Unending Benefits of Solar Street Lights

solar-steer-lightsSolar power is getting increasing popularity as a dependable source for street lighting all over the world. Some of the benefits associated with solar street lights include reduced dependence on conventional energy, conservation of energy and less reliance on the national grid. In countries experiencing abundance of sunlight, solar lights are the best option to illuminate the streets, garden, parks and other public spaces.

Nowadays, solar street lights are powered by PV panels, in-built battery, LED lights and smart sensors, all integrated into a single compact unit. Solar LED street lights have emerged as a cost-effective and environment-friendly to light up roads and public spaces. LED lights are widely acknowledged for energy conservation, are long-lasting and good-looking, and are maintenance-free. These characteristics make LED-base solar street lights well-suited for commercial as well as domestic lighting applications.

Key Features

A modern solar street light has embedded solar panel, inbuilt lithium-ion batteries, battery management system, night and motion sensors as well as automatic controls. The fully automatic device comes with LEDs, inbuilt and replaceable Lithium-ion battery and passive infrared (PIR) sensors. A typical solar street light is weather-proof and water-resistant, has low insect attraction rate and low glare and has a longer life.

The embedded solar panel converts solar power into electrical energy which is stored in the inbuilt battery, and used for dusk-to-dawn lighting operations. The main innovation of modern solar street lights is the battery management system which is facilitated by the presence of night and motion sensors. During the first 5 hours of night, the system works at average lumens brightness. Subsequently, the intensity of the light reduces till dawn or until PIR sensor is activated by human movement. When people are within a certain radius away from the light, it automatically turns to its full brightness. This smart feature makes solar street lights device a perfect combination of renewable energy and energy efficiency.

Solar powered lights by Deelat Industrial has been tried and successfully tested in a wide variety of domestic and commercial applications. The device is well-suited for lighting up streets, courtyards, gardens, parks, compounds, boundary walls, car parks etc. in an eco-friendly and cost-effective manner.

Unending Benefits

Due to off-grid nature of solar street lights, solar street lights incur minimal operational costs. Such lights are wireless in nature and are independent of the utility company. Compared to conventional street lights, solar street lights require almost zero maintenance. Due to the absence of external wires, these lights do not pose any threat of accidents like electrocution, strangulation and overheating. Infact, solar lights illuminate the streets throughout the night irrespective of power cuts and grid failures.

Solar-powered lights are a perfect eco-friendly green lighting solution

Solar-powered lights are a perfect eco-friendly green lighting solution

Solar street lights are a delight for environmentalists around the world as it can provide significant lowering of carbon footprint of individuals, homes and businesses. In other words, solar-powered lights are a perfect green lighting solution. In terms of cost, solar street lights are a better investment than conventional street lights if the capital as well as O&M costs are considered.

Renewables Market in MENA

MENA region has an attractive market for renewables due to abundant availability of solar and wind resources. According to a recent IRENA report, the region is anticipating renewable energy investment of $35 billion per year by 2020. Recently, the MENA region has received some of the lowest renewable energy prices awarded globally for solar PV and wind energy.

mena-renewables

Regional Developments

Among MENA countries, Morocco has emerged as a role model for the entire region. The government’s target of 2GW of solar and 2GW of wind power by 2020 is progressing smoothly with the commissioning of Nour-1 Solar project. Jordan and Egypt are also making steady progress in renewable energy sector.

As far as GCC is concerned, the UAE has also shown serious commitment to develop solar energy. The 100MW Shams CSP plant has been operational since 2014 in Abu Dhabi while 13MW Phase I of Dubai’s solar park was completed in 2013. In Saudi Arabia, the newly launched Vision 2030 document has put forward a strong regulatory and investment framework to develop Saudi clean energy sector which should catalyse renewable energy development in the country.

Renewables – A boon for MENA

Renewable energy has multiple advantages for MENA in the form of energy security, improved air quality, reduced GHG emissions, employment opportunities, apart from augmenting water and food security.

The business case for renewable energy proliferation in MENA is strengthened by plentiful availability of natural energy resources and tumbling solar PV technology costs which are leading to record low renewable power generation costs. The recent auction for the Mohammed Bin Rashid Al Maktoum Solar Park 2 in Dubai yielded prices as low as 5.85 US cents per kWh which is one of the lowest worldwide.

