Concept of Zero Waste and Role of MRFs

zero-waste-MRFCommunities across the world are grappling with waste disposal issues. A consensus is emerging worldwide that the ultimate way to deal with waste is to eliminate it. The concept of Zero Waste encourages redesign of resource life cycles so that all products are reused, thereby systematically avoiding and eliminating the volume and toxicity of waste and materials.

The philosophy of Zero Waste strives to ensure that products are designed to be repaired, refurbished, re-manufactured and generally reused. Among key zero waste facilities are material recovery facilities, composting plants, reuse facilities, wastewater/biosolids plants etc.

Material recovery facilities (MRFs) are an essential part of a zero waste management program as it receives separates and prepares recyclable materials for marketing to end-user manufacturers. The main function of the MRF is to maximize the quantity of recyclables processed, while producing materials that will generate the highest possible revenues in the market. MRFs can also process wastes into a feedstock for biological conversion through composting and anaerobic digestion.

A materials recovery facility accepts materials, whether source separated or mixed, and separates, processes and stores them for later use as raw materials for remanufacturing and reprocessing. MRFs serve as an intermediate processing step between the collection of recyclable materials from waste generators and the sale of recyclable materials to markets for use in making new products. There are basically four components of a typical MRF: sorting, processing, storage, and load-out. Any facility design plan should accommodate all these activities which promote efficient and effective operation of a recycling program. MRFs may be publicly owned and operated, publicly owned and privately operated, or privately owned and operated.

There are two types of MRFs – dirty and clean. A dirty MRF receives mixed waste material that requires labor intense sorting activities to separate recyclables from the mixed waste. A clean MRF accepts recyclable materials that have already been separated from the components in municipal solid waste (MSW) that are not recyclable. A clean MRF reduces the potential for material contamination.

A typical Zero Waste MRF (ZWMRF) may include three-stream waste collection infrastructure, resource recovery center, reuse/recycling ecological part, residual waste management facility and education centers.

The primary objective of all MRFs is to produce clean and pure recyclable materials so as to ensure that the commodities produced are marketable and fetch the maximum price. Since waste streams vary in composition and volume from one place to another, a MRF should be designed specifically to meet the short and long term waste management goals of that location. The real challenge for any MRF is to devise a recycling strategy whereby no residual waste stream is left behind.

The basic equipment used in MRFs are conveyors & material handling equipment to move material through the system, screening equipment to sort material by size, magnetic separation to remove ferrous metals, eddy current separation to remove non-ferrous metals, air classifiers to sort materials by density, optical sorting equipment to separate plastics or glass by material composition, and baling equipment to prepare recovered material for market. Other specialized equipment such as bag breakers, shredders and sink-float tanks can also be specified as required by application.

Waste Management and Sustainability

Waste management is one of the core themes of sustainability, but achieving sustainable waste management is a challenging and complex task. Despite the fact that an increasing amount of waste has been reused and recycled, landfills still play an important role in the management of wastes. However, waste degradation in landfill produce leachate and harmful gasses viz. carbon dioxide, methane which are considered as greenhouse gases. It has been studied that leachate contribute to 20% emission of greenhouse gases. This can largely risk human health as well as threat to environment. Furthermore, it contains low concentration of gases with heavy aromatic rings, most of them are toxic in nature.

The increasing cost of waste disposal is a cause of major concern in developing nations

Movements of leachate create problem as aquifers need more time for rehabilitation. Leachate can migrate to groundwater or surface water and have potential threat to drinking water. Constructing landfills have adverse effects on aquaculture and habitats by diffusing leachate into surface/groundwater with limited on-site recycling activities. Various studies also claim that residential areas close to landfill areas have low housing values because people don’t prefer to live close to the area enriched with flies, mosquitoes, bacteria and bad odours.

The lower calorific value of wastes lowers the significance of waste-to-energy technologies, such as incineration/gasification, and make waste-to-energy less viable as solution for waste management solution. The low calorific value is an important outcome of waste collection process.

Scavengers often collect in a mixed state with all type of wastes, which include reusable materials, plastic, glass bottles etc. which reduces the calorific value and combustibility of waste. Waste is usually sorted out manually and unfortunately it becomes very difficult to regulate and implement an efficient method. This kind of waste recovery methods is very common in Asian countries e.g. India, Indonesia etc. using improper waste management technique can cause contaminated soil, water and environment.

