solution is to expand the electrical grid, but financial and geographical considerations prevent that. Ignite Power provides off-grid solutions to African countries in rural places like Nigeria, Mozambique, Rwanda, and Sierra Leone.

Cohen explains how solar pumps allow the farmers to irrigate their lands by using the sun. They first connect the homes, and then they utilize the same solar panels to water the fields. Using solar power, the pump enables a big area to be regularly irrigated. This improves the yield affordably.

Ignite Power has 1.1 million customers in Africa. So, there is room for enormous growth for his company and other providers of solar power in the continent. Cohen aims to reach 500 million houses.

They work with the bank and try to find the ideal solutions. They want to provide the best solution for the country with the help of the government. They can connect any payment providers or manufacturers to their system. They can connect all the suppliers, so many people could join.

The case of the two Rwandan women Grace Uwas (23) and Tharcille Tuyisenge (20) is admirable. They started working with Cohen’s company and bought solar systems for homes in Rwamagana, so people there have sustainable and safe electricity. Until now, they have installed twenty-five solar systems and more are coming!

Bottom Line

Electricity is the quintessence for any country. The solar power is game changing for African evolving communities to get access. In this way, they won’t just keep their lights on, but their agricultural productivity will be improved.

4 Amazing Benefits of Using Natural Gas for Your Home

Homeowners have a variety of energy sources to choose from to power their homes. Each kind offers its own set of benefits and disadvantages. When you are wanting to be more eco-friendly with your energy consumption, there are many benefits of considering natural gas as your go-to energy source.

Uses Of Natural Gas

Natural gas is non-toxic, colorless, odorless and the lowest-carbon hydrocarbon. It can be used for heating and cooking purposes in both residential and commercial settings. It can also be used to fuel power stations to create electricity for use in businesses and homes.

Natural gas can also be found in many industrial processes to create goods and materials from clothing to glass. Plastics and paints are some important products that have natural gas as a crucial ingredient. The uses of natural gas are many and diverse.

Benefits of Natural Gas

Below are some of the top benefits of natural gas to understand.

1. Affordability

In most areas, natural gas is much more affordable than electricity for heating your house and your water. For the same heating tasks, natural gas can cost almost half as much as oil or coal when used as the energy source. Natural gas is a deregulated utility. This means that consumers have fewer restrictions and are able to have control over how much they pay for the gas. Affordable natural gas prices mean a lot of savings throughout the year for homeowners.

2. Eco-Friendly

Natural gas is not as eco-friendly as renewable energy sources like wind and solar. However, it is the cleanest form of fossil fuel available. When compared to coal, natural gas releases almost a third less carbon dioxide and half as less than oil when it is burned. Compared to other fuels, it also lets off little to no sulfur.

3. Dependability

Using natural gas as your energy source is more reliable and dependable for your energy needs. When a big storm hits your area and the power goes out, you will not be able to depend on any appliance that runs off of electricity. For some homeowners, this means no lights, air conditioning, heating or hot water until the power is restored. When you run your appliances using natural gas, you can still operate them when your power is out.

When you have water heaters and other important home appliances operating using natural gas, the gas is often fed to your home in underground pipelines. This allows your energy source to be safe and well-protected from extreme weather conditions such as heavy storms. If you lose electricity, you will not lose all of your comforts while waiting for the power company to fix the issues.

4. Domestic Energy Source

Much emphasis is put on finding energy sources locally instead of having to depend on foreign oils. In addition to being more abundant and economical, relying more on local energy sources is great for the economy and creates more jobs and revenue.

Learn More About Using Natural Gas In Your Area

If you are looking to turn your home into an eco-friendly environment, turning to natural gas can be a great place to start. Natural gas providers offer plans and pricing options that can be suitable for all homeowners and budgets. Allowing most or all of your appliances to receive energy derived from natural gas can bring you many rewards as a homeowner and someone who cares about their impact on the environment.

This alternative energy source over oil and coal will be good for the global community for generations to come. The use of natural gas is on the rise and will become more competitive as consumers and energy providers look to reduce the impact on air pollution and the environment.

Analysis of Agro Biomass Projects

The current use of agro biomass for energy generation is low and more efficient use would release significant amounts of agro biomass resources for other energy use. Usually, efficiency improvements are neglected because of the non-existence of grid connections with agro-industries.