Impact of Falling Costs

The falling costs will have a significant positive impact in the developing world where tens of millions of people still lack access to cheap and reliable supply of energy. Reducing costs will help MENA, especially GCC, to meet its target of steady transition towards renewable energy and thus reducing dependence on fossil fuels for power generation and seawater desalination.

The slump in renewable energy tariffs will also encourage utility companies in emerging markets to include more renewable energy in transmission and meet the targets set by respective countries. However, it should also be noted that there have been several instances where the actual renewable energy production failed to take place because of low bids.

Emerging Trends

Off-grid renewable energy technologies have tremendous potential to popularize clean energy among remote and marginalized communities across the world. Access to clean, reliable and relatively cheap energy from renewable resources, especially solar power, will usher in a new era in developing countries. Off-grid (or standalone) renewable power systems are already making a meaningful difference in the lives of millions of people across the developing world.

In recent years, Morocco has made remarkably swift progress in renewable energy sector.

In recent years, Morocco has made remarkably swift progress in renewable energy sector.

Advancements in battery energy storage have pushed this particular sector into media as well as public spotlight. With big industry names like Tesla and Nissan leading from the front, energy storage technologies are expected to make great contribution in transition to green grid powered by intermittent energy sources like solar PV, CSP, wind and biomass.

Concentrated solar power (CSP) has the potential to transform seawater desalination industry, one of the largest energy consumers in the Middle East. CSP offers an attractive option to power industrial-scale desalination plants that require both high temperature fluids and electricity.  CSP can provide stable energy supply for continuous operation of desalination plants, based on thermal or membrane processes. Leading CSP technology companies are already taking a keen interest in Middle East CSP market and rapid developments are expected in the coming years.

Key Hurdles to Overcome

Lack of strong regulatory framework, low renewable energy tariffs and weak off-take mechanisms are some of the issues confronting renewable energy projects in MENA. Regulatory framework in the GCC is in early stages and marred by heavy subsidy for oil and gas. The largest barrier to growth of solar sector in MENA has been the lack of renewable energy policy framework, legislations, institutional support, feed-in-tariffs and grid access.

The power sector in MENA is, by and large, dominated by state utilities which discourage entrepreneurs and Independent Power Producers (IPPs) to enter the local markets. Lack of open and transparent market conditions in MENA are acting as deterrent for investors, technology companies and project developers.

Among regional countries, Jordan and Morocco have the most advanced legal infrastructure in place to support renewable energy projects, followed by Saudi Arabia and the UAE.

Tips for New Entrants

MENA solar market is complex due to different electricity market structure and myriad challenges in each country. Different countries have different motivations for renewable energy. Solar companies who want to foray in MENA market must give special attention to land access, grid access, transparent licensing schemes, high-quality meteorological data, creditworthy customers, long-term off-take contracts, soiling of PV panels and related issues.

Biomass Energy in Nigeria: An Overview

Oil and gas accounts for over 70% of energy consumed in Nigeria, according to the World Bank. Considering this dependency on fossil oil and possibility of it running out in the future, there should be an urgent intervention to look into other ways to generate energy in Nigeria. The world is moving away gradually from fossil oil and aligning towards sustainable energy resources to substitute conventional fuel, Nigeria should not be exempted from this movement. Biomass, a popular form of renewable energy, is considered as a credible and green alternative source of energy which many developed and developing countries have been maximizing to its potential.

biomass-sustainability

Power generation and supply have been inadequate in Nigeria. This inadequacy of power limits human, commercial and industrial productivity and economic growth . What is the use of infrastructure without constant electricity? Even God created light first. Sustainable and constant supply of power should be one of the priority of government in nation development. Investing in biomass will cause an increase in the amount of power generated in Nigeria. Infact, biomass energy has the potential to resolve the energy crisis in the country in the not so distant future.

What is Biomass

The word biomass refers to organic matter (mainly plants) which acts as a source of sustainable and renewable energy. It is a renewable energy source because the plants can be replaced as oppose to the conventional fossil fuel which is not renewable. Biomass energy is a transferred energy from the sun; plants derives energy from the sun through photosynthesis which is further transferred through the food chain to animals’ bodies and their waste.

Biomass has the potential to provide an affordable and sustainable source of energy, while at the same time help in curbing the green house effect. In India the total biomass generation capacity is 8,700 MW according to U.S. of Commerce’s International Trade Administration, whereas the generating capacity in U.S. is 20,156  MW with 178 biomass power plants, according to Biomass Magazine.