Water is most easy to contaminate as it dissolves chemicals easily, causing harm to all living organisms including humans. Animal and marine life is most effected with water contamination. It also restricts our use of water for drinking and cooking purposes without cleaning system. The environment is highly harmed because of improper waste management.

Greenhouse gases are generated from decomposition of waste, these gasses are major cause of global warming affecting air precipitation, causing acid rain to severe hailstorms. Moreover humans who live near to garbage dumping area are found to be most significant to risk of health diseases, skin problems, cancer etc.

Olusosun is the largest dumpsite in Nigeria

With proper awareness and teaching methods of efficient waste management we can achieve sustainable solution to waste management. It has been forecasted by Environmental Sanitary Protection Plan that, by 2020 Kamikatsu a city in Japan is going to be 100% free from waste. Although the target of reaching the 100% waste is going to be achieved but the standby waste issue is going to be major hurdle as Kamikatsu have only 34% of land space available.

The lack of availability of standby space for waste is going to be major problem in future because of shortage of space, degraded quality of waste with lower calorific value and formation of leachate. And unfortunately, this issue is not going to be solved very soon.

Zero Waste Trends to Watch

Most people have heard about concepts such as single-stream recycling, but there’s another approach known as zero waste. People who support the concept of zero waste agree that, in a broader sense, it means reducing dependence on landfills and increasing reliance on material recovery facilities. But, after that, the definition varies primarily based on industries, manufacturers and even entire countries.

Even so, there are inspiring trends that show how people and companies are working hard to reduce the amount of waste produced, thereby getting ever closer to that desirable zero benchmark. Below are some of the major trends taking place across the world in the field of zero waste:

More Reusable Packaging

We live in a world where it’s possible to order almost anything online and have it quickly arrive on a doorstep — sometimes the same day a person placed the order. And, society loves the convenience, but the dependence on delivered products causes an increase in packaging materials.

It is often astounding how many packing peanuts, layers of bubble wrap and cardboard cartons come with the things we buy. And, the manufacturers and shipping companies consistently bring up how boxes get dropped or otherwise mishandled during transit, making the extraordinary amounts of protective packaging products necessary.

On a positive note, a company called Limeloop makes a shipping envelope designed from recycled billboard wrapping people can reuse thousands of times. Another company called Returnity communicates with distributors to urge them to use the establishment’s boxes and envelopes, both of which people can rely on dozens of times instead of throwing them away after single uses.

If you are a business looking to adopt eco-friendly practices, you should read this article on green packaging methods.

Ceramic Mugs in British Coffee Shops

In some regions of the world, customers who visit coffee shops don’t get asked whether they’ll be drinking their coffee on site or taking it with them to go. However, many leading coffee shops in the United Kingdom find out that detail from customers who order drinks, then serve the beverages in non-disposable mugs to people who’ll enjoy their purchases on the spot.

Also, all 950 Starbucks locations in Great Britain recently began charging customers five cents for getting their drinks in disposable cups. Conversely, it rewards them by taking 25 cents off the costs of their orders when they bring reusable cups into the stores.

Creative Ways to Cut Down on Farm Waste

Manure (or fertilizer) is a reality on farms around the world. And, the commercially bought versions of it contribute to excessive waste and inflated costs. Some even harm future growth when farmers apply manure too heavily and negatively affect the soil’s balance.

But, besides avoiding commercially-sold manure and not applying it excessively if used, what else can people in the agriculture sector do to make farm waste more manageable? They can look for unique outlets that may want to buy it.

One startup uses a detailed manure-refining process to extract the cellulose from cow dung. Business representatives then use the cellulose — a byproduct from the grass and corn cows eat — for a new kind of fabric.

What about using animal waste for energy? A forward-thinking farmer did that with his manure lagoons, making them produce biogas that powers homes.

These unusual solutions highlight unconventional use cases for animal droppings, such as poultry litter, that support zero-waste goals, provided farmers want to explore them.

An Uptick in Reusable Food Containers

People often pack their lunches in plastic containers before heading off to work, but when they get food delivered or pick it up from a provider to eat at home later, the associated containers usually fill up garbage cans after people chow down.

Some facilities are trying to change that. At The University of California Merced campus, a pilot program occurred where students who stopped by dining halls for meals to take away brought reusable containers with them. After people ate the food from them, they could return them to get washed and ready for future meals.