Electricity generated from biomass is more costly to produce than fossil fuel and hydroelectric power for two reasons. First, biomass fuels are expensive. The cost of producing biomass fuel is dependent on the type of biomass, the amount of processing necessary to convert it to an efficient fuel, distance to the energy conversion plant, and supply and demand for fuels in the market place. Biomass fuel is low-density and non-homogeneous and has a small unit size.

Consequently, biomass fuel is costly to collect, process, and transport to facilities.  Second, biomass-to-energy facilities are much smaller than conventional fossil fuel-based power plants and therefore cannot produce electricity as cost-effectively as the fossil fuel-based plants.

Agro biomass is costly to collect, process, and transport to facilities.

The biomass-to-energy facilities are smaller because of the limited amount of fuel that can be stored at a single facility. With higher fuel costs and lower economic efficiencies, solid-fuel energy is not economically competitive in a deregulated energy market that gives zero value or compensation for the non-electric benefits generated by the biomass-to-energy industry.

Biomass availability for fuel usage is estimated as the total amount of plant residue remaining after harvest, minus the amount of plant material that must be left on the field for maintaining sufficient levels of organic matter in the soil and for preventing soil erosion. While there are no generally agreed-upon standards for maximum removal rates, a portion of the biomass material may be removed without severely reducing soil productivity.

Technically, biomass removal rates of up to 60 to 70 percent are achievable, but in practice, current residue collection techniques generally result in relatively low recovery rates in developing countries. The low biomass recovery rate is the result of a combination of factors, including collection equipment limitations, economics, and conservation requirements. Modern agricultural equipment can allow for the joint collection of grain and residues, increased collection rates to up to 60 percent, and may help reduce concerns about soil compaction.

Palm Kernel Shells: An Attractive Biomass Fuel for Europe

palm-kernel-shellsEurope is targeting an ambitious renewable energy program aimed at 20% renewable energy in the energy mix by 2020 with biomass energy being key renewable energy resource across the continent. However, the lack of locally-available biomass resources has hampered the progress of biomass energy industry in Europe as compared with solar and wind energy industries. The European biomass industry is largely dependent on wood pellets and crop residues.

Europe is the largest producer of wood pellets, which is currently estimated at 13.5 million tons per year while its consumption is 18.8 million tons per year. The biggest wood pellet producing countries in Europe are Germany and Sweden. Europe relies on America and Canada to meet its wood pellet requirements and there is an urgent need to explore alternative biomass resources. In recent years, palm kernel shells (popularly known as PKS) from Southeast Asia has emerged has an attractive biomass resources which can replace wood pellets in biomass power plants across Europe.

What are Palm Kernel Shells

Palm kernel shells are the shell fractions left after the nut has been removed after crushing in the Palm Oil mill. Kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres.

Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%. Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content.

Press fibre and shell generated by the palm oil mills are traditionally used as solid fuels for steam boilers. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a palm oil mill.

Advantages of Palm Kernel Shells

PKS has almost the same combustion characteristics as wood pellets, abundantly available are and are cheap. Indonesia and Malaysia are the two main producers of PKS. Indonesian oil palm plantations cover 12 million hectares in Indonesia and 5 million hectares in Malaysia, the number of PKS produced from both countries has exceeded 15 million tons per year. Infact, the quantity of PKS generated in both countries exceeds the production of wood pellets from the United States and Canada, or the two largest producers of wood pellets today.

Interestingly, United States and Canada cannot produce PKS, because they do not have oil palm plantations, but Indonesia and Malaysia can also produce wood pellets because they have large forests. The production of wood pellets in Indonesia and Malaysia is still small today, which is less than 1 million tons per year, but the production of PKS is much higher which can power biomass power plants across Europe and protect forests which are being cut down to produce wood pellets in North America and other parts of the world.

PKS as a Boiler Fuel

Although most power plants currently use pulverized coal boiler technology which reaches around 50% of the world’s electricity generation, the use of grate combustion boiler technology and fluidized bed boilers is also increasing. Pulverized coal boiler is mainly used for very large capacity plants (> 100 MW), while for ordinary medium capacity uses fluidized bed technology (between 20-100 MW) and for smaller capacity with combustor grate (<20 MW). The advantage of boiler combustion and fluidized bed technology is fuel flexibility including tolerance to particle size.

When the pulverized coal boiler requires a small particle size (1-2 cm) like sawdust so that it can be atomized on the pulverizer nozzle, the combustor grate and fluidized bed the particle size of gravel (max. 8 cm) can be accepted. Based on these conditions, palm kernel shells has a great opportunity to be used as a boiler fuel in large-scale power plants.