Power Sector in Nigeria

Unfortunately, the total installed electricity capacity generated in Nigeria is 12,522 MW, well below the current demand of 98,000MW . The actual output is about 3,800MW, resulting in a demand shortfall of 94,500MW throughout the country. As a result of this wide gap between demand and output, only 45% of Nigeria’s population has access to electricity. Renewable energy contributed 19% of total electricity generated in Nigeria out of which biomass contribution is infinitesimal.

Electricity generation for Nigeria’s grid is largely dominated by two sources; non-renewable thermal (natural gas and coal) and renewable (hydro). Nigeria depends on non-renewable energy despite its vast potential in renewable sources such as solar, wind, biomass and hydro. The total potential of these renewables is estimated at over 68,000MW, which is more than five times the current power output.

Biomass Resources in Nigeria

Biomass can come in different forms like wood and wood waste, agriculture produce and waste, solid waste.

Wood

Electricity can be generated with wood and wood product/waste(like sawdust) in modern day through cogeneration, gasification or pyrolysis.

Agriculture Residues

In Nigeria, agricultural residues are highly important sources of biomass fuels for both the domestic and industrial sectors. Availability of primary residues for energy application is usually low since collection is difficult and they have other uses as fertilizer, animal feed etc.

However secondary residues are usually available in relatively large quantities at the processing site and may be used as captive energy source for the same processing plant involving minimal transportation and handling cost.

Municipal Solid Waste

Back then in secondary school, I learnt that gas could be tapped from septic tank which could further be used for cooking.  Any organic waste (like animal waste, human waste) when decomposed by anaerobic microorganisms releases biogas which can be tapped and stored for either cooking or to generate electricity.

Biomass can be used to provide heat and electricity as well as biofuel and biogas for transport. There are enough biomass capacity to meet our demand for electricity and other purposes. From climatic point of view, there is a warm climate in Nigeria which is a good breeding ground for bacteria to grow and decompose the wastes. There are plant and animal growth all year round which in turn create waste and consequently produce biomass.

In November 2016, The Ebonyi State Government  took over  the United Nations Industrial Development Organization (UNIDO) demonstration biomass gasifier power plant located at the UNIDO Mini -industrial cluster in Ekwashi Ngbo in Ohaukwu Local Government Area of the State. The power plant is to generate 5.5 Megawatt energy using rice husk and other available waste materials available. More of these type of power plants and commitment are needed to utilize the potential of biomass fully.

Why Biomass Energy?

Since biomass makes use of waste to supply energy, it helps in waste management. It also has the potential to supply more energy (10 times) than the one produced from sun and wind. Biomass will lead to increase in revenue generation and conserves our foreign exchange. Increase in energy generation will yield more productivity for industries and the rate at which they are shutting down due to the fact that they spend more on power will be reduced to minimal.

Many local factories/companies will spring up and foreign investors will be eager to invest in Nigeria with little concern about power. Establishment of biopower plants will surely create more jobs and indirectly reduce the number of people living in poverty which is increasing everyday at an alarming rate.

Africa’s most populous country needs more than 10 times its current electricity output to guarantee supply for its 198 million people – nearly half of whom have no access at all, according to power minister Babatunde Fashola. Biomass energy potential in Nigeria is promising –  with heavy investment, stake holder cooperation and development of indigenous technologies. The deployment of large-scale biomass energy systems will not only significantly increase Nigeria’s electricity capacity but also ease power shortages in the country.

Energy Access to Refugees

There is a strong link between the serious humanitarian situation of refugees and lack of access to sustainable energy resources. According to a 2015 UNCHR report, there are more than 65.3 million displaced people around the world, the highest level of human displacement ever documented. Access to clean and affordable energy is a prerequisite for sustainable development of mankind, and refugees are no exception. Needless to say, almost all refugee camps are plagued by fuel poverty and urgent measure are required to make camps livable.

refugee-camp-energy

Usually the tragedy of displaced people doesn’t end at the refugee camp, rather it is a continuous exercise where securing clean, affordable and sustainable energy is a major concern. Although humanitarian agencies are providing food like grains, rice and wheat; yet food must be cooked before serving. Severe lack of modern cook stoves and access to clean fuel is a daily struggle for displaced people around the world. This article will shed some light on the current situation of energy access challenges being faced by displaced people in refugee camps.

Why Energy Access Matters?