Moreover, a pizza restaurant in Wales provides an aluminum box for people to use again and again when taking their pies home. One of the problems with cardboard pizza containers is they can’t be recycled when contaminated with grease. However, people can buy the metal ones for a small, one-time fee.

Opt for reusable containers for food and beverages

Then, by using them, they get 50-cent discounts on their pizza. The restaurant also backs the boxes with a lifetime guarantee and will replace them for no charge if necessary due to breakage or damage. Also, because metal conducts heat, the material helps pizza stay hotter for longer than it would in cardboard boxes.

Innovations to Complement Commitment

Adhering to a zero waste lifestyle undoubtedly requires dedication and a willingness to look beyond old habits. However, for people who show those characteristics, numerous inventions and improvements make it easier to do away with the throw-away culture.

Zero-Waste Trends in the United States

Most people don’t see what happens to their trash. They throw it in a black plastic bag, toss the bag into a dumpster and the trash man collects it once a week and makes it disappear. Magic, right?

Wrong.

Most of our trash ends up in a landfill where it is buried and mixed in with decades-worth of junk. Certain items will break down over time while others are essentially just stored there, in a graveyard of forgotten items and a mountain of garbage.

In the year since China banned the import of other countries’ plastic recyclables, the global recycling industry has been in flux, resulting in plastics ending up in landfills, incinerators and littering the environment. This is causing countries and citizens across the globe to reexamine their recycling systems and highlights the need for zero waste practices.

Zero waste is the concept of eliminating the amount of trash thrown away by only purchasing reusable items. That’s a significant shift from the 4.4 pounds of trash that the average American tosses every day. But certain trends are helping make the idea of zero waste a reality in the United States. Let us have a look:

Replace Single-Use Packaging With Reusable Materials

Way too many plastic items that we use every day are meant to be used only once. And the amount of packaging that goes into shipping one box, that will simply get tossed in the garbage after the parcel is unwrapped, is astounding. In fact, 40 percent of plastic produced is packaging, which is thrown away after it arrives at your doorstep.

Plastic bag and straw bans are on the rise across the globe. Consumers are becoming more conscious of how their use of these items contributes to the trash crisis. Recent data shows that customers are more likely to buy products from brands that promote sustainable business practices.

Reduce Energy Waste By Choosing Renewable Options

Many industries are opting to reduce energy waste by pursuing renewable energy sources. U.S. manufacturers account for 30 percent of the nation’s energy consumption, which means manufacturers must take the lead in reducing fossil fuel consumption and energy waste.

The U.S. is the leader in energy waste. Americans spend $350 billion on energy costs each year, yet three-quarters of that energy goes to waste. One way to reduce the burden on our power grid — and our wallets — from all that lost energy is by switching to renewable sources.

Air compressors are vital to the upkeep of a successful farm, and many producers in the agricultural sector are also reducing waste by switching to high-powered air compressors that, when properly maintained, can reduce energy usage and cut costs.

Eliminate Food Waste

About 94 percent of food waste ends up in landfills, which contribute to methane gas emissions. Reducing food waste not only helps the environment, but it also decreases the amount you have to spend at the grocery store. It also helps to conserve energy, as less power is needed to grow and produce food if less is wasted.

Individual consumers can help eliminate food waste by freezing leftovers to preserve them and composting uneaten food, as opposed to tossing in the trash.

Restaurants can use these tactics and others to cut down on food waste, such as donating leftovers and properly training staff to get on board with waste reduction. They can also hire auditors to help them identify ways to reduce waste and streamline business practices.

Never Too Late to Make a Change

Though the statistics may seem disheartening, the reality is that it’s never too late to make a change in your individual or business habits to help cut down on waste and work toward the goal of accomplishing zero waste. Following these trends and implementing others is just one way to do your part to eliminate waste and protect the environment.

Waste Minimisation – Role of Public, Private and Community Sector

waste-minisationWhen it comes to waste minimisation and moving material up the waste hierarchy you will find partisan advocates for the roles of the public, private and community sectors. Each will tell you the reasons why their sector’s approach is the best. The private sector will extol their virtues as the only ones capable of efficiently and effectively doing the job.  They rightly note that they are the providers on the front lines who actually recover the vast majority of material, that the private sector approach drives innovation and efficiency, and that if waste minimisation is to be sustainable this must include economic sustainability.

The community sector on the other hand will make a strong case to say that their model, because it commonly encompasses social, environmental, and economic outcomes, is able to leverage value from recovered materials to dig deeper into the waste stream, to optimise recovered material quality, and to maximise employment and local economic benefit.