Use of PKS in pulverized coal boiler

There are several things that need to be considered for the use of PKS in pulverized coal boilers. The first thing that can be done is to reduce PKS particle size to a maximum of 2 cm so that it can be atomized in a pulverized system. The second thing to note is the percentage of PKS in coal, or the term cofiring. Unlike a grate and a fluidized bed combustion that can be flexible with various types of fuel, pulverized coal boilers use coal only. There are specific things that distinguish biomass and coal fuels, namely ash content and ash chemistry, both of which greatly influence the combustion characteristics in the pulverized system.

PKS-biomass

PKS has emerged as an attractive biomass commodity in Japan

Coal ash content is generally greater than biomass, and coal ash chemistry is very different from biomass ash chemistry. Biomass ash has lower inorganic content than coal, but the alkali content in biomass can change the properties of coal ash, especially aluminosilicate ash.

Biomass cofiring with coal in small portions for example 3-5% does not require modification of the pulverized coal power plant. For example, Shinci in Japan with a capacity of 2 x 1,000 MW of supercritical pulverized fuel with 3% cofiring requires 16,000 tons per year of biomass and no modification. Similarly, Korea Southeast Power (KOSEP) 5,000 MW with 5% cofiring requires 600,000 tons per year of biomass without modification.

PKS cofiring in coal-based power plants

Pulverized coal-based power plants are the predominant method of large-scale electricity production worldwide including Europe. If pulverised fuel power plants make a switch to co-firing of biomass fuels, it will make a huge impact on reducing coal usage, reducing carbon emissions and making a transition to renewable energy. Additionally, the cheapest and most effective way for big coal-based power plants to enter renewable energy sector is biomass cofiring. Palm kernel shells can be pyrolyzed to produce charcoal while coal will produce coke if it is pyrolyzed. Charcoal can be used for fuel, briquette production and activated charcoal.

Tips on Writing a Research Paper on Solar Energy

The share of energy received from the Sun is steadily increasing every year. Last year, the global solar market increased by 26%. According to forecasts, in 2018 for the first time, the mark of 100 gigawatts of new installed capacity per year will be passed all over the world. Writing a research paper on solar energy is not an easy assignment, as you will have to deal with lot’s of statistics, results of experiments, and, surprisingly, sociology — the usage of alternative sources of energy are strongly connected with the social issues and moods. In this article, you’ll receive some tips on how to write a stellar research paper on solar energy and impress your professor.

We are sure you know how to structure a research paper, and you won’t forget about an engaging thesis (problem) statement. Our tips will cover the latest trends you should mention and the discussions related to the usage of solar energy, pros, cons and exciting facts.

Pay Attention to the Latest Trends

Analysts have identified trends in the solar energy market in the near future.

  • An increasing number of countries are developing solar energy projects at the national level. In 2016, there were 32 such countries, at the end of last year already 53. Tenders for the development of solar energy are planned in 23 countries.
  • In the United States in the next 4 years, the number of states installing more than 1 gigawatt will reach 18. They will account for 80% of all US photovoltaic plants.
  • Reducing the cost of solar energy can be achieved through the use of more powerful modules, which will reduce the proportion of equipment and maintenance costs.
  • The role of electronics operating at the level of a single photovoltaic panel will grow. Now micro-inventors and current converters for one module are not used very widely.
  • Prices for stationary solar systems in the world are falling, but in the USA they remain at the same level (the cost of watts of power for US home systems is the highest in the world). The price for a “sunny” watt from state to state can vary by 68 cents, and companies will have to look for ways to reduce production costs.

Talk about the Future

Naturally, interest in renewable energy sources will continue to grow. The year 2050 will be the point of no return – it is by this time that most countries will completely switch to clean energy. And in 2018 serious steps will be made in this direction.

The first to be hit will be coal power plants in Europe. To date, 54% of them are not profitable, and there are only for the sake of peak load. In 2018, Finland will ban the use of coal to generate electricity and increase the tax on carbon dioxide emissions. By 2030, the country plans to abandon this fuel completely.

The Indian coal mining company Coal India also plans to close 37 coal mines in March 2018 – their development has become uneconomical due to the growth of renewable energy. The company will save about $ 124 million on this, after which it will switch to solar power and install at least 1 GW of new solar capacity in India.