Energy is the lifeline of our modern society and an enabler for economic development and advancement. Without safe and reliable access to energy, it is really difficult to meet basic human needs. Energy access is a challenge that touches every aspect of the lives of refugees and negatively impacts health, limits educational and economic opportunities, degrades the environment and promotes gender discrimination issues. Lack of energy access in refugee camps areas leads to energy poverty and worsen humanitarian conditions for vulnerable communities and groups.

Energy Access for Cooking

Refugee camps receive food aid from humanitarian agencies yet this food needs to be cooked before consumption. Thus, displaced people especially women and children take the responsibility of collecting firewood, biomass from areas around the camp. However, this expose women and minors to threats like sexual harassments, danger, death and children miss their opportunity for education. Moreover, depleting woods resources cause environmental degradation and spread deforestation which contributes to climate change. Moreover, cooking with wood affects the health of displaced people.

Access to efficient and modern cook stove is a primary solution to prevent health risks, save time and money, reduce human labour and combat climate change. However, humanitarian agencies and host countries can aid camp refugees in providing clean fuel for cooking because displaced people usually live below poverty level and often host countries can’t afford connecting the camp to the main grid. So, the issue of energy access is a challenge that requires immediate and practical solutions. A transition to sustainable energy is an advantage that will help displaced people, host countries and the environment.

Energy Access for Lighting

Lighting is considered as a major concern among refugees in their temporary homes or camps. In the camps life almost stops completely after sunset which delays activities, work and studying only during day time hours. Talking about two vulnerable groups in the refugees’ camps “women and children” for example, children’s right of education is reduced as they have fewer time to study and do homework. For women and girls, not having light means that they are subject to sexual violence and kidnapped especially when they go to public restrooms or collect fire woods away from their accommodations.

Rationale For Sustainable Solutions

Temporary solutions won’t yield results for displaced people as their reallocation, often described as “temporary”, often exceeds 20 years. Sustainable energy access for refugees is the answer to alleviate their dire humanitarian situation. It will have huge positive impacts on displaced people’s lives and well-being, preserve the environment and support host communities in saving fuel costs.  Also, humanitarian agencies should work away a way from business as usual approach in providing aid, to be more innovative and work for practical sustainable solutions when tackling energy access challenge for refugee camps.

UN SDG 7 – Energy Access

The new UN SDG7 aims to “ensure access to affordable, reliable, sustainable and modern energy for all”. SDG 7 is a powerful tool to ensure that displaced people are not left behind when it comes to energy access rights. SDG7 implies on four dimensions: affordability, reliability, sustainability and modernity. They support and complete the aim of SDG7 to bring energy and lightening to empower all human around the world. All the four dimensions of the SDG7 are the day to day challenges facing displaced people. The lack of modern fuels and heavy reliance on primitive sources, such as wood and animal dung leads to indoor air pollution.

Energy access touches every aspect of life in refugee camps

Energy access touches every aspect of life in refugee camps

For millions of people worldwide, life in refugee camps is a stark reality. Affordability is of concern for displaced people as most people flee their home countries with minimum possessions and belongings so they rely on host countries and international humanitarian agencies on providing subsidized fuel for cooking and lightening. In some places, host countries are itself on a natural resources stress to provide electricity for people and refugees are left behind with no energy access resources. However, affordability is of no use if the energy provision is not reliable (means energy supply is intermittent).

Parting Shot

Displaced people need a steady supply of energy for their sustenance and economic development. As for the sustainability provision, energy should produce a consistent stream of power to satisfy basic needs of the displaced people. The sustained power stream should be greater than the resulted waste and pollution which means that upgrading the primitive fuel sources used inside the camp area to the one of modern energy sources like solar energy, wind power, biogas and other off-grid technologies.

For more insights please also read this article Renewable Energy in Refugee Camps 

Renewable Energy in Refugee Camps

Access to clean, affordable and renewable energy is a prerequisite for sustainable development of mankind, and refugees are no exception. Refugee camps across the world house more than 65 million people, and almost all refugee camps are plagued by fuel poverty. Needless to say, urgent measure are required to make camps livable and sustainable.

dabaab-refugee-camp

Rapid advancements in renewable energy technologies have made it possible to deploy such systems on various scales.  The scalability potential of renewable energy systems makes them well-suited for refugee camps, especially in conflict-afflicted areas of the Middle East, Asia and Africa.