Before recycling and composting were economically viable prospects, community sector organisations led the way, developing many of the techniques now widely used. They remain the leaders in marginal areas such as furniture reuse, running projects that deliver environmental outcomes while providing wider community benefits such as rehabilitation and training for marginalised groups.

Finally, in the public sector corner, advocates will point out that the profit-driven private sector will only ever recover those materials that are able to generate positive revenues, and so cannot maximise waste minimisation, while social outcomes are strictly a secondary consideration. The community sector, on the other hand, while encompassing non-monetary values and capable of effective action on a local scale, is not set up to deliver these benefits on a larger scale and can sometimes struggle to deliver consistent, professional levels of service.

The public sector can point to government’s role in legislating to promote consistent environmental and social outcomes, while councils are major providers and commissioners of recycling services and instrumental in shaping public perceptions around waste issues. The public sector often leads in directing activity towards non-monetary but otherwise valuable outcomes, and provides the framework and funding for equity of service levels.

So who is right? Each sector has good arguments in its favour, and each has its weaknesses. Does one approach carry the day?  Should we just mix and match according to our personal taste or based on what is convenient?

Perhaps we are asking the wrong question. Maybe the issue is not “which approach is better?” but instead “how might the different models help us get to where we ultimately want to go?”

Smells Like Waste Minimisation

So where do we want to go?  What is the waste minimisation end game?

If we think about things from a zero waste perspective, the ideal is that we should move from linear processes of extraction, processing, consumption and disposal, to cyclical processes that mimic nature and that re-integrate materials into economic and natural systems.  This is the nirvana – where nothing is ‘thrown away’ because everything has a further beneficial use.  In other words what we have is not waste but resources.  Or to put it another way – everything has value.

Assuming that we continue to operate in an essentially capitalist system, value has to be translated into economic terms.  Imagine if every single thing that we now discard was worth enough money to motivate its recovery.  We would throw nothing away: why would we if there was money to be made from it?

So in a zero waste nirvana the private sector and the community sector would take care of recovery almost automatically.  There might evolve a community and private sector mix, with each occupying different niches depending on desired local outcomes. There would be no need for the public sector to intervene to promote waste minimisation.  All it would need to do would be to set some ground rules and monitor the industry to ensure a level playing field and appropriate health and safety.

Sectoral Healing

Returning to reality, we are a long way from that zero waste nirvana.  As things stand, a bunch of materials do have economic value, and are widely recycled. Another layer of materials have marginal value, and the remainder have no value in practical terms (or even a negative value in the case of hazardous wastes).

The suggested shift in perspective is most obvious in terms of how we think about the role of the public sector. To bring us closer to our goal, the public sector needs to intervene in the market to support those materials of marginal value so that they join the group that has genuine value.

Kerbside (or curbside) collection of certain materials, such as glass and lower value plastics, is an example of an activity that is in effect subsidised by public money. These subsidies enable the private sector to achieve environmental outcomes that we deem sufficiently worthwhile to fund.

However, the public sector should not just be plugging a gap in the market (as it largely does now), but be working towards largely doing itself out of a job. If we are to progress towards a cyclical economy, the role of the public sector should not be to subsidise marginal materials in perpetuity, but to progressively move them from marginal to genuinely economic, so that they no longer require support.

At the same time new materials would be progressively targeted and brought through so that the range and quantity requiring disposal constantly shrinks.  This suggests a vital role for the public sector that encompasses research, funding for development of new technologies and processes, and setting appropriate policy and price structures (such as through taxes, levies, or product stewardship programmes).

Similarly, the community sector, because it is able to ‘dig deeper’ into the waste stream, has a unique and ongoing role to play in terms of being able to more effectively address those materials of marginal value as they begin to move up the hierarchy.  The community sector’s unique value is its ability to work at the frontiers.

Meanwhile, the private sector’s resources and creativity will be needed to enable efficient systems to be developed to manage collection, processing and recycling of materials that reach the threshold of economic viability – and to create new, more sustainable products that fit more readily into a waste minimising world.

In the end, then, perhaps the answer is to stop seeing the three models as being in competition. Instead, we should consciously be utilising the unique characteristics of each so that we can evolve our practices towards a future that is more functional and capable of delivering the circular economy that must eventuate if we are to sustain ourselves on this planet.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be viewed at this link