Don’t Focus Solely on Content

It is a no-brainer that the content of your research paper is the most essential part of your work. However, if you forget about formatting, citations, plagiarism, using valid academic sources, etc., your research paper can fail despite having an amazing thesis statement or the project idea. https://plagiarismdetector.net/ can help in detecting plagiarized content.

When you start doing research, note down every link you use or want to use, every quote you like, every piece of statistical information. At first, it seems very dull and unnecessary — you think you can find this information at any moment. However, days pass, and you fail to make proper references, which can be a reason of being accused of plagiarism. Proofread your research paper several times, use online sources to check grammar and spelling, don’t forget about plagiarism checkers to stay on the safe side.

If you find out that writing a proper research paper on solar energy is too complicated for you now, or you don’t have enough time energy to deal with it, it is a wise choice to get affordable research paper writing by experts who can help you immediately with your assignment. When writing a research paper on solar energy don’t forget to check on the latest numbers and analytical data worldwide. Good luck!

Paying Less for Your Energy: A Handful of Practical Tips

There is little doubt that energy bills are a big drain on your finances, what with the Big Six energy providers hiking their prices recently, with two of them doing it twice within a year! What is one to do? Toe their line or search for the best and cheapest energy tariffs? Of course, you will save a pretty packet if you search for the cheapest energy rates. Find below certain practical tips that will enable you to find the right energy deal and save on money.

Avoid standard variable rate tariff

You need to be careful when your fixed tariff deal ends, for it is then that your energy provider will nudge you towards standard variable rate tariff. Their reason for doing so is simple, that is, to make money. These variable rate tariffs are expensive. According to the figures of previous year obtained from First Utility, will escalate your energy bill by an average of £262 annually. Not only are these variable rate tariffs expensive, but they also provide leeway for your energy supplier to hike costs.

The way out of this is to search for smaller suppliers that offer the best-buy tables and better services. You can do this by manually researching lists of energy suppliers or using online comparison sites. Spending time doing manual research can pay dividends as you can often find deals not apparent on switching sites, however the latter are much faster to use.

Power tip: When using switching sites, always check the box that says something like ‘include plans that require switching directly though the supplier’ as this will reveal even cheaper deals.

Today, the minnows are giving a run for money to the Big Six energy providers. These suppliers offer you a choice of long-term fix and even variable rate that are well under £1,000. Opting for a fixed rate tariff will give you a secure price on each unit of electricity for a set period, whereas variable rate tariff, where the price can fluctuate up and down.

So, to get the full price advantage don’t stick to your original supplier, but switch to a smaller one. It will certainly help in saving cash.

To fix or not to fix

In the past, variable rate tariffs tended to be cheaper, but this trend has changed. Today, the cheapest rates are offered on one-year fixes. Opting for it will save you money. This is because this type fixes the rate you pay for each unit of electricity, usually for a 12- to 18-month period.

The latest trend is to opt for two-year fixed deals. Whether it is one-year or two-year fixed deals, the idea is to avoid expensive variable standard tariffs. It needs to be noted that fixed deals are slightly more than the cheapest deals, if you are going in for long-term security. However, it certainly does not mean that you pay a fixed amount and be done away with it. It will still depend upon the amount of energy consumed, only the tariff per unit is somewhat reduced.

You need to be careful about some fixed deals that charge exit fees if you decide to leave early. Also, there is no guarantee that a fixed deal is the best long-term option, but if you want to give certainty over bills, this is the best choice.

Benefits of energy switching

Your local energy suppliers are the real beneficiary since they tend to charge more for electricity from people living in their vicinity. This is because they build a monopoly in the region and dictate the energy rates.

To break the stranglehold of your local energy supplier, you will do well to explore the possibility of moving away. This switching will certainly save you money. Of course, finding the cheapest supplier will primarily depend upon where you live. A little search will not only help you find cheap suppliers but also help you in comparing prices to find the best price.

If you are scared that switching from your current energy supplier will attract a penalty, if you decide to leave before the term expires, it will still be worth it. So, accept the penalty and you will still end up saving big.

Cutting your energy bills

If you are still in two minds regarding switching to a smaller energy supplier, you can still limit your energy bill in the following ways:

  • Ask for return of credited money: If you are paying a set amount by direct debit pay each month for gas and electricity, it will be a good idea to ask for a return of money during summer and spring. You may get it back with interest.
  • Save energy: Change the way you use your gas and electricity. This will reduce usage and save money.
  • Pay online: This could cut more than £10 off your annual bills.