Renewable energy in refugee camps can be made available in the form of solar energy, biomass energy and wind energy. Solar panels, solar cooking units, solar lanterns, biomass cookstoves and biogas plants are some of the popular renewable energy technologies that can improve living standards in refugee camps. It is important to focus on specific needs of refugees and customization of technology towards local conditions. For example, solar technologies are better understood than biogas systems in Jordan.

Solar Energy

Solar energy can provide long-term resilience to people living in refugee camps. With many camps effectively transformed into full-fledged towns and cities, it is essential to harness the power of sun to run these camps smoothly. Solar cookers, solar lanterns and solar water heaters are already being used in several refugee camps, and focus has now shifted to grid-connected solar power projects.

The 5MW Azraq solar project is the world’s first grid-connected renewable energy project to be established in a refugee camp. The project is being funded entirely by Ikea through the Brighter Lives for Refugees campaign. The program, now in its third year, seeks to improve the lives of refugees around the world by providing access to sustainable energy supplies.

Biomass Energy

Due to lack of land and resources, refugee camps puts tremendous pressure on natural vegetation, especially supply of fuel wood to camp-dwellers. Replacement of traditional stoves with efficient biomass-fired cook stoves can save as much as 80% of cooking fuel.

Instead of wood, it would be also be a good option to use agricultural wastes, like husk and straw. Another interesting proposition for refugee camps is to set up small-scale DIY biogas plants, based on human wastes and food residuals. The biogas produced can be used as a cooking medium as well as for power/heat generation.

Wind Energy

Small wind turbines can also play a key role in providing energy to dwellers of refugee camps. Such turbines are used for micro-generation and can provide power from 1kW to 300kW. Majority of small wind turbines are traditional horizontal axis wind turbines but vertical axis wind turbines are a growing type of wind turbine in the small wind market. Small wind turbines are usually mounted on a tower to raise them above any nearby obstacles, and can sited in refugee camps experiencing wind speeds of 4m/s or more.

Solar lights in Azraq Refugee Camp (Jordan)

Solar lights in Azraq Refugee Camp (Jordan)

Conclusions

Renewable energy systems have the potential to improve living standards in refugee camps and ease the sufferings of displaced and impoverished communities. Solar panels, biogas system, biomass stoves and micro wind turbines are some of the renewable energy systems that can be customized for refugee camps and transform them into a less harsh place for displaced people.

Your Choices for Alternative Energy

While using alternative sources of energy is a right way for you to save money on your heating and cooling bills, it also allows you to contribute in vital ways to both the environment and the economy.  Alternative energy sources are renewable, environmentally sustainable sources that do not create any by-products that are released into the atmosphere like coal and fossil fuels do.

Burning coal to produce electricity releases particulates and substances such as mercury, arsenic, sulfur and carbon monoxide into the air, all of which can cause health problems in humans.

Other by-products from burning coal are acid rain, sludge run-off and heated water that is released back into the rivers and lakes nearby the coal-fired plants.  While efforts are being made to create “clean coal,” businesses have been reluctant to use the technology due to the high costs associated with changing their plants.

If you are considering taking the plunge and switching to a renewable energy source to save money on your electric and heating bills or to help the environment, you have a lot of decisions to make. The first decision you need to make is which energy source to use in your home or business.  Do you want to switch to solar energy, wind power, biomass energy or geothermal energy?

Emissions from homes using heating oil, vehicles, and electricity produced from fossil fuels also pollute the air and contribute to the number of greenhouse gases that are in the atmosphere and depleting the ozone layer.  Carbon dioxide is one of the gases that is released into the air by the burning of fossil fuels to create energy and in the use of motor vehicles.  Neither coal nor fossil fuels are sources of renewable energy.

Replacing those energy sources with solar, biomass or wind-powered generators will allow homes and businesses to have an adequate source of energy always at hand.  While converting to these systems can sometimes be expensive, the costs are quickly coming down, and they pay for themselves in just a few short years because they supply energy that is virtually free.  In some cases, the excess energy they create can be bought from the business or the homeowner.

While there are more than these three alternative energy options, these are the easiest to implement on an individual basis.  Other sources of alternative energy, for instance, nuclear power, hydroelectric power, and natural gas require a primary power source for the heat so it can be fed to your home or business.  Solar, wind, biomass and geothermal energy can all have power sources in your home or business to supply your needs.

Solar Energy

Solar power is probably the most widely used source of these options.  While it can be expensive to convert your home or business over to solar energy, or to an alternative energy source for that matter, it is probably the most natural source to turn over to.  You can use the sun’s energy to power your home or business and heat water.  It can be used to passively heat or light up your rooms as well just by opening up your shades.

Wind Power

You need your wind turbine to power your home or office, but wind energy has been used for centuries to pump water or for commercial purposes, like grinding grain into flour.  While many countries have wind farms to produce energy on a full-scale basis, you can have your wind turbine at home or at your business to provide electricity for your purposes.

The cost of alternative energy systems has dropped sharply in recent years

Biomass Energy

Biomass energy has rapidly become a vital part of the global renewable energy mix and account for an ever-growing share of electric capacity added worldwide. Biomass is the material derived from plants that use sunlight to grow which include plant and animal material such as wood from forests, material left over from agricultural and forestry processes, and organic industrial, human and animal wastes. Biomass comes from a variety of sources which include wood from natural forests and woodlands, agricultural residues, agro-industrial wastes, animal wastes, industrial wastewater, municipal sewage and municipal solid wastes.

Geothermal Energy

A heat pump helps cool or heat your home or office using the earth’s heat to provide the power needed to heat the liquid that is run through the system to either heat your home in the winter or cool it off in the summer.  While many people use it, it doesn’t provide electricity, so you still need an energy source for that.

How Solar Roofs Can Minimize The Urban Heat Island Effect

As cities grow, open spaces, trees and other greenery, and other naturally occurring surfaces diminish, replaced by concrete and asphalt surfaces. When this happens, the heat absorbed by these surfaces has nowhere to go, and so is radiated and reflected into the immediate surrounding areas. This creates an urban heat island.

This leads to an increase in heat in the immediately surrounding areas, making temperatures a few degrees hotter than the actual weather. This causes discomfort to residents of the area and can also incur damage in the form of heat-damaged structures.

There is also a human cost associated with urban heat islands. Heat-related medical emergencies such as heat stroke become more prevalent in such areas as the heat can go up to dangerous levels. The EPA has taken stock of this phenomenon and is now advising cities to take steps to mitigate it. One such way is the use of Los Angeles solar as a means of making cities cooler and more comfortable to live in.

How does solar minimize this effect?

Cool Roof Strategy

A cool roof strategy is a one that seeks to use heat absorbing and/or dissipating roofing materials and technologies. Typical roofs use materials that either reflect or absorb and radiate back heat thus significantly reducing the urban heat island effect. Conversely, cool roofs, like solar, can help absorb sun rays and convert them into beneficial energy.

Solar excels at this because of the way the cells are designed and organized to absorb the maximum amount of sunlight. Solar roofs are also designed to trap this heat rather than radiate it back into the environment, something that can help reduce the amount of secondary heat being released into the environment.

Reduced Construction

When solar roofs are implemented, there is usually a reduced need to construct structures that support the traditional electric grid. Such a scenario can play out in several ways. If a new estate is being built with nothing but solar power, there is a possibility that some open spaces can be retained as fallow ground in places where utility implements would have been installed.

While the gains at this level would be marginal, implementation of this strategy across several thousand estates can help move the needle in reducing the urban heat island effect.

Combination Approach

This approach offers the greatest promise of reducing heat in urban settings. By combining the cool roof strategy with other strategies like green roofing, planting more trees and vegetation, cool paving and general smart city growth, a lot of ground can be covered.

Planting more trees and vegetation will go a long way in reducing heat in urban settings.

All these strategies have one thing in common in that they all absorb and dissipate heat in an efficient and sustainable manner. The EPA recommends these measures, among others, to cities grappling with the urban heat island effect or anticipating it as open spaces and greenery levels go down.

Many cities have a high incentive to deal with this issue because of its effect on residents and visitors to the area. If street-level temperatures are unbearable, it is possible that tourists and potential new residents may shy away from the area in favor of other cooler cities.

Clean Cookstoves: An Urgent Necessity

Globally, three billion people in the developing nations are solely dependent on burning firewood, crop residues, animal manure etc for preparing their daily meals on open fires, mud or clay stoves or simply on three rocks strategically placed to balance a cooking vessel.  The temperature of these fires are lower and produce inefficient burning that results in black carbon and other short-lived but high impact pollutants.