Conclusion

Switching energy supplier is a big decision. However, if your current supplier is offering cheaper tariff than what you are currently using, it is wise to switch to it, rather than opt for a new energy supplier. You still end up saving money.

Share of Renewables in Energy Supply of UK

The Earth is facing a climate crisis, as the burning of fossil fuels to generate electricity and power our cars overloads the atmosphere with carbon dioxide, causing a dangerous atmospheric imbalance that’s raising global temperatures.

A report from the UN’s Intergovernmental Panel on Climate Change (IPCC) released earlier this month cautioned that the planet has just 12 years to dramatically curb greenhouse gas emissions, by overhauling our energy systems and economies and likely, our societies and political systems. Even a half degree rise beyond that would cause catastrophic sea level rises, droughts, heat, hunger, and poverty, spelling disaster for our species.

UK’s Commitment to Climate Change Mitigation

The UK government has committed to reducing carbon emissions by 80% of 1990 levels by 2050, a process that will involve overhauling our energy supply, which is responsible for 25% of greenhouse emissions in the country, just behind transport (26% of all emissions). But it may be too little too late. The government has already said it is reviewing these targets in light of the IPCC report and in the spring began consulting on a net-zero carbon emissions target for 2050.

But despite these dire prognoses and the enormity of the task facing us as a species, there’s reason to be optimistic. The UK has already managed to cut greenhouse gas emissions by 43% on 1990 levels, with much of the reduction coming from a 57% decline in emissions from energy generation. This is in part thanks to several providers offering you the chance to have a 100% renewable domestic energy supply.

Reduction in Coal Usage

The use of coal has plunged nearly overnight in the UK. In 2012, 42% of the UK’s electricity demand was met by coal. Just six years later, in the second quarter of 2018, that figure had fallen to just 1.6%. Emissions from coal-fired power stations fell from 129 million tonnes of CO2 to just 19 million tonnes over the same period.

A coal-free Britain is already on the horizon. In April 2017, the UK logged its first coal-free day since the Industrial Revolution; this past April we extended the run to 76 consecutive hours. In fact, in the second quarter of 2018, all the UK’s coal power stations were offline for a total of 812 hours, or 37% of the time. That’s more coal free hours than were recorded in 2016 and 2017 combined and in just three months.

When the UK does rely on coal power, it’s primarily to balance supplies and to meet demand overnight and during cold snaps, such as during the Beast from the East storm in March. The UK is so certain that coal is a technology of the past, that the government has plans to mothball all seven remaining coal-fired power stations by 2025.

Share of Renewables in Energy Supply

The decline in coal has been matched by an explosion in renewable energy, particularly in wind power. In the second quarter of 2018, renewables generated 31.7% of the UK’s electricity, up from under 9% in 2011. Of those, wind power produced 13.3% of all electricity (7.1% from onshore turbines farms and 6.2% from offshore wind farms), biomass energy contributed another 11% of the UK’s electricity, solar generated 6% and hydro power made up the rest of renewables’ pie share.

The UK’s total installed renewables capacity has exploded, hitting 42.2GW in the second quarter of 2018, up from under 10GW in 2010. That includes 13.7GW of onshore wind capacity and 7.8GW of offshore wind capacity—a figure which will get a boost with the opening in September of the world’s largest wind farm, the Walney Extension, off the coast of Cumbria, itself with a capacity of nearly 0.7GW. Solar panels contributed another 13GW of renewable capacity, and installed plant biomass infrastructure reaching 3.3GW.

However, while renewables are transforming electricity generation in the UK, our energy system consists of more than simply electricity. We also have to account for natural gas and the use of fuel in transport, and renewables have made fewer in roads in those sectors.

The UK is meeting just 9.3% of its total energy needs from renewable sources, short of the 15% it has earmarked for 2020 and far behind its peers in the EU, where Sweden is already running on 53.8% renewable energy.

Conclusion

Emissions are dropping overall in the UK, largely due to an ongoing revolution in electricity generation and a decisive move away from coal. But these reductions have concealed stagnant and even increasing levels of greenhouse gas emissions from other sectors, including transport and agriculture.

Our transition to a sustainable economy has begun but will require more than wind farms and the shuttering of coal-fired power stations. It must encompass electric vehicles, transformed industries, and ultimately changing attitudes toward energy and the environment and our responsibility toward it.