These short-lived pollutants not only affect the persons in the immediate area but also contribute much harmful gases more potent than carbon dioxide and methane. For the people in the immediate area, their health is severely hampered as this indoor or domestic air pollution results in significantly higher risks of pneumonia and chronic bronchitis.

To remedy the indoor air pollution (IAP) and health-related issues as well as the environmental pollution in the developing world, clean cookstoves are the way to advance. But to empower rural users to embrace the advanced cookstoves, and achieve sustainable success requires a level of socio-cultural and economic awareness that is related directly to this marginalized group. The solution needs to be appropriate for the style of cooking of the group which means one stove model will not suit or meet the needs and requirements of all developing nation people groups.

Clean cookstoves can significantly reduce health problems caused by indoor air pollution in rural areas

Consideration for such issues as stove top and front loading stove cooking, single pot and double pot cooking, size of the typical cooking vessel and the style of cooking are all pieces of information needed to complete the picture.  Historically, natural draft systems were devised to aid the combustion or burning of the fuels, however, forced draft stoves tend to burn cleaner with better health and environmental benefits. Regardless of cookstove design, the components need to be either made locally or at least available locally so that the long term life of the stove is maintainable and so sustainable.

Now, if the cookstove unit can by powered by  simple solar or biomass system, this will change the whole nature of the life style and domestic duties of the chief cook and the young siblings who are typically charged with collecting the natural firewood to meet the cooking requirement.

Therefore the cookstoves need to be designed and adapted for the people group and their traditional cooking habits, and not in the reverse order. To assess the overall performance of the green cooking stoves requires simple but effective measures of the air quality. The two elements that need to be measured are the black carbon emissions and the temperature of the cooking device.  This can be achieved by miniature aerosol samplers and temperature sensors. The data collected needs to be transmitted in real-time via mobile phones for verification of performance rates.  This is to provide verifiable data in a cost effective monitoring process.

Share of Renewables in Energy Supply of UK

The Earth is facing a climate crisis, as the burning of fossil fuels to generate electricity and power our cars overloads the atmosphere with carbon dioxide, causing a dangerous atmospheric imbalance that’s raising global temperatures.

A report from the UN’s Intergovernmental Panel on Climate Change (IPCC) released earlier this month cautioned that the planet has just 12 years to dramatically curb greenhouse gas emissions, by overhauling our energy systems and economies and likely, our societies and political systems. Even a half degree rise beyond that would cause catastrophic sea level rises, droughts, heat, hunger, and poverty, spelling disaster for our species.

UK’s Commitment to Climate Change Mitigation

The UK government has committed to reducing carbon emissions by 80% of 1990 levels by 2050, a process that will involve overhauling our energy supply, which is responsible for 25% of greenhouse emissions in the country, just behind transport (26% of all emissions). But it may be too little too late. The government has already said it is reviewing these targets in light of the IPCC report and in the spring began consulting on a net-zero carbon emissions target for 2050.

But despite these dire prognoses and the enormity of the task facing us as a species, there’s reason to be optimistic. The UK has already managed to cut greenhouse gas emissions by 43% on 1990 levels, with much of the reduction coming from a 57% decline in emissions from energy generation. This is in part thanks to several providers offering you the chance to have a 100% renewable domestic energy supply.

Reduction in Coal Usage

The use of coal has plunged nearly overnight in the UK. In 2012, 42% of the UK’s electricity demand was met by coal. Just six years later, in the second quarter of 2018, that figure had fallen to just 1.6%. Emissions from coal-fired power stations fell from 129 million tonnes of CO2 to just 19 million tonnes over the same period.

A coal-free Britain is already on the horizon. In April 2017, the UK logged its first coal-free day since the Industrial Revolution; this past April we extended the run to 76 consecutive hours. In fact, in the second quarter of 2018, all the UK’s coal power stations were offline for a total of 812 hours, or 37% of the time. That’s more coal free hours than were recorded in 2016 and 2017 combined and in just three months.

When the UK does rely on coal power, it’s primarily to balance supplies and to meet demand overnight and during cold snaps, such as during the Beast from the East storm in March. The UK is so certain that coal is a technology of the past, that the government has plans to mothball all seven remaining coal-fired power stations by 2025.

Share of Renewables in Energy Supply

The decline in coal has been matched by an explosion in renewable energy, particularly in wind power. In the second quarter of 2018, renewables generated 31.7% of the UK’s electricity, up from under 9% in 2011. Of those, wind power produced 13.3% of all electricity (7.1% from onshore turbines farms and 6.2% from offshore wind farms), biomass energy contributed another 11% of the UK’s electricity, solar generated 6% and hydro power made up the rest of renewables’ pie share.

The UK’s total installed renewables capacity has exploded, hitting 42.2GW in the second quarter of 2018, up from under 10GW in 2010. That includes 13.7GW of onshore wind capacity and 7.8GW of offshore wind capacity—a figure which will get a boost with the opening in September of the world’s largest wind farm, the Walney Extension, off the coast of Cumbria, itself with a capacity of nearly 0.7GW. Solar panels contributed another 13GW of renewable capacity, and installed plant biomass infrastructure reaching 3.3GW.

However, while renewables are transforming electricity generation in the UK, our energy system consists of more than simply electricity. We also have to account for natural gas and the use of fuel in transport, and renewables have made fewer in roads in those sectors.

The UK is meeting just 9.3% of its total energy needs from renewable sources, short of the 15% it has earmarked for 2020 and far behind its peers in the EU, where Sweden is already running on 53.8% renewable energy.

Conclusion

Emissions are dropping overall in the UK, largely due to an ongoing revolution in electricity generation and a decisive move away from coal. But these reductions have concealed stagnant and even increasing levels of greenhouse gas emissions from other sectors, including transport and agriculture.

Our transition to a sustainable economy has begun but will require more than wind farms and the shuttering of coal-fired power stations. It must encompass electric vehicles, transformed industries, and ultimately changing attitudes toward energy and the environment and our responsibility toward it.

5 Actionable Tips to Use More Renewable Energy

The world doesn’t seem to stop when it comes to consuming energy. As each country experience growth and development as a society, their needs for power increases to keep up with the pace of their expansion. The process is a natural one.  It’s even socially encouraged, but that doesn’t change the fact that it takes a toll on our planet. More of the world resources are exploited and processed to become fuel.

While denied by many of these industries for a long time, the ugly side of energy consumption has been exposed for the whole world to see. It has increased the awareness about the need to embrace alternative energy and waste solutions that are renewable and cleaner to avoid contamination and slow down the degradation of our many natural ecosystems.

Many of the initiatives to use clean energies are embraced in multiple countries. Some of them are backed by governments and private industries looking to preserve our planet and fix some of the damage caused by our constant demands of resources. Many people believe that individual efforts don’t count. The fact is that every single bit of help they can get adds up a lot. Here are five actionable tips you can follow to make proper use of renewable energy on your premises:

1. Embrace Solar-Powered Technologies

If you haven’t realized it yet the sun is one of the most powerful energy sources in the world and no one can charge to use it. This is why many developers focused on creating technology that makes the best use of the power delivered by the light and radiation offered by the main star in our solar system.

Nowadays, you can get solar-powered vehicles, and solar panels to distribute energy at your home. Such technologies can be a bit expensive but is durable as nothing else in the market, plus it is a one-time investment at best!

2. Crowdfund Clean Energy Projects

Many communities are willing to go green and use clean energy sources when they are presented the right project. Most of the times the neighbors’ just need to see a well-laid plan explaining why using renewable energy sources will be more affordable for them in the long run.

A solar-powered community project in Laos

The environmental angle can also be helpful, especially for those homeowners that live close to natural reservoirs and wish to keep the value of their properties by safekeeping the environment.

3. Support the Society of Concerned Scientist

This is an amazing initiative to get businesses and the world to become more educated and use more renewable energy.  I am not affiliated with the society at all, but it may be one of the most actionable ways to help the environment because they have built up a lot of support and assets.

Check out what they are doing here.

4. Use Water-processing Technology

Many households and modern housing projects can make use of this technology to recycle the water sources they use and avoid the unnecessary waste of such vital liquid.

The basic principles of this initiative require investment in processing plants and large tanks that can either be installed on the foundations of your home or at the side of it. Your house will always have clean running water, and you won’t take much from the natural sources near your place.

5. Wind Power for Home or Business

Many locations around the world are using wind-powered turbines to generate electricity, and it has become a business opportunity for many entrepreneurs around the world. The plants are easy to install, and the energy is very cheap to produce.

Wind-powered energy has generated an excess of power in certain locations such as China, Germany, Australia and some regions on the USA with these plants selling they’re overproduced to regular energy plants. The power provided by these alternatives is cleaner than most and very easy on a family budget.